首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigated arm perfusion and metabolism during upper body exercise. Eight average, fit subjects and seven rowers, mean +/- SE maximal oxygen uptake (VO2 max) 157 +/- 7 and 223 +/- 14 ml O2. kg(-0.73).min(-1), respectively, performed incremental arm cranking to exhaustion. Arm blood flow (ABF) was measured with thermodilution and arm muscle mass was estimated by dual-energy X-ray absorptiometry. During maximal arm cranking, pulmonary VO2 was approximately 45% higher in the rowers compared with the untrained subjects and peak ABF was 6.44 +/- 0.40 and 4.55 +/- 0.26 l/min, respectively (P < 0.05). The arm muscle mass for the rowers and the untrained subjects was 3.5 +/- 0.4 and 3.3 +/- 0.1 kg, i.e., arm perfusion was 1.9 +/- 0.2 and 1.4 +/- 0.1 l blood.kg(-1).min(-1), respectively (P < 0.05). The arteriovenous O2 difference was 156 +/- 7 and 120 +/- 8 ml/l, respectively, and arm VO2 was 0.98 +/- 0.08 and 0.60 +/- 0.04 l/min corresponding with 281 +/- 22 and 181 +/- 12 ml/kg, while arm O(2) diffusional conductance was 49.9 +/- 4.3 and 18.6 +/- 3.2 ml.min(-1).mmHg(-1), respectively (P < 0.05). Also, lactate release in the rowers was almost three times higher than in the untrained subjects (26.4 +/- 1.1 vs. 9.5 +/- 0.4 mmol/min, P < 0.05). The energy requirement of an approximately 50% larger arm work capacity after long-term arm endurance training is covered by an approximately 60% increase in aerobic metabolism and an almost tripling of the anaerobic capacity.  相似文献   

2.
The aim of the present study was to examine whether parameters of isolated mitochondria could account for the in vivo maximum oxygen uptake (VO2max) of human skeletal muscle. VO2max and work performance of the quadriceps muscle of six volunteers were measured in the knee extensor model (range 10-18 mmol O2 x min(-1) x kg(-1) at work rates of 22-32 W/kg). Mitochondria were isolated from the same muscle at rest. Strong correlations were obtained between VO2max and a number of mitochondrial parameters (mitochondrial protein, cytochrome aa3, citrate synthase, and respiratory activities). The activities of citrate synthase, succinate dehydrogenase, and pyruvate dehydrogenase, measured in isolated mitochondria, corresponded to, respectively, 15, 3, and 1.1 times the rates calculated from VO2max. The respiratory chain activity also appeared sufficient. Fully coupled in vitro respiration, which is limited by the rate of ATP synthesis, could account for, at most, 60% of the VO2max. This might be due to systematic errors or to loose coupling of the mitochondrial respiration under intense exercise.  相似文献   

3.
The effects of 8 weeks of bicycle endurance training (5 X /week for 30 min) on maximal oxygen uptake capacity (VO2max) during arm and leg ergometry, and on the ultrastructure of an untrained arm muscle (m. deltoideus), and a trained leg muscle (m. vastus lateralis) were studied. With the training, leg-VO2max for bicycling increased by +13%, while the capillary per fiber ratio and the volume density of mitochondria in m. vastus lateralis increased by +15% and +40%, respectively. In contrast, the untrained m. deltoideus showed an unchanged capillary per fiber ratio and a decreased mitochondrial volume density (-17%). Despite this decrease of mitochondrial volume arm-VO2max increased by +9%. It seems unlikely that the observed discrepancy can be explained by cardiovascular adaptations, since arm cranking did not fully tax the cardiovascular system (arm-VO2max/leg-VO2max: 0.74 and 0.71 before and after training, respectively). Thus neither cardiovascular adaptations nor local structural changes in the untrained muscles could explain the increased arm-VO2max. However, the enhanced capacity for lactate clearance after endurance training could be sufficient to account for the larger VO2max during arm cranking. We propose that an increased net oxidation of lactate might be responsible for the increased arm-VO2max found after bicycle endurance training.  相似文献   

