首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Oxidation of PTH at methionine residues results in loss of biological activity. PTH may be oxidized in patients with renal disease. The aim of this study was to develop an assay considering oxidation of PTH. Oxidized hPTH was analyzed by high resolution nano-liquid chromatography coupled to ESI-FTT tandem mass spectrometry (nanoLC-ESI-FT-MS/MS) directly and after proteolytic cleavage. The oxidized hPTH(1-84) sample shows TIC-peaks at 18-20 min and several mass peaks due to mass shifts caused by oxidations. No significant signal for oxidized hPTH(1-84) species after removal of oxidized PTH molecules by a specific column with monoclonal antibodies (MAB) raised against the oxidized hPTH was detectable. By using this column in samples from 18 patients on dialysis we could demonstrate that measured PTH concentrations were substantially lower when considering oxidized forms of PTH. The relationship between PTH concentrations determined directly and those concentrations measured after removal of the oxidized PTH forms varies substantially. In some patients only 7% of traditionally measured PTH was free of oxidation, whereas in other patients 34% of the traditionally measured PTH was real intact PTH. In conclusion, a huge but not constant proportion of PTH molecules are oxidized in patients requiring dialysis. Since oxidized PTH is biologically inactive, the currently used methods to detect PTH in daily clinical practice may not adequately reflect PTH-related bone and cardiovascular abnormalities in patients on dialysis.  相似文献   

3.
4.
To study the plasma pharmacokinetics and accumulation of the recombinant human parathyroid hormone (rhPTH) (1–84) in rhesus monkeys, and the tissue distribution and excretion profiles of 125I-rhPTH (1–84) in rats. The concentration of rhPTH (1–84) in plasma samples were determined by an enzyme immunoassay (EIA) method after subcutaneous and intravenous bolus injection. The tissue distribution and urinary, fecal and biliary excretion patterns of 125I-rhPTH (1–84) were investigated by trichloroacetic acid (TCA) precipitation method. Following subcutaneous (sc) administration rhPTH (1–84) in rhesus monkeys, rhPTH (1–84) exhibited rapid absorption and elimination and had no accumulated tendency after successive sc administration. Following sc administration 125I-rhPTH (1–84) in rats, the TCA-precipitated radioactivity was widely distributed and rapidly diminished in most tissues. Approximately 83.9 and 6.8 % of the total radioactivity was recovered in urine and feces by 72 h postdosing, respectively; whereas 4.1 % excreted into bile up to 24 h postdosing. The pharmacokinetics of rhPTH (1–84) complied with linear kinetics within the examined dose range following a single sc administration had no accumulated tendency following multiple sc administration in rhesus monkeys. The accumulation of 125I-rhPTH (1–84) in tissues/organs examined, appeared to be low in rats. The major elimination route was by urinary excretion.  相似文献   

5.
We examined whether intermittent administration of parathyroid hormone [134] (PTH[1–34]; 60 μg/kg/day) can prevent the negative effects of titanium (Ti) particles on implant fixation and periprosthetic osteolysis in a rat model. Eighteen adult male rats (12 weeks old, bones still growing) received intramedullary Ti implants in their bilateral femurs; 6 rats from the blank group received vehicle injections, and 12 rats from the control group and PTH treatment group received Ti particle injections at the time of operation and intra-articular injections 2 and 4 weeks postoperatively. Six of the rats that received Ti particles from the PTH group also received PTH[1–34] treatment. Six weeks postoperatively, all specimens were collected for assessment by X-ray, micro-CT, biomechanical, scanning electron microscopy (SEM), and dynamic histomorphometry. A lower BMD, BV/TV, Tb.N, maximal fixation strength, and mineral apposition rate were observed in the control group compared to the blank group, demonstrating that a periprosthetic osteolysis model had been successfully established. Administration of PTH[1–34] significantly increased the bone mineral density of the distal femur, BV/TV, Tb.N, Tb.Th, Tb.Sp, Con.D, SMI, and maximal fixation strength in the PTH group compared to that in the control group. SEM revealed higher bone–implant contact, thicker lamellar bone, and larger trabecular bone area in the PTH group than in the control group. A higher mineral apposition rate was observed in the PTH group compared to both the blank and control groups. These findings imply that intermittent administration of PTH[1–34] prevents periprosthetic osteolysis by promoting bone formation. The effects of PTH[1–34] were evaluated at a suprapharmacological dosage to the human equivalent in rats; therefore, additional studies are required to demonstrate its therapeutic potential in periprosthetic osteolysis.  相似文献   

