首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Infection of macrophages by Yersinia species results in YopJ-dependent apoptosis, and naïve macrophages are highly susceptible to this form of cell death. Previous studies have demonstrated that macrophages activated with lipopolysaccharide (LPS) prior to infection are resistant to YopJ-dependent cell death; we found this simultaneously renders macrophages susceptible to killing by YopJ Yersinia pseudotuberculosis (Yptb). YopJ Yptb-induced macrophage death was dependent on caspase-1 activation, resulting in rapid permeability to small molecules, followed by membrane breakdown and DNA damage, and accompanied by cleavage and release of proinflammatory interleukin-18. Induction of caspase-1-dependent death, or pyroptosis, required the bacterial type III translocon but none of its known translocated proteins. Wild-type Yptb infection also triggered pyroptosis: YopJ-dependent activation of proapoptotic caspase-3 was significantly delayed in activated macrophages and resulted in caspase-1-dependent pyroptosis. The transition to susceptibility was not limited to LPS activation; it was also seen in macrophages activated with other Toll-like receptor (TLR) ligands and intact nonviable bacteria. Yptb infection triggered macrophage activation and activation of caspase-1 in vivo. Y. pestis infection of activated macrophages also stimulated caspase-1 activation. These results indicate that host signaling triggered by TLR and other activating ligands during the course of Yersinia infection redirects both the mechanism of host cell death and the downstream consequences of death by shifting from noninflammatory apoptosis to inflammatory pyroptosis.  相似文献   

3.
Saleh M 《Cell》2006,126(6):1028-1030
Caspase-1 promotes both the maturation of proinflammatory cytokines and apoptosis in cells infected by certain pathogens. Work by now reveals a surprising new function for caspase-1: the stimulation of membrane biogenesis to repair damage caused by bacterial pore-forming toxins. Thus, caspase-1 may promote host cell survival as a means of resistance to pathogenic bacteria.  相似文献   

4.
Pyroptosis is an inflammatory form of programmed cell death that is executed by the gasdermin (GSDM)-N domain of GSDM family proteins, which form pores in the plasma membrane. Although pyroptosis acts as a host defense against invasive pathogen infection, its role in the pathogenesis of enterovirus 71 (EV71) infection is unclear. In the current study, we found that EV71 infection induces cleavage of GSDM E (GSDME) by using western blotting analysis, an essential step in the switch from caspase-3-mediated apoptosis to pyroptosis. We show that this cleavage is independent of the 3C and 2A proteases of EV71. However, caspase-3 activation is essential for this cleavage, as GSDME could not be cleaved in caspase-3-KO cells upon EV71 infection. Further analyses showed that EV71 infection induced pyroptosis in WT cells but not in caspase-3/GSDME double-KO cells. Importantly, GSDME is required to induce severe disease during EV71 infection, as GSDME deficiency in mice was shown to alleviate pathological symptoms. In conclusion, our results reveal that GSDME is important for the pathogenesis of EV71 via mediating initiation of pyroptosis.  相似文献   

5.
刘瑞卿  李胜玉  申艳娜 《微生物学报》2019,59(11):2083-2093
细胞焦亡是细胞感染时由炎症小体介导,以裂解细胞为特点的程序性死亡形式。其激活途径分为依赖半胱氨酸蛋白酶-1或半胱氨酸蛋白酶-4/5/11活化的经典与非经典途径。目前的研究表明细胞焦亡过程中主要效应蛋白是具有膜成孔活性的gasdermin(也作GSDM)家族成员。因此,细胞焦亡也被称为gasdermin介导的程序性坏死。当宿主受到感染时,细胞焦亡与宿主自身其他免疫防御机制存在互相调节机制,保证宿主在清除感染的同时降低自身损伤程度。本文笔者将从研究最为广泛的GSDMD在细胞焦亡途径中的作用机制、细胞焦亡在感染性疾病中的研究进展以及细胞焦亡与其他程序性死亡在感染性疾病中的相互作用这三个方面作系统叙述,期望为今后研究如何通过细胞焦亡途径治疗感染性疾病提供理论基础。  相似文献   

