首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mere sight of foods may activate the brain’s reward circuitry, and humans often experience difficulties in inhibiting urges to eat upon encountering visual food signals. Imbalance between the reward circuit and those supporting inhibitory control may underlie obesity, yet brain circuits supporting volitional control of appetite and their possible dysfunction that can lead to obesity remain poorly specified. Here we delineated the brain basis of volitional appetite control in healthy and obese individuals with functional magnetic resonance imaging (fMRI). Twenty-seven morbidly obese women (mean BMI = 41.4) and fourteen age-matched normal-weight women (mean BMI = 22.6) were scanned with 1.5 Tesla fMRI while viewing food pictures. They were instructed to inhibit their urge to eat the foods, view the stimuli passively or imagine eating the foods. Across all subjects, a frontal cortical control circuit was activated during appetite inhibition versus passive viewing of the foods. Inhibition minus imagined eating (appetite control) activated bilateral precunei and parietal cortices and frontal regions spanning anterior cingulate and superior medial frontal cortices. During appetite control, obese subjects had lower responses in the medial frontal, middle cingulate and dorsal caudate nuclei. Functional connectivity of the control circuit was increased in morbidly obese versus control subjects during appetite control, which might reflect impaired integrative and executive function in obesity.  相似文献   

2.
Objective: This study evaluated the effects of acute and chronic consumption of higher dietary protein on energy expenditure, macronutrient use, appetite, and appetite‐regulating hormones during weight loss in women. Research Methods and Procedures: Thirty‐eight women chronically consuming a 750 kcal/d energy‐deficit diet with a protein content of 30% (higher protein‐chronic diet, HP‐CD, n = 21) or 18% (normal protein‐chronic diet, NP‐CD, n = 17) for 9 weeks were tested. On separate days, metabolic, appetite, and hormonal responses were measured over 4 hours when the women consumed a higher protein‐acute meal (HP‐AM) (30% of energy as protein) or a normal protein‐acute meal (NP‐AM) (18% of energy as protein). Results: With chronic diet groups combined, HP‐AM led to lower respiratory exchange ratio (0.829 ± 0.005 vs. 0.843 ± 0.008; p < 0.05), lower carbohydrate oxidation (p < 0.05), and higher fat oxidation (p < 0.05) compared with NP‐AM. HP‐AM also led to reduced self‐reported postprandial hunger (p < 0.001) and desire to eat (p < 0.001) and lower postprandial ghrelin (252 ± 16 vs. 274 ± 18 ng/mL · 240 minutes, p < 0.05) compared with NP‐AM. No differences in postprandial energy expenditure (PPEE) occurred between meals. When combining acute meals, respiratory exchange ratio was lower (p < 0.05) and protein oxidation (p < 0.001) was higher in the HP‐CD vs. NP‐CD. An acute meal‐by‐chronic diet interaction was observed with PPEE such that HP‐AM led to greater PPEE in the HP‐CD vs. NP‐CD (28.7 ± 2.7 vs. 19.9 ± 2.7 kcal/min for 195 minutes; p < 0.05). Conclusions: During weight loss, thermogenesis and protein use appear to be influenced by chronic protein intake, while appetite and ghrelin are more responsive to acute protein intake.  相似文献   

3.
The purpose of this study was to determine the effects of dietary protein and eating frequency on perceived appetite and satiety during weight loss. A total of 27 overweight/obese men (age 47 ± 3 years; BMI 31.5 ± 0.7 kg/m2) were randomized to groups that consumed an energy‐restriction diet (i.e., 750 kcal/day below daily energy need) as either higher protein (HP, 25% of energy as protein, n = 14) or normal protein (NP, 14% of energy as protein, n = 13) for 12 weeks. Beginning on week 7, the participants consumed their respective diets as either 3 eating occasions/day (3‐EO; every 5 h) or 6 eating occasions/day (6‐EO; every 2 h), in randomized order, for 3 consecutive days. Indexes of appetite and satiety were assessed every waking hour on the third day of each pattern. Daily hunger, desire to eat, and preoccupation with thoughts of food were not different between groups. The HP group experienced greater fullness throughout the day vs. NP (511 ± 56 vs. 243 ± 54 mm · 15 h; P < 0.005). When compared to NP, the HP group experienced lower late‐night desire to eat (13 ± 4 vs. 27 ± 4 mm, P < 0.01) and preoccupation with thoughts of food (8 ± 4 vs. 21 ± 4 mm; P < 0.01). Within groups, the 3 vs. 6‐EO patterns did not influence daily hunger, fullness, desire to eat, or preoccupation with thoughts of food. The 3‐EO pattern led to greater evening and late‐night fullness vs. 6‐EO but only within the HP group (P < 0.005). Collectively, these data support the consumption of HP intake, but not greater eating frequency, for improved appetite control and satiety in overweight/obese men during energy restriction‐induced weight loss.  相似文献   