6.
7.
8.
The Na/H exchanger regulatory factors, NHERF1 and NHERF2, are adapter proteins involved in targeting and assembly of protein complexes. The parathyroid hormone receptor (PTHR) interacts with both NHERF1 and NHERF2. The NHERF proteins toggle PTHR signaling from predominantly activation of adenylyl cyclase in the absence of NHERF to principally stimulation of phospholipase C when the NHERF proteins are expressed. We hypothesized that this signaling switch occurs at the level of the G protein. We measured G protein activation by [35S]GTPγS binding and Gα subtype-specific immunoprecipitation using three different cellular models of PTHR signaling. These studies revealed that PTHR interactions with NHERF1 enhance receptor-mediated stimulation of Gαq but have no effect on stimulation of Gαi or Gαs. In contrast, PTHR associations with NHERF2 enhance receptor-mediated stimulation of both Gαq and Gαi but decrease stimulation of Gαs. Consistent with these functional data, NHERF2 formed cellular complexes with both Gαq and Gαi, whereas NHERF1 was found to interact only with Gαq. These findings demonstrate that NHERF interactions regulate PTHR signaling at the level of G proteins and that NHERF1 and NHERF2 exhibit isotype-specific effects on G protein activation.  相似文献   

9.
10.
Parathyroid hormone (PTH) is an important regulator of osteoblast function and is the only anabolic therapy currently approved for treatment of osteoporosis. The PTH receptor (PTH1R) is a G protein-coupled receptor that signals via multiple G proteins including Gsα. Mice expressing a constitutively active mutant PTH1R exhibited a dramatic increase in trabecular bone that was dependent upon expression of Gsα in the osteoblast lineage. Postnatal removal of Gsα in the osteoblast lineage (P-GsαOsxKO mice) yielded markedly reduced trabecular and cortical bone mass. Treatment with anabolic PTH(1–34) (80 μg/kg/day) for 4 weeks failed to increase trabecular bone volume or cortical thickness in male and female P-GsαOsxKO mice. Surprisingly, in both male and female mice, PTH administration significantly increased osteoblast numbers and bone formation rate in both control and P-GsαOsxKO mice. In mice that express a mutated PTH1R that activates adenylyl cyclase and protein kinase A (PKA) via Gsα but not phospholipase C via Gq/11 (D/D mice), PTH significantly enhanced bone formation, indicating that phospholipase C activation is not required for increased bone turnover in response to PTH. Therefore, although the anabolic effect of intermittent PTH treatment on trabecular bone volume is blunted by deletion of Gsα in osteoblasts, PTH can stimulate osteoblast differentiation and bone formation. Together these findings suggest that alternative signaling pathways beyond Gsα and Gq/11 act downstream of PTH on osteoblast differentiation.  相似文献   

11.
Environmental estrogens Endocrine disrupters are environmental substances which interfere with the hormone system of organisms and thereby induce adverse effects. They exert their biological activity either by disrupting hormone metabolism or by imitating the biological action of the endogenous hormones. In the aquatic environment, an important group of endocrine disrupters is represented by the estrogen‐active compounds, which mimic the female sex hormone, 17β‐estradiol. Both laboratory experiments and field studies on fishes have demonstrated that already very low concentrations of environmental estrogens are able to induce disturbances in the hormone system and hormone‐regulated processes of fishes.  相似文献   

12.
《Endocrine practice》2012,18(4):538-548
ObjectiveTo determine the intraobserver and interobserver agreement levels in the evaluation of technetium Tc 99m sestamibi parathyroid scintigraphic images.MethodsNinety-eight patients with hyperparathyroidism were included in the study, and their parathyroid images were evaluated by 4 experienced nuclear medicine observers. The 98 cases were evaluated twice by each observer within an interval of 2 weeks. The evaluations were performed directly on workstations with use of digital images. A questionnaire was completed by each observer. The presence of a lesion, the number and the localizations of the lesions, and whether the lesion was clear or doubtful were all evaluated. Cohen kappa statistics and total agreement percentages were calculated by using SPSS version 11.0 software.ResultsThe 4 observers performed 8 different evaluations and identified a minimum of 38 and a maximum of 43 cases with a parathyroid lesion (or lesions). Both the intraobserver and the interobserver agreements were “very good” for the presence of a parathyroid lesion. The intraobserver agreement was also “very good” and the interobserver agreement was “good” (for only 1 pair of observers) or “very good” for the evaluation of the number of parathyroid lesions. The intraobserver agreement was “very good” or “good” and the interobserver agreement was “good” for the lesion localization and for the presence of a doubtful lesion.ConclusionParathyroid scintigraphy seems to be an observer independent method in the detection of a parathyroid lesion, in the determination of the number of lesions, and in the localizations of the lesions. The measured high agreement between observers increases the reliability of parathyroid scintigraphy. (Endocr Pract. 2012;18: 538-548)  相似文献   

13.
14.
Ohne ZusammenfassungMit 30 Abbildungen.Aus dem Kaiser Wilhelm-Institut für Biologie, Berlin-Dahlem, Abt. ProfessorHartmann.  相似文献   

15.
16.

