首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The E6 oncoprotein from high-risk genus alpha human papillomaviruses (α-HPVs), such as HPV 16, has been well characterized with respect to the host-cell proteins it interacts with and corresponding signaling pathways that are disrupted due to these interactions. Less is known regarding the interacting partners of E6 from the genus beta papillomaviruses (β-HPVs); however, it is generally thought that β-HPV E6 proteins do not interact with many of the proteins known to bind to α-HPV E6. Here we identify p300 as a protein that interacts directly with E6 from both α- and β-HPV types. Importantly, this association appears much stronger with β-HPV types 5 and 8-E6 than with α-HPV type 16-E6 or β-HPV type 38-E6. We demonstrate that the enhanced association between 5/8-E6 and p300 leads to p300 degradation in a proteasomal-dependent but E6AP-independent manner. Rather, 5/8-E6 inhibit the association of AKT with p300, an event necessary to ensure p300 stability within the cell. Finally, we demonstrate that the decreased p300 protein levels concomitantly affect downstream signaling events, such as the expression of differentiation markers K1, K10 and Involucrin. Together, these results demonstrate a unique way in which β-HPV E6 proteins are able to affect host-cell signaling in a manner distinct from that of the α-HPVs.  相似文献   

3.
Monochloramine (NH2Cl) is one of the inflammation-derived oxidants, and has various effects on cell cycle, apoptosis and signal transduction. We studied the effects of NH2Cl on DNA repair response induced by ultraviolet B (UVB) irradiation in normal human diploid fibroblasts, TIG-1. TIG-1 irradiated with 20 mJ/cm2 UVB showed marked increase in thymine dimer, which decreased by about 50% after 24 h. This decrease in thymine dimer was significantly attenuated (P < 0.05) by the pretreatment of NH2Cl (200 microM), which indicated DNA repair inhibition. UVB induced p53 phosphorylation at Ser15, Ser20 and Ser37, and p53 accumulation, and NH2Cl also inhibited these changes. Consequently, UVB-induced increase in the downstream effectors of p53, namely p21Cip1 and Gadd45a, were almost completely inhibited by NH2Cl. Immunoprecipitation study indicated that the association of p53 and MDM2, an E3 ubiquitin ligase for p53, did not change substantially by NH2Cl and/or UVB. The phosphorylation of p53 (Ser15 and Ser37) by UVB is catalyzed by ATR (ataxia telangiectasia mutated and Rad3 related kinase), which works as DNA damage sensor, and ATR also phosphorylates checkpoint kinase 1(Chk1) at Ser345. NH2Cl also inhibited the phosphorylation of Chk1 (Ser345). As UVB-induced DNA damage is repaired by nucleotide excision repair (NER) in human cells, these findings indicated that NH2Cl inhibited NER through the inhibition of p53 phosphorylation and accumulation, and NH2Cl probably impaired DNA damage recognition and/or ATR activation. NH2Cl may facilitate carcinogenesis through the inhibition of NER that repairs DNA damages from various carcinogens.  相似文献   

4.
《Journal of molecular biology》2014,426(24):4030-4048
The oncoprotein E7 from human papillomavirus (HPV) strains that confer high cancer risk mediates cell transformation by deregulating host cellular processes and activating viral gene expression through recruitment of cellular proteins such as the retinoblastoma protein (pRb) and the cyclic-AMP response element binding binding protein (CBP) and its paralog p300. Here we show that the intrinsically disordered N-terminal region of E7 from high-risk HPV16 binds the TAZ2 domain of CBP with greater affinity than E7 from low-risk HPV6b. HPV E7 and the tumor suppressor p53 compete for binding to TAZ2. The TAZ2 binding site in E7 overlaps the LxCxE motif that is crucial for interaction with pRb. While TAZ2 and pRb compete for binding to a monomeric E7 polypeptide, the full-length E7 dimer mediates an interaction between TAZ2 and pRb by promoting formation of a ternary complex. Cell-based assays show that expression of full-length HPV16 E7 promotes increased pRb acetylation and that this response depends both on the presence of CBP/p300 and on the ability of E7 to form a dimer. These observations suggest a model for the oncogenic effect of high-risk HPV16 E7. The disordered region of one E7 molecule in the homodimer interacts with the pocket domain of pRb, while the same region of the other E7 molecule binds the TAZ2 domain of CBP/p300. Through its ability to dimerize, E7 recruits CBP/p300 and pRb into a ternary complex, bringing the histone acetyltransferase domain of CBP/p300 into proximity to pRb and promoting acetylation, leading to disruption of cell cycle control.  相似文献   