6.
Salmonella enterica serovar Typhimurium invades host macrophages and induces a unique caspase-1-dependent pathway of cell death termed pyroptosis, which is activated during bacterial infection in vivo. We demonstrate DNA cleavage during pyroptosis results from caspase-1-stimulated nuclease activity. Although poly(ADP-ribose) polymerase (PARP) activation by fragmented DNA depletes cellular ATP to cause lysis during oncosis, the rapid lysis characteristic of Salmonella-infected macrophages does not require PARP activity or DNA fragmentation. Membrane pores between 1.1 and 2.4 nm in diameter form during pyroptosis of host cells and cause swelling and osmotic lysis. Pore formation requires host cell actin cytoskeleton rearrangements and caspase-1 activity, as well as the bacterial type III secretion system (TTSS); however, insertion of functional TTSS translocons into the host membrane is not sufficient to directly evoke pore formation. Concurrent with pore formation, inflammatory cytokines are released from infected macrophages. This mechanism of caspase-1-mediated cell death provides additional experimental evidence supporting pyroptosis as a novel pathway of inflammatory programmed cell death.  相似文献   

7.
Caspase-8 is a cysteine protease activated by membrane-bound receptors at the cytosolic face of the cell membrane, initiating the extrinsic pathway of apoptosis. Caspase-8 activation relies on recruitment of inactive monomeric zymogens to activated receptor complexes, where they produce a fully active enzyme composed of two catalytic domains. Although in vitro studies using drug-mediated affinity systems or kosmotropic salts to drive dimerization have indicated that uncleaved caspase-8 can be readily activated by dimerization alone, in vivo results using mouse models have reached the opposite conclusion. Furthermore, in addition to interdomain autoprocessing, caspase-8 can be cleaved by activated executioner caspases, and reports of whether this cleavage event can lead to activation of caspase-8 have been conflicting. Here, we address these questions by carrying out studies of the activation characteristics of caspase-8 mutants bearing prohibitive mutations at the interdomain cleavage sites both in vitro and in cell lines lacking endogenous caspase-8, and we find that elimination of these cleavage sites precludes caspase-8 activation by prodomain-driven dimerization. We then further explore the consequences of interdomain cleavage of caspase-8 by adapting the tobacco etch virus protease to create a system in which both the cleavage and the dimerization of caspase-8 can be independently controlled in living cells. We find that unlike the executioner caspases, which are readily activated by interdomain cleavage alone, neither dimerization nor cleavage of caspase-8 alone is sufficient to activate caspase-8 or induce apoptosis and that only the coordinated dimerization and cleavage of the zymogen produce efficient activation in vitro and apoptosis in cellular systems.  相似文献   

8.
Caspase-8 is now appreciated to govern both apoptosis following death receptor ligation and cell survival and growth via inhibition of the Ripoptosome. Cells must therefore carefully regulate the high level of caspase-8 activity during apoptosis versus the modest levels observed during cell growth. The caspase-8 paralogue c-FLIP is a good candidate for a molecular rheostat of caspase-8 activity. c-FLIP can inhibit death receptor-mediated apoptosis by competing with caspase-8 for recruitment to FADD. However, full-length c-FLIPL can also heterodimerize with caspase-8 independent of death receptor ligation and activate caspase-8 via an activation loop in the C terminus of c-FLIPL. This triggers cleavage of c-FLIPL at Asp-376 by caspase-8 to produce p43FLIP. The continued function of p43FLIP has, however, not been determined. We demonstrate that acute deletion of endogenous c-FLIP in murine effector T cells results in loss of caspase-8 activity and cell death. The lethality and caspase-8 activity can both be rescued by the transgenic expression of p43FLIP. Furthermore, p43FLIP associates with Raf1, TRAF2, and RIPK1, which augments ERK and NF-κB activation, IL-2 production, and T cell proliferation. Thus, not only is c-FLIP the initiator of caspase-8 activity during T cell activation, it is also an initial caspase-8 substrate, with cleaved p43FLIP serving to both stabilize caspase-8 activity and promote activation of pathways involved with T cell growth.  相似文献   