4.
To study the effect of increasing amounts of exercising muscle mass on the relationship between glucose mobilization and peripheral glucose uptake, seven young men (23-28 yr) bicycled for 70 min at a work load of 55-60% VO2max. From minute 30 to 50, arm cranking was added and total work load increased to 82 +/- 4% VO2max. During leg exercise, hepatic glucose production (Ra) increased in parallel with peripheral glucose uptake (Rd) and euglycemia was maintained. During arm + leg exercise, Ra increased more than Rd and accordingly plasma glucose increased from 5.11 +/- 0.22 to 8.00 +/- 0.66 mmol/l (P less than 0.05). Plasma catecholamines increased three- to four-fold more during arm + leg exercise than during leg exercise. Leg glucose uptake increased with time regardless of arm cranking. Net leg lactate release during leg exercise was reverted to a net leg lactate uptake during arm + leg exercise. The rate of glycogen breakdown in exercising leg muscle was not altered by addition of arm cranking. In conclusion, when large amounts of muscle mass are active, plasma catecholamines increase sharply and mobilization of glucose exceeds peripheral glucose uptake. This indicates that mechanisms other than feedback regulation to maintain euglycemia are involved in hormonal and substrate mobilization during intense exercise in humans.  相似文献   

5.
To further explore the limitations to maximal O(2) consumption (.VO(2 max)) in exercise-trained skeletal muscle, six cyclists performed graded knee-extensor exercise to maximum work rate (WR(max)) in hypoxia (12% O(2)), hyperoxia (100% O(2)), and hyperoxia + femoral arterial infusion of adenosine (ADO) at 80% WR(max). Arterial and venous blood sampling and thermodilution blood flow measurements allowed the determination of muscle O(2) delivery and O(2) consumption. At WR(max), O(2) delivery rose progressively from hypoxia (1.0 +/- 0.04 l/min) to hyperoxia (1.20 +/- 0.09 l/min) and hyperoxia + ADO (1.33 +/- 0.05 l/min). Leg .VO(2 max) varied with O(2) availability (0.81 +/- 0.05 and 0.97 +/- 0.07 l/min in hypoxia and hyperoxia, respectively) but did not improve with ADO-mediated vasodilation (0.80 +/- 0.09 l/min in hyperoxia + ADO). Although a vasodilatory reserve in the maximally working quadriceps muscle group may have been evidenced by increased leg vascular conductance after ADO infusion beyond that observed in hyperoxia (increased blood flow but no change in blood pressure), we recognize the possibility that the ADO infusion may have provoked vasodilation in nonexercising tissue of this limb. Together, these findings imply that maximally exercising skeletal muscle may maintain some vasodilatory capacity, but the lack of improvement in leg .VO(2 max) with significantly increased O(2) delivery (hyperoxia + ADO), with a degree of uncertainty as to the site of this dilation, suggests an ADO-induced mismatch between O(2) consumption and blood flow in the exercising limb.  相似文献   

6.
The normal respiratory muscle effort at maximal exercise requires a significant fraction of cardiac output and causes leg blood flow to fall. We questioned whether the high levels of respiratory muscle work experienced in heavy exercise would affect performance. Seven male cyclists [maximal O(2) consumption (VO(2)) 63 +/- 5 ml. kg(-1). min(-1)] each completed 11 randomized trials on a cycle ergometer at a workload requiring 90% maximal VO(2). Respiratory muscle work was either decreased (unloading), increased (loading), or unchanged (control). Time to exhaustion was increased with unloading in 76% of the trials by an average of 1.3 +/- 0.4 min or 14 +/- 5% and decreased with loading in 83% of the trials by an average of 1.0 +/- 0.6 min or 15 +/- 3% compared with control (P < 0.05). Respiratory muscle unloading during exercise reduced VO(2), caused hyperventilation, and reduced the rate of change in perceptions of respiratory and limb discomfort throughout the duration of exercise. These findings demonstrate that the work of breathing normally incurred during sustained, heavy-intensity exercise (90% VO(2)) has a significant influence on exercise performance. We speculate that this effect of the normal respiratory muscle load on performance in trained male cyclists is due to the associated reduction in leg blood flow, which enhances both the onset of leg fatigue and the intensity with which both leg and respiratory muscle efforts are perceived.  相似文献   