5.
6.
7.
Ultraviolet (UV) B irradiation decreases blood adiponectin levels, but the mechanism is not well understood. This study investigated how UVB irradiation reduces adiponectin expression in ovarial adipose tissues. Female Hos:HR-1 hairless mice were exposed to UVB (1.6 J/cm2) irradiation and were killed 24 h later. UVB irradiation decreased the adiponectin protein level in the serum and the adiponectin mRNA level in ovarial adipose tissues. UVB irradiation also decreased the mRNA levels of peroxisome proliferator-activated receptor (PPAR) γ, CCAAT/enhancer binding protein (C/EBP) α, C/EBPβ, and fatty acid binding protein 4 (aP2) in ovarial adipose tissues. In contrast, UVB irradiation increased the mRNA levels of interleukin (IL)-6 and monocyte chemoattractant protein (MCP)-1 in ovarial adipose tissues. In the serum and liver, the levels of serum amyloid A (SAA), involved in PPARγ, C/EBPα, C/EBPβ, aP2, IL-6, and MCP-1 regulation, increased after UVB irradiation. The SAA gene is regulated by IL-1β, IL-6, and tumor necrosis factor-α, but only IL-6 expression increased in the liver after UVB irradiation. Additionally, in the liver, hypothalamus, and epidermis, UVB irradiation increased the expression of calcitonin gene-related peptide (CGRP), which upregulates SAA in the liver. Collectively, our results suggest that the CGRP signal induced by skin exposure to UVB transfers to the liver, possibly through the brain, and increases SAA production via IL-6 in the liver. In turn, serum SAA acts in an endocrine manner to decreases the serum adiponectin level by downregulating factors that regulate adiponectin expression in adipose tissues.  相似文献   

8.
High-risk human papillomavirus (HPV) must evade innate immune surveillance to establish persistent infections and to amplify viral genomes upon differentiation. Members of the JAK-STAT family are important regulators of the innate immune response and HPV proteins downregulate expression of STAT-1 to allow for stable maintenance of viral episomes. STAT-5 is another member of this pathway that modulates the inflammatory response and plays an important role in controlling cell cycle progression in response to cytokines and growth factors. Our studies show that HPV E7 activates STAT-5 phosphorylation without altering total protein levels. Inhibition of STAT-5 phosphorylation by the drug pimozide abolishes viral genome amplification and late gene expression in differentiating keratinocytes. In contrast, treatment of undifferentiated cells that stably maintain episomes has no effect on viral replication. Knockdown studies show that the STAT-5β isoform is mainly responsible for this activity and that this is mediated through the ATM DNA damage response. A downstream target of STAT-5, the peroxisome proliferator-activated receptor γ (PPARγ) contributes to the effects on members of the ATM pathway. Overall, these findings identify an important new regulatory mechanism by which the innate immune regulator, STAT-5, promotes HPV viral replication through activation of the ATM DNA damage response.  相似文献   

9.
The major difficulties of human papillomavirus(HPV) treatment are its persistence and recurrence. The HPV E7 oncoprotein-loaded dendritic cells have been evaluated as cellular vaccine in previous reports. Plasmacytoid dendritic cells(pDCs) play an essential role of connecting the innate immune response and adaptive immune response in the immune system. But they function in HPV E7 loading is unclear. To investigate whether loading of the HPV type 6b, 11, and 16 E7 proteins affects the activity of pDCs, human peripheral blood-separated pDCs and mouse bone marrow-derived pDCs were pulsed with the HPV E7 proteins. The expression levels of CD40, CD80, CD86, and MHC II were significantly upregulated in pDCs upon HPV 6b/11 E7 protein pulse. The secretion and gene expression of type I IFN and IL-6 were both upregulated by HPV 6b/11 E7 proteins, more significant than HPV 16 E7 protein. The expression of essential factors of TLR signaling pathway and JNK/p38 MAP kinase signaling pathway were all increased in HPV 6b/11 E7 proteins pulsed pDCs. Our results suggest that HPV E7 proteins could promote the differentiation and maturation of pDCs and activate the TLR and MAPK pathway to induce host innate immune response. It might be conducive to explore novel immunotherapy targeting HPV infection with HPV E7 loaded pDC.  相似文献   