9.
Regulation of apoptosis during infection has been observed for several viral pathogens. Programmed cell death and regulation of apoptosis in response to a viral infection are important factors for host or virus survival. It is not known whether Crimean-Congo hemorrhagic fever virus (CCHFV) infection regulates the apoptosis process in vitro. This study for the first time suggests that CCHFV induces apoptosis, which may be dependent on caspase-3 activation. This study also shows that the coding sequence of the S segment of CCHFV contains a proteolytic cleavage site, DEVD, which is conserved in all CCHFV strains. By using different recombinant expression systems and site-directed mutagenesis, we demonstrated that this motif is subject to caspase cleavage. We also demonstrate that CCHFV nucleocapsid protein (NP) is cleaved into a 30-kDa fragment at the same time as caspase activity is induced during infection. Using caspase inhibitors and cells lacking caspase-3, we clearly demonstrate that the cleavage of NP is caspase-3-dependent. We also show that the inhibition of apoptosis induced progeny viral titers of ~80-90%. Thus, caspase-3-dependent cleavage of NP may represent a host defense mechanism against lytic CCHFV infection. Taken together, these data suggest that the most abundant protein of CCHFV, which has several essential functions such as protection of viral RNA and participation in various processes in the replication cycle, can be subjected to cleavage by host cell caspases.  相似文献   

10.
The aspartate-specific cysteine protease caspase-1 is activated by the inflammasomes and is responsible for the proteolytic maturation of the cytokines IL-1 beta and IL-18 during infection and inflammation. To discover new caspase-1 substrates, we made use of a proteome-wide gel-free differential peptide sorting methodology that allows unambiguous localization of the processing site in addition to identification of the substrate. Of the 1022 proteins that were identified, 20 were found to be specifically cleaved after Asp in the setup incubated with recombinant caspase-1. Interestingly, caspase-7 emerged as one of the identified caspase-1 substrates. Moreover half of the other identified cleavage events occurred at sites closely resembling the consensus caspase-7 recognition sequence DEVD, suggesting caspase-1-mediated activation of endogenous caspase-7 in this setup. Consistently recombinant caspase-1 cleaved caspase-7 at the canonical activation sites Asp(23) and Asp(198), and recombinant caspase-7 processed a subset of the identified substrates. In vivo, caspase-7 activation was observed in conditions known to induce activation of caspase-1, including Salmonella infection and microbial stimuli combined with ATP. Interestingly Salmonella- and lipopolysaccharide + ATP-induced activation of caspase-7 was abolished in macrophages deficient in caspase-1, the pattern recognition receptors Ipaf and Cryopyrin, and the inflammasome adaptor ASC, demonstrating an upstream role for the caspase-1 inflammasomes in caspase-7 activation in vivo. In contrast, caspase-1 and the inflammasomes were not required for caspase-3 activation. In conclusion, we identified 20 new substrates activated downstream of caspase-1 and validated caspase-1-mediated caspase-7 activation in vitro and in knock-out macrophages. These results demonstrate for the first time the existence of a nucleotide binding and oligomerization domain-like receptor/caspase-1/caspase-7 cascade and the existence of distinct activation mechanisms for caspase-3 and -7 in response to microbial stimuli and bacterial infection.  相似文献   

11.
Prostate apoptosis response 4 (Par-4) is a ubiquitously expressed proapoptotic tumor suppressor protein. Here, we show for the first time, that Par-4 is a novel substrate of caspase-3 during apoptosis. We found that Par-4 is cleaved during cisplatin-induced apoptosis in human normal and cancer cell lines. Par-4 cleavage generates a C-terminal fragment of ~25 kDa, and the cleavage of Par-4 is completely inhibited by a caspase-3 inhibitor, suggesting that caspase-3 is directly involved in the cleavage of Par-4. Caspase-3-deficient MCF-7 cells do not show Par-4 cleavage in response to cisplatin treatment, and restoration of caspase-3 in MCF-7 cells produces a decrease in Par-4 levels, with the appearance of a cleaved fragment. Additionally, knockdown of Par-4 reduces caspase-3 activation and apoptosis induction. Site-directed mutagenesis reveals that Par-4 cleavage by caspase-3 occurs at an unconventional site, EEPD(131)↓G. Interestingly, overexpression of wild-type Par-4 but not the Par-4 D131A mutant sensitizes cells to cisplatin-induced apoptosis. Upon caspase-3 cleavage, the cleaved fragment of Par-4 accumulates in the nucleus and displays increased apoptotic activity. Overexpression of the cleaved fragment of Par-4 inhibits IκBα phosphorylation and blocks NF-κB nuclear translocation. We have identified a novel specific caspase-3 cleavage site in Par-4, and the cleaved fragment of Par-4 retains proapoptotic activity.  相似文献   