7.
We examined whether lactic acidemia-induced hyperemia at the onset of high-intensity leg exercise contributed to the speeding of pulmonary O(2) uptake (VO(2)) after prior heavy exercise of the same muscle group or a different muscle group (i.e., arm). Six healthy male subjects performed two protocols that consisted of two consecutive 6-min exercise bouts separated by a 6-min baseline at 0 W: 1) both bouts of heavy (work rate: 50% of lactate threshold to maximal VO(2)) leg cycling (L1-ex to L2-ex) and 2) heavy arm cranking followed by identical heavy leg cycling bout (A1-ex to A2-ex). Blood lactate concentrations before L1-ex, L2-ex, and A2-ex averaged 1.7 +/- 0.3, 5.6 +/- 0.9, and 6.7 +/- 1.4 meq/l, respectively. An "effective" time constant (tau) of VO(2) with the use of the monoexponential model in L2-ex (tau: 36.8 +/- 4.3 s) was significantly faster than that in L1-ex (tau: 52.3 +/- 8.2 s). Warm-up arm cranking did not facilitate the VO(2) kinetics for the following A2-ex [tau: 51.7 +/- 9.7 s]. The double-exponential model revealed no significant change of primary tau (phase II) VO(2) kinetics. Instead, the speeding seen in the effective tau during L2-ex was mainly due to a reduction of the VO(2) slow component. Near-infrared spectroscopy indicated that the degree of hyperemia in working leg muscles was significantly higher at the onset of L2-ex than A2-ex. In conclusion, facilitation of VO(2) kinetics during heavy exercise preceded by an intense warm-up exercise was caused principally by a reduction in the slow component, and it appears unlikely that this could be ascribed exclusively to systemic lactic acidosis.  相似文献   

8.
The effect of leg exercise and of arm exercise in sitting and standing body positions on energy output and on some cardiorespiratory parameters was studied in seven male subjects. Oxygen uptake (VO2), heart rate (fH), pulmonary ventilation (VE) and respiratory frequency were measured at rest, in the 7-8th min of submaximal work (300, 600, 900 kpm/min), and at maximal effort. Significantly higher Vo2, fH, and VE in arm cranking than in cycling were found at submaximal work loads above 300 kpm/min. Though the maximal work load in arm exercise was 50-60% of that in cycling, Vo2 in arm work was at maximal effort only 22% lower than in leg exercise while the difference in fH was insignificant. No differences were found in arm work between the results obtained at any work level in sitting and standing body positions. The only postural difference in arm work was a 13% higher work load achieved at maximal effort when standing than when sitting. Differences in fH between arm and leg exercise were much smaller for the same Vo2 than for the same work load and were time dependent. While fH quickly leveled off in leg exercise, fH in arm cranking rose steadily during the first 6 min of work which created the fH differences observed in the 7-8 min of submaximal arm arm and leg exercise. At submaximal work levels a tendency to synchronize the respiratory frequency with the frequency of the rotatory movements was more apparent in arm cranking than in cycling.  相似文献   

9.
A multi-stage, repetitive lifting maximal oxygen uptake (VO2max) test was developed to be used as an occupational research tool which would parallel standard ergometric VO2max testing procedures. The repetitive lifting VO2max test was administered to 18 men using an automatic repetitive lifting device. An intraclass reliability coefficient of 0.91 was obtained with data from repeated tests on seven subjects. Repetitive lifting VO2max test responses were compared to those for treadmill, cycle ergometer and arm crank ergometer. The mean +/- SD repetitive lifting VO2max of 3.20 +/- 0.42 l.min-1 was significantly (p less than 0.01) less than treadmill VO2max (delta = 0.92 l.min-1) and cycle ergometer VO2max (delta = 0.43 l.min-1) and significantly greater than arm crank ergometer VO2max (delta = 0.63 l.min-1). The correlation between repetitive lifting oxygen uptake and power output was r = 0.65. VO2max correlated highly among exercise modes, but maximum power output did not. The efficiency of repetitive lifting exercise was significantly greater than that for arm cranking and less than that for leg cycling. The repetitive lifting VO2max test has an important advantage over treadmill or cycle ergometer tests in the determination of relative repetitive lifting intensities. The individual curves of VO2 vs. power output established during the multi-stage lifting VO2max test can be used to accurately select work loads required to elicit given percentages of maximal oxygen uptake.  相似文献   