4.
Behavioral studies reveal that obese vs. lean individuals show attentional bias to food stimuli. Yet research has not investigated this relation using objective brain imaging or tested whether attentional bias to food stimuli predicts future weight gain, which are important aims given the prominence of food cues in the environment. We used functional magnetic resonance imaging (fMRI) to examine attentional bias in 35 adolescent girls ranging from lean to obese using an attention network task involving food and neutral stimuli. BMI correlated positively with speed of behavioral response to both appetizing food stimuli and unappetizing food stimuli, but not to neutral stimuli. BMI correlated positively with activation in brain regions related to attention and food reward, including the anterior insula/frontal operculum, lateral orbitofrontal cortex (OFC), ventrolateral prefrontal cortex (vlPFC), and superior parietal lobe, during initial orientation to food cues. BMI also correlated with greater activation in the anterior insula/frontal operculum during reallocation of attention to appetizing food images and with weaker activation in the medial OFC and ventral pallidum during reallocation of attention to unappetizing food images. Greater lateral OFC activation during initial orientation to appetizing food cues predicted future increases in BMI. Results indicate that overweight is related to greater attentional bias to food cues and that youth who show elevated reward circuitry responsivity during food cue exposure are at increased risk for weight gain.  相似文献   

5.
Neural responses during anticipation of a primary taste reward   总被引:29,自引:0,他引:29  
The aim of this study was to determine the brain regions involved in anticipation of a primary taste reward and to compare these regions to those responding to the receipt of a taste reward. Using fMRI, we scanned human subjects who were presented with visual cues that signaled subsequent reinforcement with a pleasant sweet taste (1 M glucose), a moderately unpleasant salt taste (0.2 M saline), or a neutral taste. Expectation of a pleasant taste produced activation in dopaminergic midbrain, posterior dorsal amygdala, striatum, and orbitofrontal cortex (OFC). Apart from OFC, these regions were not activated by reward receipt. The findings indicate that when rewards are predictable, brain regions recruited during expectation are, in part, dissociable from areas responding to reward receipt.  相似文献   

6.
Obesity is characterized by an imbalance in the brain circuits promoting reward seeking and those governing cognitive control. Here we show that the dorsal caudate nucleus and its connections with amygdala, insula and prefrontal cortex contribute to abnormal reward processing in obesity. We measured regional brain glucose uptake in morbidly obese (n = 19) and normal weighted (n = 16) subjects with 2-[18F]fluoro-2-deoxyglucose ([18F]FDG) positron emission tomography (PET) during euglycemic hyperinsulinemia and with functional magnetic resonance imaging (fMRI) while anticipatory food reward was induced by repeated presentations of appetizing and bland food pictures. First, we found that glucose uptake rate in the dorsal caudate nucleus was higher in obese than in normal-weight subjects. Second, obese subjects showed increased hemodynamic responses in the caudate nucleus while viewing appetizing versus bland foods in fMRI. The caudate also showed elevated task-related functional connectivity with amygdala and insula in the obese versus normal-weight subjects. Finally, obese subjects had smaller responses to appetizing versus bland foods in the dorsolateral and orbitofrontal cortices than did normal-weight subjects, and failure to activate the dorsolateral prefrontal cortex was correlated with high glucose metabolism in the dorsal caudate nucleus. These findings suggest that enhanced sensitivity to external food cues in obesity may involve abnormal stimulus-response learning and incentive motivation subserved by the dorsal caudate nucleus, which in turn may be due to abnormally high input from the amygdala and insula and dysfunctional inhibitory control by the frontal cortical regions. These functional changes in the responsiveness and interconnectivity of the reward circuit could be a critical mechanism to explain overeating in obesity.  相似文献   

