首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
Drosophila ovarian germline stem cells (GSCs) are maintained by Dpp signaling and the Pumilio (Pum) and Nanos (Nos) translational repressors. Upon division, Dpp signaling is extinguished, and Nos is downregulated in one daughter cell, causing it to switch to a differentiating cystoblast (CB). However, downstream effectors of Pum-Nos remain unknown, and how CBs lose their responsiveness to Dpp is unclear. Here, we identify Brain Tumor (Brat) as a potent differentiation factor and target of Pum-Nos regulation. Brat is excluded from GSCs by Pum-Nos but functions with Pum in CBs to translationally repress distinct targets, including the Mad and dMyc mRNAs. Regulation of both targets simultaneously lowers cellular responsiveness to Dpp signaling, forcing the cell to become refractory to the self-renewal signal. Mathematical modeling elucidates bistability of cell fate in the Brat-mediated system, revealing how autoregulation of GSC number can arise from Brat coupling extracellular Dpp regulation to intracellular interpretation.  相似文献   

5.
Integrin-dependent anchoring of a stem-cell niche   总被引:1,自引:0,他引:1  
Interactions between stem cells and their surrounding microenvironment, or niche, are critical for the establishment and maintenance of stem-cell properties. The adult Drosophila testis contains a morphologically discrete stem-cell niche, the 'hub'. The small cluster of non-dividing, somatic hub cells at the anterior tip of the fly testis is contacted by the germline stem cells (GSCs), which retain their stem-cell character through the direct association with the hub. Here we show that integrin-mediated adhesion is important for maintaining the correct position of embryonic hub cells during gonad morphogenesis. The misplaced hub in integrin-deficient embryos directs the orientation of cell divisions in the presumptive GSCs, a hallmark of the active germline stem-cell niche. A decrease in integrin-mediated adhesion in adult testes, which resulted in a loss of the hub and the stem-cell population, revealed the importance of hub-cell anchoring. Finally, we show that an extracellular matrix (ECM) is present around the gonad during late embryogenesis and that this ECM is defective in integrin-deficient gonads. On the basis of our data, we propose that integrins are required for the attachment of the hub cells to the ECM, which is essential for maintaining the stem-cell niche.  相似文献   

6.
Rapid progress has recently been made regarding how the niche controls stem cell function, but little is yet known about how stem cells in the same niche interact with one another. In this study, we show that differentiation-defective Drosophila ovarian germline stem cells (GSCs) can outcompete normal ones for niche occupancy in a cadherin-dependent manner. The differentiation-defective bam or bgcn mutant GSCs invade the niche space of neighboring wild-type GSCs and gradually push them out of the niche by upregulating E-cadherin expression. Furthermore, the bam/bgcn-mediated GSC competition requires E-cadherin and normal GSC division, but not the self-renewal-promoting BMP niche signal, while different E-cadherin levels can sufficiently stimulate GSC competition. Therefore, we propose that GSCs have a competitive relationship for niche occupancy, which may serve as a quality control mechanism to ensure that accidentally differentiated stem cells are rapidly removed from the niche and replaced by functional ones.  相似文献   

7.
8.
9.
In many animals, germline progenitors are kept undifferentiated to give rise to germline stem cells (GSCs), enabling continuous production of gametes throughout animal life. In the Drosophila ovary, GSCs arise from a subset of primordial germ cells (PGCs) that stay undifferentiated even after gametogenesis has started. How a certain population of PGCs is protected against differentiation, and the significance of its regulatory mechanisms on GSC establishment remain elusive. Here we show that epidermal growth factor receptor (Egfr) signaling in somatic stromal intermingled cells (ICs), activated by its ligand produced in germ cells, controls the size of the PGC pool at the onset of gametogenesis. Egfr signaling in ICs limits the number of cells that express the heparan sulfate proteoglycan Dally, which is required for the movement and stability of the locally-produced stromal morphogen, Decapentaplegic (Dpp, a BMP2/4 homologue). Dpp is received by PGCs and maintains them in an undifferentiated state. Altering Egfr signaling levels changes the size of the PGC pool and affects the number of GSCs established during development. While excess GSC formation is compensated by the adult stage, insufficient GSC formation can lead to adult ovarioles that completely lack GSCs, suggesting that ensuring an absolute size of the PGC pool is crucial for the GSC system.  相似文献   

10.