10.
This study investigated whether hyperoxic breathing (100% O(2)) or increasing oxidative substrate supply [dichloroacetate (DCA) infusion] would increase oxidative phosphorylation and reduce the reliance on substrate phosphorylation at the onset of high-intensity aerobic exercise. Eight male subjects cycled at 90% maximal O(2) uptake (VO(2 max)) for 90 s in three randomized conditions: 1) normoxic breathing and saline infusion over 1 h immediately before exercise (CON), 2) normoxic breathing and saline infusion with DCA (100 mg/kg body wt), and 3) hyperoxic breathing for 20 min at rest and during exercise and saline infusion (HYP). Muscle biopsies from the vastus lateralis were sampled at rest and after 30 and 90 s of exercise. DCA infusion increased pyruvate dehydrogenase (PDH) activation above CON and HYP (3.10 +/- 0.23, 0.56 +/- 0.08, 0.69 +/- 0.05 mmol x kg wet muscle(-1) x min(-1), respectively) and significantly increased both acetyl-CoA and acetylcarnitine (11.0 +/- 0.7, 2.0 +/- 0.5, 2.2 +/- 0.5 mmol/kg dry muscle, respectively) at rest. However, DCA and HYP did not alter phosphocreatine degradation and lactate accumulation and, therefore, the reliance on substrate phosphorylation during 30 s (CON, 51.2 +/- 5.4; DCA, 56.5 +/- 7.1; HYP, 69.5 +/- 6.3 mmol ATP/kg dry muscle) and 90 s of exercise (CON, 90.6 +/- 9.5; DCA, 107.2 +/- 13.0; HYP, 101.2 +/- 15.2 mmol ATP/kg dry muscle). These data suggest that the rate of oxidative phosphorylation at the onset of exercise at 90% VO(2 max) is not limited by oxygen availability to the active muscle or by substrate availability (metabolic inertia) at the level of PDH in aerobically trained subjects.  相似文献   

11.
We tested the hypothesis that the work of the heart was not a limiting factor in the attainment of maximal oxygen uptake (VO2 max). We measured cardiac output (Q) and blood pressures (BP) during exercise at two different rates of maximal work to estimate the work of the heart through calculation of the rate-pressure product, as a part of the ongoing discussion regarding factors limiting VO2 max. Eight well-trained men (age 24.4 +/- 2.8 yr, weight 81.3 +/- 7.8 kg, and VO2 max 59.1 +/- 2.0 ml x min(-1) x kg(-1)) performed two maximal combined arm and leg exercises, differing 10% in watts, with average duration of time to exhaustion of 4 min 50 s and 3 min 40 s, respectively. There were no differences between work rates in measured VO2 max, maximal Q, and peak heart rate between work rates (0.02 l/min, 0.3 l/min, and 0.8 beats/min, respectively), but the systolic, diastolic, and calculated mean BP were significantly higher (19, 5, and 10 mmHg, respectively) in the higher than in the lower maximal work rate. The products of heart rate times systolic or mean BP and Q times systolic or mean BP were significantly higher (3,715, 1,780, 569, and 1,780, respectively) during the higher than the lower work rate. Differences in these four products indicate a higher mechanical work of the heart on higher than lower maximal work rate. Therefore, this study does not support the theory, which states that the work of the heart, and consequently VO2 max, during maximal exercise is hindered by a command from the central nervous system aiming at protecting the heart from being ischemic.  相似文献   

12.
The work of breathing (W(b)) normally incurred during maximal exercise not only requires substantial cardiac output and O(2) consumption (VO(2)) but also causes vasoconstriction in locomotor muscles and compromises leg blood flow (Q(leg)). We wondered whether the W(b) normally incurred during submaximal exercise would also reduce Q(leg). Therefore, we investigated the effects of changing the W(b) on Q(leg) via thermodilution in 10 healthy trained male cyclists [maximal VO(2) (VO(2 max)) = 59 +/- 9 ml. kg(-1). min(-1)] during repeated bouts of cycle exercise at work rates corresponding to 50 and 75% of VO(2 max). Inspiratory muscle work was 1) reduced 40 +/- 6% via a proportional-assist ventilator, 2) not manipulated (control), or 3) increased 61 +/- 8% by addition of inspiratory resistive loads. Increasing the W(b) during submaximal exercise caused VO(2) to increase; decreasing the W(b) was associated with lower VO(2) (DeltaVO(2) = 0.12 and 0.21 l/min at 50 and 75% of VO(2 max), respectively, for approximately 100% change in W(b)). There were no significant changes in leg vascular resistance (LVR), norepinephrine spillover, arterial pressure, or Q(leg) when W(b) was reduced or increased. Why are LVR, norepinephrine spillover, and Q(leg) influenced by the W(b) at maximal but not submaximal exercise? We postulate that at submaximal work rates and ventilation rates the normal W(b) required makes insufficient demands for VO(2) and cardiac output to require any cardiovascular adjustment and is too small to activate sympathetic vasoconstrictor efferent output. Furthermore, even a 50-70% increase in W(b) during submaximal exercise, as might be encountered in conditions where ventilation rates and/or inspiratory flow resistive forces are higher than normal, also does not elicit changes in LVR or Q(leg).  相似文献   

