共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation 总被引:28,自引:0,他引:28
Epstein AC Gleadle JM McNeill LA Hewitson KS O'Rourke J Mole DR Mukherji M Metzen E Wilson MI Dhanda A Tian YM Masson N Hamilton DL Jaakkola P Barstead R Hodgkin J Maxwell PH Pugh CW Schofield CJ Ratcliffe PJ 《Cell》2001,107(1):43-54
4.
The C. elegans HIF-1 proline hydroxylase EGL-9 functions as an O(2) sensor in an evolutionarily conserved pathway for adaptation to hypoxia. H(2)S accumulates during hypoxia and promotes HIF-1 activity, but how H(2)S signals are perceived and transmitted to modulate HIF-1 and animal behavior is unknown. We report that the experience of hypoxia modifies a C. elegans locomotive behavioral response to O(2) through the EGL-9 pathway. From genetic screens to identify novel regulators of EGL-9-mediated behavioral plasticity, we isolated mutations of the gene cysl-1, which encodes a C. elegans homolog of sulfhydrylases/cysteine synthases. Hypoxia-dependent behavioral modulation and H(2)S-induced HIF-1 activation require the direct physical interaction of CYSL-1 with the EGL-9 C terminus. Sequestration of EGL-9 by CYSL-1 and inhibition of EGL-9-mediated hydroxylation by hypoxia together promote neuronal HIF-1 activation to modulate behavior. These findings demonstrate that CYSL-1 acts to transduce signals from H(2)S to EGL-9 to regulate O(2)-dependent behavioral plasticity in C. elegans. 相似文献
5.
Michelle C. Krzyzanowski Chantal Brueggemann Meredith J. Ezak Jordan F. Wood Kerry L. Michaels Christopher A. Jackson Bi-Tzen Juang Kimberly D. Collins Michael C. Yu Noelle D. L'Etoile Denise M. Ferkey 《PLoS genetics》2013,9(7)
Signaling levels within sensory neurons must be tightly regulated to allow cells to integrate information from multiple signaling inputs and to respond to new stimuli. Herein we report a new role for the cGMP-dependent protein kinase EGL-4 in the negative regulation of G protein-coupled nociceptive chemosensory signaling. C. elegans lacking EGL-4 function are hypersensitive in their behavioral response to low concentrations of the bitter tastant quinine and exhibit an elevated calcium flux in the ASH sensory neurons in response to quinine. We provide the first direct evidence for cGMP/PKG function in ASH and propose that ODR-1, GCY-27, GCY-33 and GCY-34 act in a non-cell-autonomous manner to provide cGMP for EGL-4 function in ASH. Our data suggest that activated EGL-4 dampens quinine sensitivity via phosphorylation and activation of the regulator of G protein signaling (RGS) proteins RGS-2 and RGS-3, which in turn downregulate Gα signaling and behavioral sensitivity. 相似文献
6.
Prolonged odor exposure causes a specific, reversible adaptation of olfactory responses. A genetic screen for negative regulators of olfaction uncovered mutations in the cGMP-dependent protein kinase EGL-4 that disrupt olfactory adaptation in C. elegans. G protein-coupled olfactory receptors within the AWC olfactory neuron signal through cGMP and a cGMP-gated channel. The cGMP-dependent kinase functions in AWC neurons during odor exposure to direct adaptation to AWC-sensed odors, suggesting that adaptation is a cell intrinsic process initiated by cGMP. A predicted phosphorylation site on the beta subunit of the cGMP-gated channel is required for adaptation after short odor exposure, suggesting that phosphorylation of signaling molecules generates adaptation at early time points. A predicted nuclear localization signal within EGL-4 is required for adaptation after longer odor exposure, suggesting that nuclear translocation of EGL-4 triggers late forms of adaptation. 相似文献
7.
8.
9.
During C. elegans development, LIN-12 (Notch) signaling specifies the anchor cell (AC) and ventral uterine precursor cell (VU) fates from two equivalent pre-AC/pre-VU cells in the hermaphrodite gonad. Once specified, the AC induces patterned proliferation of vulva via expression of LIN-3 (EGF) and then invades into the vulval epithelium. Although these cellular processes are essential for the proper organogenesis of vulva and appear to be temporally regulated, the mechanisms that coordinate the processes are not well understood. We computationally identified egl-43 as a gene likely to be expressed in the pre-AC/pre-VU cells and the AC, based on the presence of an enhancer element similar to the one that transcribes lin-3 in the same cells. Genetic epistasis analyses reveal that egl-43 acts downstream of or parallel to lin-12 in AC/VU cell fate specification at an early developmental stage, and functions downstream of fos-1 as well as upstream of zmp-1 and him-4 to regulate AC invasion at a later developmental stage. Characterization of the egl-43 regulatory region suggests that EGL-43 is a direct target of LIN-12 and HLH-2 (E12/47), which is required for the specification of the VU fate during AC/VU specification. EGL-43 also regulates basement membrane breakdown during AC invasion through a FOS-1-responsive regulatory element that drives EGL-43 expression in the AC and VU cells at the later stage. Thus, egl-43 integrates temporally distinct upstream regulatory events and helps program cell fate specification and cell invasion. 相似文献
10.