Background

Drosophila female germline stem cells (GSCs) reside adjacent to a cellular niche that secretes Bone Morphogenetic Protein (BMP) ligands and anchors the GSCs through adherens junctions. The GSCs divide asymmetrically such that one daughter remains in the niche as a GSC, while the other is born away from the niche and differentiates. However, given that the BMP signal can be diffusible, it remains unclear how a local extracellular asymmetry is sufficient to result in a robust pattern of asymmetric division.

Methods and Findings

Here we show that GSCs are polarized with respect to the cellular niche. We first use a modified biosensor to demonstrate that the small GTPase Rac is asymmetrically activated within the GSC at the niche-GSC interface. Experiments using loss-of-function and gain-of-function mutations in Rac indicate that asymmetric Rac activity both localizes the microtubule binding protein Apc2 to orient one GSC centrosome at the niche-GSC interface during interphase and activates the Jun N-terminal kinase pathway to increase the ability of the GSC to respond to BMP ligands. Other processes act in concert with each function of Rac. Specifically, we demonstrate that the GSC cell cycle arrests at prometaphase if centrosomes are misoriented.

Conclusions

Thus, the GSCs, an adult stem cell present in a cellular niche, have a niche-associated polarity that couples control of the division plane with increased response to an extracellular maintenance signal. Other processes work in parallel with the Rac-mediated polarity to ensure a robust pattern of asymmetric division. We suggest that all adult stem cells likely employ multiple, independently acting mechanisms to ensure asymmetric division to maintain tissue homeostasis.  相似文献   

11.
Stem cell niches are specific regulatory microenvironments formed by neighboring stromal cells. Owing to difficulties in identifying stem cells and their niches in many systems, mechanisms that control niche formation and stem cell recruitment remain elusive. In the Drosophila ovary, two or three germline stem cells (GSCs) have recently been shown to reside in a niche, in which terminal filaments (TFs) and cap cells are two major components. We report that signals from newly formed niches promote clonal expansion of GSCs during niche formation in the Drosophila ovary. After the formation of TFs and cap cells, anterior primordial germ cells (PGCs) adjacent to TFs/cap cells can develop into GSCs at the early pupal stage while the rest directly differentiate. The anterior PGCs are very mitotically active and exhibit two division patterns with respect to cap cells. One of these patterns generates two daughters that both contact cap cells and potentially become GSCs. Our lineage tracing study confirms that one PGC can generate two or three GSCs to occupy a whole niche ('clonal expansion'). decapentaplegic (dpp), the Drosophila homolog of human bone morphogenetic protein 2/4, is expressed in anterior somatic cells of the gonad, including TFs/cap cells. dpp overexpression promotes PGC proliferation and causes the accumulation of more PGCs in the gonad. A single PGC mutant for thick veins, encoding an essential dpp receptor, loses the ability to clonally populate a niche. Therefore, dpp is probably one of the mitotic signals that promote the clonal expansion of GSCs in a niche. This study also suggests that signals from newly formed niche cells are important for expanding stem cells and populating niches.  相似文献   

12.
Maintenance of adult stem cells is largely dependent on the balance between their self-renewal and differentiation. The Drosophila ovarian germline stem cells (GSCs) provide a powerful in vivo system for studying stem cell fate regulation. It has been shown that maintaining the GSC population involves both genetic and epigenetic mechanisms. Although the role of epigenetic regulation in this process is evident, the underlying mechanisms remain to be further explored. In this study, we find that Enoki mushroom (Enok), a Drosophila putative MYST family histone acetyltransferase controls GSC maintenance in the ovary at multiple levels. Removal or knockdown of Enok in the germline causes a GSC maintenance defect. Further studies show that the cell-autonomous role of Enok in maintaining GSCs is not dependent on the BMP/Bam pathway. Interestingly, molecular studies reveal an ectopic expression of Bruno, an RNA binding protein, in the GSCs and their differentiating daughter cells elicited by the germline Enok deficiency. Misexpression of Bruno in GSCs and their immediate descendants results in a GSC loss that can be exacerbated by incorporating one copy of enok mutant allele. These data suggest a role for Bruno in Enok-controlled GSC maintenance. In addition, we observe that Enok is required for maintaining GSCs non-autonomously. Compromised expression of enok in the niche cells impairs the niche maintenance and BMP signal output, thereby causing defective GSC maintenance. This is the first demonstration that the niche size control requires an epigenetic mechanism. Taken together, studies in this paper provide new insights into the GSC fate regulation.  相似文献   