13.
The relationship between half time of the O2 uptake on-response (t1/2 VO2on, seconds) and early blood lactate accumulation (delta Lab, mmol.1(-1) at the onset of submaximal arm and/or leg exercise was the object of a cross-sectional study of sedentary subjects (S,n = 3), and kayakers (K, n = 8), and of a longitudinal study on 11 untrained subjects of specific arm vs. leg training. In supine arm cranking (W = 125 watts) S had an average t1/2 VO2on of 82 s and a delta Aab of 9.2 mmol.1(-1) compared to 47 +/- 7 s and 4 +/- 1.4 mmol.1(-1), respectively, for K. In longitudinal trainees shorter t1/2 VO2on was accompanied by lower Lab for the trained limbs. Specific limb conditioning in swimmers and runners resulted in shorter t1/2 VO2on. A linear relationship was observed between delta Lab and t1/2 VO2on having an intercept on the time axis at congruent to 20 s and a slope proportional to muscle mass. Trained muscles were grouped closest to the intercept indicating local acceleration of the rate of O2 transfer approaching the t1/2 VO2on for isolated perfused muscle at the onset of work. Since t1/2 VO2on, we conclude that factors distal to the capillary are specifically involved in the local training response.  相似文献   

14.
The purpose of this study was to measure the cardiac output using the CO2 rebreathing method during submaximal and maximal arm cranking exercise in six male paraplegic subjects with a high level of spinal cord injury (HP). They were compared with eight able bodied subjects (AB) who were not trained in arm exercise. Maximal O2 consumption (VO2max) was lower in HP (1.11.min, SD 0.1; 17.5 ml.min-1.kg-1, SD 4) than in AB (2.5 l.min-1, SD 0.6; 36.7 ml.min-1.kg, SD 10.7). Maximal cardiac output was similar in the groups (HP, 14 l.min-1, SD 2.6; AB, 16.8 l.min-1, SD 4). The same result was obtained for maximal heart rate (fc,max) (HP, 175 beats.min-1, SD 18; AB, 187 beats.min-1, SD 16) and the maximal stroke volume (HP, 82 ml, SD 13; AB, 91 ml, SD 27). The slopes of the relationship fc/VO2 were higher in HP than AB (P less than 0.025) but when expressed as a %VO2max there were no differences. The results suggest a major alteration of oxygen transport capacity to active muscle mass in paraplegics due to changes in vasomotor regulation below the level of the lesion.  相似文献   

15.
The purpose of this study was to assess the validity of the American College of Sports Medicine's (ACSM's) submaximal treadmill running test in predicting VO2max. Twenty-one moderately well-trained men aged 18-34 years performed 1 maximal treadmill test to determine maximal oxygen uptake (M VO2max) and 2 submaximal treadmill tests using 4 stages of continuous submaximal exercise. Estimated VO2max was predicted by extrapolation to age-predicted maximal heart rate (HRmax) and calculated in 2 ways: using data from all submaximal stages between 110 b·min(-1) and 85% HRmax (P VO2max-All), and using data from the last 2 stages only (P VO2max-2). The measured VO2max was overestimated by 3% on average for the group but was not significantly different to predicted VO2max (1-way analysis of variance [ANOVA] p = 0.695; M VO2max = 53.01 ± 5.38; P VO2max-All = 54.27 ± 7.16; P VO2max-2 = 54.99 ± 7.69 ml·kg(-1)·min(-1)), although M VO2max was not overestimated in all the participants--it was underestimated in 30% of observations. Pearson's correlation, standard error of estimate (SEE), and total error (E) between measured and predicted VO2max were r = 0.646, 4.35, 4.08 ml·kg(-1)·min(-1) (P VO2max-All) and r = 0.642, 4.21, 3.98 ml·kg(-1)·min(-1) (P VO2max-2) indicating that the accuracy in prediction (error) was very similar whether using P VO2max-All or P VO2max-2, with up to 70% of the participants predicted scores within 1 SEE (~4 ml·kg(-1)·min(-1)) of M VO2max. In conclusion, the ACSM equation provides a reasonably good estimation of VO2max with no difference in predictive accuracy between P VO2max-2 and P VO2max-All, and hence, either approach may be equally useful in tracking an individual's aerobic fitness over time. However, if a precise knowledge of VO2max is required, then it is recommended that this be measured directly.  相似文献   