7.
High-protein (HP) milk formulas are routinely used in infants born with a low birth weight (LBW) to enhance growth and ensure a better verbal IQ development. Indirect evidence points to a link between an HP intake during early life and the prevalence of obesity in later life. We hypothesized that HP milk supplementation to LBW pups during early postnatal life would impact hypothalamic appetite neuronal pathways development with consequences, at adulthood, on energy homeostasis regulation. Rat pups born with a LBW were equipped with gastrostomy tubes on the fifth day of life. They received a milk formula with either normal protein (NP, 8.7 g protein/dl) or high protein content (HP; 13.0 g protein/dl) and were subsequently weaned to a standard, solid diet at postnatal day 21. Rats that had been fed HP content milk gained more weight at adulthood associated with an increase of plasma insulin, leptin and triglycerides concentrations compared to NP rats. Screening performed on hypothalamus in development from the two groups of rats identified higher gene expression for cell proliferation and neurotrophin markers in HP rats. Despite these molecular differences, appetite neuronal projections emanating from the arcuate nucleus did not differ between the groups. Concerning feeding behavior at adulthood, rats that had been fed HP or NP milk exhibited differences in the satiety period, resting postprandial duration and nocturnal meal pattern. The consequences of HP milk supplementation after LBW will be discussed in regard to neural development and metabolic anomalies.  相似文献   

8.

Background

Gastric distention (GD), as it occurs during meal ingestion, signals a full stomach and it is one of the key mechanisms controlling food intake. Previous studies on GD showed lower activation of the amygdala for subjects with higher body mass index (BMI). Since obese subjects have dopaminergic deficits that correlate negatively with BMI and the amygdala is innervated by dopamine neurons, we hypothesized that BMI would correlate negatively with activation not just in the amygdala but also in other dopaminergic brain regions (midbrain and hypothalamus).

Methodology/Principal Findings

We used functional magnetic resonance imaging (fMRI) to evaluate brain activation during GD in 24 healthy subjects with BMI range of 20–39 kg/m2. Using multiple regression and cross-correlation analyses based on a family-wise error corrected threshold P = 0.05, we show that during slow GD to maximum volumes of 500 ml and 700 ml subjects with increased BMI had increased activation in cerebellum and left posterior insula, and decreased activation of dopaminergic (amygdala, midbrain, hypothalamus, thalamus) and serotonergic (pons) brain regions and anterior insula, regions that were functionally interconnected with one another.

Conclusions

The negative correlation between BMI and BOLD responses to gastric distention in dopaminergic (midbrain, hypothalamus, amygdala, thalamus) and serotonergic (pons) brain regions is consistent with disruption of dopaminergic and serotonergic signaling in obesity. In contrast the positive correlation between BMI and BOLD responses in posterior insula and cerebellum suggests an opposing mechanism that promotes food intake in obese subjects that may underlie their ability to consume at once large food volumes despite increasing gastric distention.  相似文献   

9.
A number of recent functional Magnetic Resonance Imaging (fMRI) studies on intertemporal choice behavior have demonstrated that so-called emotion- and reward-related brain areas are preferentially activated by decisions involving immediately available (but smaller) rewards as compared to (larger) delayed rewards. This pattern of activation was not seen, however, when intertemporal choices were made for another (unknown) individual, which speaks to that activation having been triggered by self-relatedness. In the present fMRI study, we investigated the brain correlates of individuals who passively observed intertemporal choices being made either for themselves or for an unknown person. We found higher activation within the ventral striatum, medial prefrontal and orbitofrontal cortex, pregenual anterior cingulate cortex, and posterior cingulate cortex when an immediate reward was possible for the observer herself, which is in line with findings from studies in which individuals actively chose immediately available rewards. Additionally, activation in the dorsal anterior cingulate cortex, posterior cingulate cortex, and precuneus was higher for choices that included immediate options than for choices that offered only delayed options, irrespective of who was to be the beneficiary. These results indicate that (1) the activations found in active intertemporal decision making are also present when the same decisions are merely observed, thus supporting the assumption that a robust brain network is engaged in immediate gratification; and (2) with immediate rewards, certain brain areas are activated irrespective of whether the observer or another person is the beneficiary of a decision, suggesting that immediacy plays a more general role for neural activation. An explorative analysis of participants’ brain activation corresponding to chosen rewards, further indicates that activation in the aforementioned brain areas depends on the mere presence, availability, or actual reception of immediate rewards.  相似文献   