13.
Stem cells, which can self-renew and generate differentiated cells, have been shown to be controlled by surrounding microenvironments or niches in several adult tissues. However, it remains largely unknown what constitutes a functional niche and how niche formation is controlled. In the Drosophila ovary, germline stem cells (GSCs), which are adjacent to cap cells and two other cell types, have been shown to be maintained in the niche. In this study, we show that Notch signaling controls formation and maintenance of the GSC niche and that cap cells help determine the niche size in the Drosophila ovary. Expanded Notch activation causes the formation of more cap cells and bigger niches, which support more GSCs, whereas compromising Notch signaling during niche formation decreases the cap cell number and niche size and consequently the GSC number. Furthermore, the niches located away from their normal location can still sufficiently sustain GSC self-renewal by maintaining high local BMP signaling and repressing bam as in normal GSCs. Finally, loss of Notch function in adults results in rapid loss of the GSC niche, including cap cells and thus GSCs. Our results indicate that Notch signaling is important for formation and maintenance of the GSC niche, and that cap cells help determine niche size and function.  相似文献   

14.
Stem cells have an innate ability to occupy their stem cell niche, which in turn, is optimized to house stem cells. Organ aging is associated with reduced stem cell occupancy in the niche, but the mechanisms involved are poorly understood. Here, we report that Notch signaling is increased with age in Drosophila female germline stem cells (GSCs), and this results in their removal from the niche. Clonal analysis revealed that GSCs with low levels of Notch signaling exhibit increased adhesiveness to the niche, thereby out-competing their neighbors with higher levels of Notch; adhesiveness is altered through regulation of E-cadherin expression. Experimental enhancement of Notch signaling in GSCs hastens their age-dependent loss from the niche, and such loss is at least partially mediated by Sex lethal. However, disruption of Notch signaling in GSCs does not delay GSC loss during aging, and nor does it affect BMP signaling, which promotes self-renewal of GSCs. Finally, we show that in contrast to GSCs, Notch activation in the niche (which maintains niche integrity, and thus mediates GSC retention) is reduced with age, indicating that Notch signaling regulates GSC niche occupancy both intrinsically and extrinsically. Our findings expose a novel role of Notch signaling in controlling GSC-niche adhesion in response to aging, and are also of relevance to metastatic cancer cells, in which Notch signaling suppresses cell adhesion.  相似文献   

15.
The transition from a Drosophila ovarian germline stem cell (GSC) to its differentiated daughter cell, the cystoblast, is controlled by both niche signals and intrinsic factors. piwi and pumilio (pum) are essential for GSC self-renewal, whereas bag-of-marbles (bam) is required for cystoblast differentiation. We demonstrate that Piwi and Bam proteins are expressed independently of each other in reciprocal patterns in GSCs and cystoblasts. However, overexpression of either one antagonizes the other in these cells. Furthermore, piwi;bam double mutants phenocopy the bam mutant. This epistasis reflects the niche signaling function of piwi because depleting piwi from niche cells in bam mutant ovaries also phenocopies bam mutants. Thus, bam is epistatic to niche Piwi, but not germline Piwi function. Despite this, bam- ovaries lacking germline Piwi contain approximately 4-fold fewer germ cells than bam- ovaries, consistent with the role of germline Piwi in promoting GSC mitosis by 4-fold. Finally, pum is epistatic to bam, indicating that niche Piwi does not regulate Bam-C through Pum. We propose that niche Piwi maintains GSCs by repressing bam expression in GSCs, which consequently prevents Bam from downregulating Pum/Nos function in repressing the translation of differentiation genes and germline Piwi function in promoting germ cell division.  相似文献   

16.
Aging influences stem cells, but the processes involved remain unclear. Insulin signaling, which controls cellular nutrient sensing and organismal aging, regulates the G2 phase of Drosophila female germ line stem cell (GSC) division cycle in response to diet; furthermore, this signaling pathway is attenuated with age. The role of insulin signaling in GSCs as organisms age, however, is also unclear. Here, we report that aging results in the accumulation of tumorous GSCs, accompanied by a decline in GSC number and proliferation rate. Intriguingly, GSC loss with age is hastened by either accelerating (through eliminating expression of Myt1, a cell cycle inhibitory regulator) or delaying (through mutation of insulin receptor (dinR) GSC division, implying that disrupted cell cycle progression and insulin signaling contribute to age‐dependent GSC loss. As flies age, DNA damage accumulates in GSCs, and the S phase of the GSC cell cycle is prolonged. In addition, GSC tumors (which escape the normal stem cell regulatory microenvironment, known as the niche) still respond to aging in a similar manner to normal GSCs, suggesting that niche signals are not required for GSCs to sense or respond to aging. Finally, we show that GSCs from mated and unmated females behave similarly, indicating that female GSC–male communication does not affect GSCs with age. Our results indicate the differential effects of aging and diet mediated by insulin signaling on the stem cell division cycle, highlight the complexity of the regulation of stem cell aging, and describe a link between ovarian cancer and aging.  相似文献   