12.
Role of thymidine phosphorylase in Fas-induced apoptosis   总被引:2,自引:0,他引:2  
Mori S  Takao S  Ikeda R  Noma H  Mataki Y  Wang X  Akiyama S  Aiko T 《Human cell》2001,14(4):323-330
Thymidine phosphorylase (TP) has chemotactic and angiogenic activity in vitro, and it promotes tumor growth and inhibits apoptosis in vivo. It plays a key role in the invasiveness and metastasis of TP-expressing solid tumors. KB/TP cells transfected with a TP cDNA have been shown to be resistant to hypoxia-induced apoptosis, suggesting that TP has effects on tumor growth and cell death independent of its effects on angiogenesis. However, the mechanisms of cell death inhibition by TP are unknown. In the present study, we demonstrate that caspase-8 is cleaved in control transfectant KB cells early on during Fas-induced apoptosis. Caspase-8 activation leads to the loss of mitochondrial membrane potential, followed by the release of cytochrome c, the activation of caspase-3, and apoptosis. In contrast, Fas-induced caspase-8 cleavage is inhibited in KB/TP cells, which lead to inhibition of the downstream apoptotic cascade and inhibition of apoptosis. These findings indicate that TP plays an important role in intracellular apoptotic signal transduction in the Fas-induced apoptotic pathway. Therefore, inhibition of TP may suppress the progression of TP-overexpressing solid tumors by inducing apoptosis.  相似文献   

13.
We have previously reported that B cell receptors, depending on the degree to which they are cross-linked, can promote apoptosis in various human B cell types. In this study, we show that B cell receptors can trigger two apoptotic pathways according to cross-linking and that these pathways control mitochondrial activation in human Burkitt's lymphoma cells. Whereas soluble anti-mu Ab triggers caspase-independent mitochondrial activation, cross-linked anti-mu Ab induces an apoptotic response associated with a caspase-dependent loss of mitochondrial transmembrane potential. This B cell receptor-mediated caspase-dependent mitochondrial activation is associated with caspase-8 activation. We show here that caspase-8 inhibitors strongly decrease cross-linking-dependent B cell receptor-mediated apoptosis in Burkitt's lymphoma BL41 cells. These inhibitors act upstream from the mitochondria as they prevented the loss of mitochondrial membrane potential observed in B cell receptor-treated BL41 cells. Caspase-8 activation in these cells was also evident from the detection of cleaved fragments of caspase-8 and the cleavage of specific substrates, including Bid. Our data show that cross-linked B cell receptors induced an apoptotic pathway involving sequential caspase-8 activation, loss of mitochondrial membrane potential, and the activation of caspase-9 and caspase-3. Cells expressing a dominant negative mutant of Fas-associated death domain protein were sensitive to cross-linked B cell receptor-induced caspase-8 activation and apoptosis; therefore, this caspase-8 activation was independent of the death effector domain of Fas-associated death domain protein.  相似文献   

14.
Reactive alpha,beta-unsaturated aldehydes such as acrolein are major components of common environmental pollutants. As a toxic by-product of lipid peroxidation, acrolein has been implicated as a possible mediator of oxidative damage to cells and tissues in a wide variety of disease states, including atherosclerosis and neurodegenerative and pulmonary diseases. Although acrolein can induce apoptotic cell death in various cell types, the biochemical mechanisms are not understood. This study investigates the implication of the death receptor pathway in acrolein-induced apoptosis. Exposure of Chinese hamster ovary cells to acrolein caused translocation of adaptor protein Fas associated with death domain to the cytoplasmic membrane and caspase-8 activation. Kp7-6, an antagonist of Fas receptor activation, blocked apoptotic events downstream of caspase-8, such as caspase-7 activation and nuclear chromatin condensation. Acrolein activated the cross-talk pathway between the death receptor and mitochondrial pathways. Bid was cleaved to truncated-Bid, which was translocated to mitochondria. Activation of the mitochondrial pathway by acrolein was confirmed by caspase-9 activation. Inhibition of activation of either the Fas receptor or caspase-8 partially decreased acrolein-induced caspase-9 activation. These findings indicate that acrolein activates the Fas receptor pathway, which occurs upstream of the mitochondrial pathway. Caspase-9 activation still occurred despite inhibition of the Fas receptor pathway, suggesting that acrolein could also trigger the mitochondrial pathway independent of the receptor pathway. These findings improve our understanding of mechanisms of toxicity of the reactive aldehyde acrolein, which has widespread implications in multiple disease states which seem to be mediated by oxidative stress and lipid peroxidation.  相似文献   