Introduction

The association between short stature and increased risk of ischemic heart disease has been subject to studies for decades. The recent discussion of cardiovascular risk during growth hormone therapy has given new importance to this question. We have hypothesized that the autonomic system is a crucial element relating to this subject.

Methods

Heart rate variability calculated from 24-hour electrocardiogram data is providing insight into the regulatory state of the autonomous nervous system and is an approved surrogate parameter for estimating cardiovascular risk. We have calculated heart rate variability during clonidine testing for growth hormone stimulation of 56 children. As clonidine is a well-known effector of the autonomous system, stimulating vagal tone and decreasing sympathetic activity, we compared the autonomous reactions of children with constitutional growth delay (CGD), growth hormone deficiency (GHD) and former small for gestational age (SGA).

Results

During clonidine testing children with CGD showed the expected α2-adrenoreceptor mediated autonomous response of vagal stimulation for several hours. This vagal reaction was significantly reduced in the SGA group and nearly non- existent in the GHD group.

Discussion

Children with GHD show a reduced autonomous response to clonidine indicating α2-adrenoreceptor sub sensitivity. This can be found prior to the start of growth hormone treatment. Since reduction of HRV is an approved surrogate parameter, increased cardiovascular risk has to be assumed for patients with GHD. In the SGA group a similar but less severe reduction of the autonomous response to clonidine was found. These findings may enrich the interpretation of the data on growth hormone therapy, which are being collected by the SAGhE study group.  相似文献   

17.
Coeliac disease is a gluten-sensitive enteropathy of varying severity. Osteomalacia and hypocalcaemia can result from malabsorption of vitamin D and calcium, which, in turn, can lead to secondary hyperparathyroidism. If coeliac disease remains untreated for long, tertiary hyperparathyroidism can also develop through autonomy of the parathyroid glands via chronic stimulation. Primary hyperparathyroidism also has been reported in some cases of coeliac disease. We report the case of an adolescent with coeliac disease presenting with severe hypercalcaemia from a parathyroid adenoma. A 14 year-old girl was admitted to our department for delayed puberty and growth retardation. Laboratory examination revealed iron deficiency anaemia, low 25OH vitamin D level (7 ng/ml), high parathyroid hormone level (PTH) (955 pg/ml), and hypercalcaemia (13.4 mg/dl). Endoscopic biopsy was compatible with gluten enteropathy. Endomysium antibody was positive. A gluten-free diet was started. Her calcium returned to normal after excision of the parathyroid adenoma. After four months of the gluten-free diet, she began to mature, and puberty began with development of breasts and axillary-pubic hair growth. It has been suggested that autonomous four-gland hyperplasia or tertiary hyperparathyroidism may progress to adenoma formation, and that this should be termed "quaternary hyperparathyroidism". More studies are required to explain the relationship between coeliac disease and hyperparathyroidism.  相似文献   

18.

Objectives

Perchlorate, nitrate, and thiocyanate are well-known inhibitors of the sodium-iodide symporter and may disrupt thyroid function. This exploratory study investigated the association among urinary perchlorate, nitrate, and thiocyanate concentrations and parathyroid hormone (PTH) levels in the general U.S. population.

Methods

We analyzed data on 4265 adults (aged 20 years and older) from the National Health and Nutrition Examination Survey in 2005 through 2006 to evaluate the relationship among urinary perchlorate, nitrate, and thiocyanate concentration and PTH levels and the presence of hyperparathyroidism cross-sectionally.

Results

The geometric means and 95% confidence interval (95% CI) concentrations of urinary perchlorate, nitrate, and thiocyanate were 3.38 (3.15–3.62), 40363 (37512–43431), and 1129 (1029–1239) ng/mL, respectively. After adjusting for confounding variables and sample weights, creatinine-corrected urinary perchlorate was negatively associated with serum PTH levels in women (P = 0.001), and creatinine-corrected urinary nitrate and thiocyanate were negatively associated with serum PTH levels in both sex groups (P = 0.001 and P<0.001 for men, P = 0.018 and P<0.001 for women, respectively). Similar results were obtained from sensitivity analyses performed for exposure variables unadjusted for creatinine with urinary creatinine added as a separate covariate. There was a negative relationship between hyperparathyroidism and urinary nitrate and thiocyanate [odds ratio (95% CI) = 0.77 (0.60–0.98) and 0.69 (0.61–0.79), respectively].

Conclusions

A higher urinary concentration of perchlorate, nitrate, and thiocyanate is associated with lower serum PTH levels. Future studies are needed to determine the pathophysiological background of the observation.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号