16.
To determine whether increases in muscle mitochondrial capacity are necessary for the characteristic lower exercise glycogen loss and lactate concentration observed during exercise in the trained state, we have employed a short-term training model involving 2 h of cycling per day at 67% maximal O2 uptake (VO2max) for 5-7 consecutive days. Before and after training, biopsies were extracted from the vastus lateralis of nine male subjects during a continuous exercise challenge consisting of 30 min of work at 67% VO2max followed by 30 min at 76% VO2max. Analysis of samples at 0, 15, 20, and 60 min indicated a pronounced reduction (P less than 0.05) in glycogen utilization after training. Reductions in glycogen utilization were accompanied by reductions (P less than 0.05) in muscle lactate concentration (mmol/kg dry wt) at 15 min [37.4 +/- 9.3 (SE) vs. 20.2 +/- 5.3], 30 min (30.5 +/- 6.9 vs. 17.6 +/- 3.8), and 60 min (26.5 +/- 5.8 vs. 17.8 +/- 3.5) of exercise. Maximal aerobic power, VO2max (l/min) was unaffected by the training (3.99 +/- 0.21 vs. 4.05 +/- 0.26). Measurements of maximal activities of enzymes representative of the citric acid cycle (succinic dehydrogenase and citrate synthase) were similar before and after the training. It is concluded that, in the voluntary exercising human, altered metabolic events are an early adaptive response to training and need not be accompanied by changes in muscle mitochondrial capacity.  相似文献   

17.
Previously, by measuring myoglobin-associated PO(2) (P(Mb)O(2)) during maximal exercise, we have demonstrated that 1) intracellular PO(2) is 10-fold less than calculated mean capillary PO(2) and 2) intracellular PO(2) and maximum O(2) uptake (VO(2 max)) fall proportionately in hypoxia. To further elucidate this relationship, five trained subjects performed maximum knee-extensor exercise under conditions of normoxia (21% O(2)), hypoxia (12% O(2)), and hyperoxia (100% O(2)) in balanced order. Quadriceps O(2) uptake (VO(2)) was calculated from arterial and venous blood O(2) concentrations and thermodilution blood flow measurements. Magnetic resonance spectroscopy was used to determine myoglobin desaturation, and an O(2) half-saturation pressure of 3.2 Torr was used to calculate P(Mb)O(2) from saturation. Skeletal muscle VO(2 max) at 12, 21, and 100% O(2) was 0.86 +/- 0.1, 1.08 +/- 0.2, and 1.28 +/- 0.2 ml. min(-1). ml(-1), respectively. The 100% O(2) values approached twice that previously reported in human skeletal muscle. P(Mb)O(2) values were 2.3 +/- 0.5, 3.0 +/- 0.7, and 4.1 +/- 0.7 Torr while the subjects breathed 12, 21, and 100% O(2), respectively. From 12 to 21% O(2), VO(2) and P(Mb)O(2) were again proportionately related. However, 100% O(2) increased VO(2 max) relatively less than P(Mb)O(2), suggesting an approach to maximal mitochondrial capacity with 100% O(2). These data 1) again demonstrate very low cytoplasmic PO(2) at VO(2 max), 2) are consistent with supply limitation of VO(2 max) of trained skeletal muscle, even in hyperoxia, and 3) reveal a disproportionate increase in intracellular PO(2) in hyperoxia, which may be interpreted as evidence that, in trained skeletal muscle, very high mitochondrial metabolic limits to muscle VO(2) are being approached.  相似文献   