15.
Caspase-3 and -7 represent executioner/effector caspases that directly cause apoptotic morphological changes by cleaving various death substrates. The substrates for caspases generally interact with active caspases, but not with inactive zymogens of caspase or procaspases. Here, to isolate proteins that interact with caspase-7, we established a yeast two-hybrid screening system using reversed-caspase-7, a constitutive active mutant of caspase-7 as a bait plasmid. Screening of an adult brain cDNA library led to isolation of proteasome activator 28 subunit, PA28gamma. In vitro translates of PA28gamma were cleaved by both recombinant caspase-3 and -7. Mutagenesis of potential cleavage site DGLD80 to EGLE80 completely abolished caspase-mediated cleavage. Moreover, endogenous PA28gamma was cleaved during not only Fas-induced apoptosis of HeLa cells, but also cisplatin-induced cell death of MCF7 cells, which are devoid of caspase-3. These findings indicate that PA28gamma is an endogenous substrate for caspase-3 and -7 and that yeast two-hybrid screening using reversed-caspase is a novel and useful approach to clone substrates for effector caspases.  相似文献   

16.
Despite the fact that the chromosomal passenger complex is well known to regulate kinetochore behavior in mitosis, no functional link has yet been established between the complex and kinetochore structure. In addition, remarkably little is known about how the complex targets to centromeres. Here, in a study of caspase-8 activation during death receptor-induced apoptosis in MCF-7 cells, we have found that cleaved caspase-8 rapidly translocates to the nucleus and that this translocation is correlated with loss of the centromere protein (CENP)-C, resulting in extensive disruption of centromeres. Caspase-8 activates cytoplasmic caspase-7, which is likely to be the primary caspase responsible for cleavage of CENP-C and INCENP, a key chromosomal passenger protein. Caspase-mediated cleavage of CENP-C and INCENP results in their mislocalization and the subsequent mislocalization of Aurora B kinase. Our results demonstrate that the chromosomal passenger complex is displaced from centromeres as a result of caspase activation. Furthermore, mutation of the primary caspase cleavage sites of INCENP and CENP-C and expression of noncleavable CENP-C or INCENP prevent the mislocalization of the passenger complex after caspase activation. Our studies provide the first evidence for a functional interplay between the passenger complex and CENP-C.  相似文献   

17.
DNA-dependent protein kinase (DNA-PK) is a serine/threonine kinase that has critical roles in DNA double-strand break repair, as well as B- and T-cell antigen receptor rearrangement. The DNA-PK enzyme consists of the Ku regulatory subunit and a 450-kDa catalytic subunit termed DNA-PK(CS). Both of these subunits are autoantigens associated with connective tissue diseases such as systemic lupus erythematosus (SLE) and scleroderma. In this report, we show that DNA-PK(CS) is cleaved during poliovirus infection of HeLa cells. Cleavage was visible as early as 1.5 h postinfection (hpi) and resulted in an approximately 40% reduction in the levels of native protein by 5.5 hpi. Consistent with this observation, the activity of the DNA-PK(CS) enzyme was also reduced during viral infection, as determined by immunoprecipitation kinase assays. Although it has previously been shown that DNA-PK(CS) is a substrate of caspase-3 in vitro, the protein was still cleaved during poliovirus infection of the caspase-3-deficient MCF-7 cell line. Cleavage was not prevented by infection in the presence of a soluble caspase inhibitor, suggesting that cleavage in vivo was independent of host caspase activation. DNA-PK(CS) is directly cleaved by a picornaviral 2A protease in vitro, producing a fragment similar in size to the cleavage product observed in vivo. Taken together, our results indicate that DNA-PK(CS) is cleaved by the 2A protease during poliovirus infection. Proteolytic cleavage of DNA-PK(CS) during poliovirus infection may contribute to inhibition of host immune responses. Furthermore, cleavage of autoantigens by viral proteases may target these proteins for the autoimmune response by generating novel, or "immunocryptic," protein fragments.  相似文献   