10.
11.
12.
13.
14.
The viral oncoprotein E6 is an essential factor for cervical cancers induced by "high-risk" mucosal HPV. Among other oncogenic activities, E6 recruits the ubiquitin ligase E6AP to promote the ubiquitination and subsequent proteasomal degradation of p53. E6 is prone to self-association, which long precluded its structural analysis. Here we found that E6 specifically dimerizes through its N-terminal domain and that disruption of the dimer interface strongly increases E6 solubility. This allowed us to raise structural data covering the entire HPV16 E6 protein, including the high-resolution NMR structures of the two zinc-binding domains of E6 and a robust data-driven model structure of the N-terminal domain homodimer. Interestingly, homodimer interface mutations that disrupt E6 self-association also inactivate E6-mediated p53 degradation. These data suggest that E6 needs to self-associate via its N-terminal domain to promote the polyubiquitination of p53 by E6AP.  相似文献   

15.
16.
Irradiation with UV light, especially UVB, causes epidermal damage via the induction of apoptosis, inflammatory responses, and DNA damage. Various stressors, including UV light, induce heat shock proteins (HSPs) and the induction, particularly that of HSP70, provides cellular resistance to such stressors. The anti-inflammatory activity of HSP70, such as its inhibition of nuclear factor kappa B (NF-κB), was recently revealed. These in vitro results suggest that HSP70 protects against UVB-induced epidermal damage. Here we tested this idea by using transgenic mice expressing HSP70 and cultured keratinocytes. Irradiation of wild-type mice with UVB caused epidermal damage such as induction of apoptosis, which was suppressed in transgenic mice expressing HSP70. UVB-induced apoptosis in cultured keratinocytes was suppressed by overexpression of HSP70. Irradiation of wild-type mice with UVB decreased the cutaneous level of IκB-α (an inhibitor of NF-κB) and increased the infiltration of leukocytes and levels of pro-inflammatory cytokines and chemokines in the epidermis. These inflammatory responses were suppressed in transgenic mice expressing HSP70. In vitro, the overexpression of HSP70 suppressed the expression of pro-inflammatory cytokines and chemokines and increased the level of IκB-α in keratinocytes irradiated with UVB. UVB induced an increase in cutaneous levels of cyclobutane pyrimidine dimers and 8-hydroxy-2′-deoxyguanosine, both of which were suppressed in transgenic mice expressing HSP70. This study provides genetic evidence that HSP70 protects the epidermis from UVB-induced radiation damage. The findings here also suggest that the protective action of HSP70 is mediated by anti-apoptotic, anti-inflammatory, and anti-DNA damage effects.  相似文献   

17.
18.
19.
We have previously demonstrated that the human papillomavirus (HPV) genome replicates effectively in U2OS cells after transfection using electroporation. The transient extrachromosomal replication, stable maintenance, and late amplification of the viral genome could be studied for high- and low-risk mucosal and cutaneous papillomaviruses. Recent findings indicate that the cellular DNA damage response (DDR) is activated during the HPV life cycle and that the viral replication protein E1 might play a role in this process. We used a U2OS cell-based system to study E1-dependent DDR activation and the involvement of these pathways in viral transient replication. We demonstrated that the E1 protein could cause double-strand DNA breaks in the host genome by directly interacting with DNA. This activity leads to the induction of an ATM-dependent signaling cascade and cell cycle arrest in the S and G2 phases. However, the transient replication of HPV genomes in U2OS cells induces the ATR-dependent pathway, as shown by the accumulation of γH2AX, ATR-interacting protein (ATRIP), and topoisomerase IIβ-binding protein 1 (TopBP1) in viral replication centers. Viral oncogenes do not play a role in this activation, which is induced only through DNA replication or by replication proteins E1 and E2. The ATR pathway in viral replication centers is likely activated through DNA replication stress and might play an important role in engaging cellular DNA repair/recombination machinery for effective replication of the viral genome upon active amplification.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号