18.
The purpose of the study was to examine the roles of active pyruvate dehydrogenase (PDH(a)), glycogen phosphorylase (Phos), and their regulators in lactate (Lac(-)) metabolism during incremental exercise after ingestion of 0.3 g/kg of either NaHCO(3) [metabolic alkalosis (ALK)] or CaCO(3) [control (CON)]. Subjects (n = 8) were studied at rest, rest postingestion, and during constant rate cycling at three stages (15 min each): 30, 60, 75% of maximal O(2) uptake (VO(2 max)). Radial artery and femoral venous blood samples, leg blood flow, and biopsies of the vastus lateralis were obtained during each power output. ALK resulted in significantly (P < 0.05) higher intramuscular Lac(-) concentration ([Lac(-)]; ALK 72.8 vs. CON 65.2 mmol/kg dry wt), arterial whole blood [Lac(-)] (ALK 8.7 vs. CON 7.0 mmol/l), and leg Lac(-) efflux (ALK 10.0 vs. CON 4.2 mmol/min) at 75% VO(2 max). The increased intramuscular [Lac(-)] resulted from increased pyruvate production due to stimulation of glycogenolysis at the level of Phos a and phosphofructokinase due to allosteric regulation mediated by increased free ADP (ADP(f)), free AMP (AMP(f)), and free P(i) concentrations. PDH(a) increased with ALK at 60% VO(2 max) but was similar to CON at 75% VO(2 max). The increased PDH(a) may have resulted from alterations in the acetyl-CoA, ADP(f), pyruvate, NADH, and H(+) concentrations leading to a lower relative activity of PDH kinase, whereas the similar values at 75% VO(2 max) may have reflected maximal activation. The results demonstrate that imposed metabolic alkalosis in skeletal muscle results in acceleration of glycogenolysis at the level of Phos relative to maximal PDH activation, resulting in a mismatch between the rates of pyruvate production and oxidation resulting in an increase in Lac(-) production.  相似文献   

19.
The objective of this study was to examine the relationship between the critical velocity (CV) test and maximal oxygen consumption (VO2max) and develop a regression equation to predict VO2max based on the CV test in female collegiate rowers. Thirty-five female (mean ± SD; age, 19.38 ± 1.3 years; height, 170.27 ± 6.07 cm; body mass, 69.58 ± 0.3 1 kg) collegiate rowers performed 2 incremental VO2max tests to volitional exhaustion on a Concept II Model D rowing ergometer to determine VO2max. After a 72-hour rest period, each rower completed 4 time trials at varying distances for the determination of CV and anaerobic rowing capacity (ARC). A positive correlation was observed between CV and absolute VO2max (r = 0.775, p < 0.001) and ARC and absolute VO2max (r = 0.414, p = 0.040). Based on the significant correlation analysis, a linear regression equation was developed to predict the absolute VO2max from CV and ARC (absolute VO2max = 1.579[CV] + 0.008[ARC] - 3.838; standard error of the estimate [SEE] = 0.192 L·min(-1)). Cross validation analyses were performed using an independent sample of 10 rowers. There was no significant difference between the mean predicted VO2max (3.02 L·min(-1)) and the observed VO2max (3.10 L·min(-1)). The constant error, SEE and validity coefficient (r) were 0.076 L·min(-1), 0.144 L·min(-1), and 0.72, respectively. The total error value was 0.155 L·min(-1). The positive relationship between CV, ARC, and VO2max suggests that the CV test may be a practical alternative to measuring the maximal oxygen uptake in the absence of a metabolic cart. Additional studies are needed to validate the regression equation using a larger sample size and different populations (junior- and senior-level female rowers) and to determine the accuracy of the equation in tracking changes after a training intervention.  相似文献   

20.
The reliability and validity of a continuous progressive arm test, in which maximal 02 consumption (V02 max arm) is determined, were analyzed. Forty-one men (28.2 +/- 8.8 yr) performed the test twice. Eighteen additional men (22.6 +/- 5.6 yr) performed the arm test, as well as the treadmill run, in which maximal O2 consumption VO2max leg) was determined. The validity of the VO2 max arm test was computed, using VO2 max leg as a criterion for the individual's aerobic capacity. The reliability coefficients of VO2 max arm, VEmax arm, and HRmax arm were 0.94, 0.98, and 0.76, respectively, indicating a high reliability of the testmthe validity coefficient of VO2max arm was only 0.74. The regression equation of VO2max leg on VO2max arm was y = 24.4 + 0.9 +/- 4.4 (Syx). These findings indicate that, following the suggested protocol, the individual repeatedly uses the same muscles and does reach an all-out stage. However, different individuals apparently are aided by their trunk and leg muscles to different degrees, which lowers the validity of this test as a predictor of aerobic capacity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号