18.
19.
The ability of Coxiella burnetii to modulate host cell death may be a critical factor in disease development. In this study, human monocytic THP-1 cells were used to examine the ability of C. burnetii Nine Mile phase II (NMII) to modulate apoptotic signaling. Typical apoptotic cell morphological changes and DNA fragmentation were detected in NMII infected cells at an early stage of infection. FACS analysis using Annexin-V-PI double staining showed the induction of a significant number of apoptotic cells at an early stage of NMII infection. Double staining of apoptotic cell DNA and intracellular C. burnetii indicates that NMII infected cells undergoing apoptosis. Interestingly, caspase-3 was not cleaved in NMII infected cells and the caspase-inhibitor Z-VAD-fmk did not prevent NMII induced apoptosis. Surprisingly, the caspase-3 downstream substrate PARP was cleaved in NMII infected cells. These results suggest that NMII induces apoptosis during an early stage of infection through a caspase-independent pathway in THP-1 cells. In addition, NMII-infected monocytes were unable to prevent exogenous staurosporine-induced apoptotic death. Western blot analysis indicated that NMII infection induced the translocation of AIF from mitochondria into the nucleus. Cytochrome c release and cytosol-to-mitochondrial translocation of the pore-forming protein Bax in NMII infected cells occurred at 24 h post infection. These data suggest that NMII infection induced caspase-independent apoptosis through a mechanism involving cytochrome c release, cytosol-to-mitochondrial translocation of Bax and nuclear translocation of AIF in THP-1 monocytes. Furthermore, NMII infection increased TNF-α production and neutralization of TNF-α in NMII infected cells partially blocked PARP cleavage, suggesting TNF-α may play a role in the upstream signaling involved in NMII induced apoptosis. Antibiotic inhibition of C. burnetii RNA synthesis blocked NMII infection-induced PARP activation. These results suggest that both intracellular C. burnetii replication and secreted TNF-α contribute to NMII infection-triggered apoptosis during an early stage of infection.  相似文献   

20.
Necroptosis is a highly pro-inflammatory mode of cell death regulated by RIP (or RIPK)1 and RIP3 kinases and mediated by the effector MLKL. We report that diverse bacterial pathogens that produce a pore-forming toxin (PFT) induce necroptosis of macrophages and this can be blocked for protection against Serratia marcescens hemorrhagic pneumonia. Following challenge with S. marcescens, Staphylococcus aureus, Streptococcus pneumoniae, Listeria monocytogenes, uropathogenic Escherichia coli (UPEC), and purified recombinant pneumolysin, macrophages pretreated with inhibitors of RIP1, RIP3, and MLKL were protected against death. Alveolar macrophages in MLKL KO mice were also protected during S. marcescens pneumonia. Inhibition of caspases had no impact on macrophage death and caspase-1 and -3/7 were determined to be inactive following challenge despite the detection of IL-1β in supernatants. Bone marrow-derived macrophages from RIP3 KO, but not caspase-1/11 KO or caspase-3 KO mice, were resistant to PFT-induced death. We explored the mechanisms for PFT-induced necroptosis and determined that loss of ion homeostasis at the plasma membrane, mitochondrial damage, ATP depletion, and the generation of reactive oxygen species were together responsible. Treatment of mice with necrostatin-5, an inhibitor of RIP1; GW806742X, an inhibitor of MLKL; and necrostatin-5 along with co-enzyme Q10 (N5/C10), which enhances ATP production; reduced the severity of S. marcescens pneumonia in a mouse intratracheal challenge model. N5/C10 protected alveolar macrophages, reduced bacterial burden, and lessened hemorrhage in the lungs. We conclude that necroptosis is the major cell death pathway evoked by PFTs in macrophages and the necroptosis pathway can be targeted for disease intervention.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号