Hirose T Nakano Y Nagamatsu Y Misumi T Ohta H Ohshima Y 《Development (Cambridge, England)》2003,130(6):1089-1099
We designed an automatic system to measure body length, diameters and volume of a C. elegans worm. By using this system, mutants with an increased body volume exceeding 50% were isolated. Four of them are grossly normal in morphology and development, grow longer to be almost twice as big, and have weak egg-laying defects and extended lifespan. All the four mutants have a mutation in the egl-4 gene. We show that the egl-4 gene encodes cGMP-dependent protein kinases. egl-4 promoter::gfp fusion genes are mainly expressed in head neurons, hypodermis, intestine and body wall muscles. Procedures to analyze morphology and volume of major organs were developed. The results indicate that volumes of intestine, hypodermis and muscle and cell volumes in intestine and muscle are increased in the egl-4 mutants, whereas cell numbers are not. Experiments on genetic interaction suggest that the cGMP-EGL-4 signaling pathway represses body size and lifespan through DBL-1/TGF-beta and insulin pathways, respectively. 相似文献
11.
12.
13.
del Peso L Gonzalez VM Inohara N Ellis RE Núñez G 《The Journal of biological chemistry》2000,275(35):27205-27211
In the nematode Caenorhabditis elegans, the apoptotic machinery is composed of four basic elements: the caspase CED-3, the Apaf-1 homologue CED-4, and the Bcl-2 family members CED-9 and EGL-1. The ced-9(n1950) gain-of-function mutation prevents most, if not all, somatic cell deaths in C. elegans. It encodes a CED-9 protein with a glycine-to-glutamate substitution at position 169, which is located within the highly conserved Bcl-2 homology 1 domain. We performed biochemical analyses with the CED-9G169E protein to gain insight into the mechanism of programmed cell death. We find that CED-9G169E retains the ability to bind both EGL-1 and CED-4, although its affinity for EGL-1 is reduced. In contrast to the behavior of wild-type CED-9, the interaction between CED-9G169E and CED-4 is not disrupted by expression of EGL-1. Furthermore, CED-4 and CED-9G169E co-localizes with EGL-1 to the mitochondria in mammalian cells, and expression of EGL-1 does not induce translocation of CED-4 to the cytosol. Finally, the ability of EGL-1 to promote apoptosis is impaired by the replacement of wild-type CED-9 with CED-9G169E, and this effect is correlated with the inability of EGL-1 to induce the displacement of CED-4 from the CED-9.CED-4 complex. These studies suggest that the release of CED-4 from the CED-9.CED-4 complex is a necessary step for induction of programmed cell death in C. elegans. 相似文献
14.
15.
The analysis of genetically mosaic worms, in which some cells carry a wild-type gene and others are homozygous mutant, can reveal where in the animal a gene acts to prevent the appearance of a mutant phenotype. In this primer article, we describe how Caenorhabditis elegans genetic mosaics are generated, identified and analyzed, and we discuss examples in which the analysis of mosaic worms has provided important information about the development of this organism. 相似文献
16.
17.
Vinay K Mayya Mathieu N Flamand Alice M Lambert Seyed Mehdi Jafarnejad James A Wohlschlegel Nahum Sonenberg Thomas F Duchaine 《Nucleic acids research》2021,49(9):4803
microRNA (miRNA)-mediated gene silencing is enacted through the recruitment of effector proteins that direct translational repression or degradation of mRNA targets, but the relative importance of their activities for animal development remains unknown. Our concerted proteomic surveys identified the uncharacterized GYF-domain encoding protein GYF-1 and its direct interaction with IFE-4, the ortholog of the mammalian translation repressor 4EHP, as key miRNA effector proteins in Caenorhabditis elegans. Recruitment of GYF-1 protein to mRNA reporters in vitro or in vivo leads to potent translation repression without affecting the poly(A) tail or impinging on mRNA stability. Loss of gyf-1 is synthetic lethal with hypomorphic alleles of embryonic miR-35–42 and larval (L4) let-7 miRNAs, which is phenocopied through engineered mutations in gyf-1 that abolish interaction with IFE-4. GYF-1/4EHP function is cascade-specific, as loss of gyf-1 had no noticeable impact on the functions of other miRNAs, including lin-4 and lsy-6. Overall, our findings reveal the first direct effector of miRNA-mediated translational repression in C. elegans and its physiological importance for the function of several, but likely not all miRNAs. 相似文献
18.
19.
Goodman SJ Branda CS Robinson MK Burdine RD Stern MJ 《Development (Cambridge, England)》2003,130(16):3757-3766
Fibroblast growth factor (FGF) receptors trigger a wide variety of cellular responses as diverse as cell migration, cell proliferation and cell differentiation. However, the molecular basis of the specificity of these responses is not well understood. The C. elegans FGF receptor EGL-15 similarly mediates a number of different responses, including transducing a chemoattractive signal and mediating an essential function. Analysis of the migration-specific alleles of egl-15 has identified a novel EGL-15 isoform that provides a molecular explanation for the different phenotypic effects of lesions at this locus. Alternative splicing yields two EGL-15 proteins containing different forms of a domain located within the extracellular region of the receptors immediately after the first IG domain. Neither of these two domain forms is found in any other FGF receptor. We have tested the roles of these EGL-15 receptor isoforms and their two FGF ligands for their signaling specificity. Our analyses demonstrate different physiological functions for the two receptor variants. EGL-15(5A) is required for the response to the FGF chemoattractant that guides the migrating sex myoblasts to their final positions. By contrast, EGL-15(5B) is both necessary and sufficient to elicit the essential function mediated by this receptor. 相似文献