17.
18.
Pan L  Chen S  Weng C  Call G  Zhu D  Tang H  Zhang N  Xie T 《Cell Stem Cell》2007,1(4):458-469
It is widely postulated that tissue aging could be, at least partially, caused by reduction of stem cell number, activity, or both. However, the mechanisms of controlling stem cell aging remain largely a mystery. Here, we use Drosophila ovarian germline stem cells (GSCs) as a model to demonstrate that age-dependent decline in the functions of stem cells and their niche contributes to overall stem cell aging. BMP signaling activity from the niche significantly decreases with age, and increasing BMP signaling can prolong GSC life span and promote their proliferation. In addition, the age-dependent E-cadherin decline in the stem cell-niche junction also contributes to stem cell aging. Finally, overexpression of SOD, an enzyme that helps eliminate free oxygen species, in either GSCs or their niche alone can prolong GSC life span and increase GSC proliferation. Therefore, this study demonstrates that stem cell aging is controlled extrinsically and intrinsically in the Drosophila ovary.  相似文献   

19.
The best known cases of cell autotomy are the formation of erythrocytes and thrombocytes (platelets) from progenitor cells that reside in special niches. Recently, autotomy of stem cells and its enigmatic interaction with the niche has been reported from male germline stem cells (GSCs) in several insect species. First described in lepidopterans, the silkmoth, followed by the gipsy moth and consecutively in hemipterans, foremost the milkweed bug. In both, moths and the milkweed bug, GSCs form finger-like projections toward the niche, the apical cells (homologs of the hub cells in Drosophila). Whereas in the milkweed bug the projection terminals remain at the surface of the niche cells, in the gipsy moth they protrude deeply into the singular niche cell. In both cases, the projections undergo serial retrograde fragmentation with progressing signs of autophagy. In the gipsy moth, the autotomized vesicles are phagocytized and digested by the niche cell. In the milkweed bug the autotomized vesicles accumulate at the niche surface and disintegrate. Autotomy and sprouting of new projections appears to occur continuously. The significance of the GSC-niche interactions, however, remains enigmatic. Our concept on the signaling relationship between stem cell-niche in general and GSC and niche (hub cells and cyst stem cells) in particular has been greatly shaped by Drosophila melanogaster. In comparing the interactions of GSCs with their niche in Drosophila with those in species exhibiting GSC autotomy it is obvious that additional or alternative modes of stem cell-niche communication exist. Thus, essential signaling pathways, including niche-stem cell adhesion (E-cadherin) and the direction of asymmetrical GSC division - as they were found in Drosophila - can hardly be translated into the systems where GSC autotomy was reported. It is shown here that the serial autotomy of GSC projections shows remarkable similarities with Wallerian axonal destruction, developmental axon pruning and dying-back degeneration in neurodegenerative diseases. Especially the hypothesis of an existing evolutionary conserved “autodestruction program” in axons that might also be active in GSC projections appears attractive. Investigations on the underlying signaling pathways have to be carried out. There are two other well known cases of programmed cell autotomy: the enucleation of erythroblasts in the process of erythrocyte maturation and the segregation of thousands of thrombocytes (platelets) from one megakaryocyte. Both progenitor cell types - erythroblasts and megakaryocytes - are associated with a niche in the bone marrow, erythroblasts with a macrophage, which they surround, and the megakaryocytes with the endothelial cells of sinusoids and their extracellular matrix. Although the regulatory mechanisms may be specific in each case, there is one aspect that connects all described processes of programmed cell autotomy and neuronal autodestruction: apoptotic pathways play always a prominent role. Studies on the role of male GSC autotomy in stem cell-niche interaction have just started but are expected to reveal hitherto unknown ways of signal exchange. Spermatogenesis in mammals advance our understanding of insect spermatogenesis. Mammal and insect spermatogenesis share some broad principles, but a comparison of the signaling pathways is difficult. We have intimate knowledge from Drosophila, but of almost no other insect, and we have only limited knowledge from mammals. The discovery of stem cell autotomy as part of the interaction with the niche promises new general insights into the complicated stem cell-niche interdependence.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号