10.
Etkin A  Egner T  Peraza DM  Kandel ER  Hirsch J 《Neuron》2006,51(6):871-882
Effective mental functioning requires that cognition be protected from emotional conflict due to interference by task-irrelevant emotionally salient stimuli. The neural mechanisms by which the brain detects and resolves emotional conflict are still largely unknown, however. Drawing on the classic Stroop conflict task, we developed a protocol that allowed us to dissociate the generation and monitoring of emotional conflict from its resolution. Using functional magnetic resonance imaging (fMRI), we find that activity in the amygdala and dorsomedial and dorsolateral prefrontal cortices reflects the amount of emotional conflict. By contrast, the resolution of emotional conflict is associated with activation of the rostral anterior cingulate cortex. Activation of the rostral cingulate is predicted by the amount of previous-trial conflict-related neural activity and is accompanied by a simultaneous and correlated reduction of amygdalar activity. These data suggest that emotional conflict is resolved through top-down inhibition of amygdalar activity by the rostral cingulate cortex.  相似文献   

11.
Acute exercise suppresses ad libitum energy intake, but little is known about the effects of exercise on food reward brain regions. After an overnight fast, 30 (17 men, 13 women), healthy, habitually active (age = 22.2 ± 0.7 yr, body mass index = 23.6 ± 0.4 kg/m(2), Vo(2peak) = 44.2 ± 1.5 ml·kg(-1)·min(-1)) individuals completed 60 min of exercise on a cycle ergometer or 60 min of rest (no-exercise) in a counterbalanced, crossover fashion. After each condition, blood oxygen level-dependent responses to high-energy food, low-energy food, and control visual cues, were measured by functional magnetic resonance imaging. Exercise, compared with no-exercise, significantly (P < 0.005) reduced the neuronal response to food (high and low food) cues vs. control cues in the insula (-0.37 ± 0.13 vs. +0.07 ± 0.18%), putamen (-0.39 ± 0.10 vs. -0.10 ± 0.09%), and rolandic operculum (-0.37 ± 0.17 vs. 0.17 ± 0.12%). Exercise alone significantly (P < 0.005) reduced the neuronal response to high food vs. control and low food vs. control cues in the inferior orbitofrontal cortex (-0.94 ± 0.33%), insula (-0.37 ± 0.13%), and putamen (-0.41 ± 0.10%). No-exercise alone significantly (P < 0.005) reduced the neuronal response to high vs. control and low vs. control cues in the middle (-0.47 ± 0.15%) and inferior occipital gyrus (-1.00 ± 0.23%). Exercise reduced neuronal responses in brain regions consistent with reduced pleasure of food, reduced incentive motivation to eat, and reduced anticipation and consumption of food. Reduced neuronal response in these food reward brain regions after exercise is in line with the paradigm that acute exercise suppresses subsequent energy intake.  相似文献   

12.

Background

Previous fMRI studies show that women with eating disorders (ED) have differential neural activation to viewing food images. However, despite clinical differences in their responses to food, differential neural activation to thinking about eating food, between women with anorexia nervosa (AN) and bulimia nervosa (BN) is not known.

Methods

We compare 50 women (8 with BN, 18 with AN and 24 age-matched healthy controls [HC]) while they view food images during functional Magnetic Resonance Imaging (fMRI).

Results

In response to food (vs non-food) images, women with BN showed greater neural activation in the visual cortex, right dorsolateral prefrontal cortex, right insular cortex and precentral gyrus, women with AN showed greater activation in the right dorsolateral prefrontal cortex, cerebellum and right precuneus. HC women activated the cerebellum, right insular cortex, right medial temporal lobe and left caudate. Direct comparisons revealed that compared to HC, the BN group showed relative deactivation in the bilateral superior temporal gyrus/insula, and visual cortex, and compared to AN had relative deactivation in the parietal lobe and dorsal posterior cingulate cortex, but greater activation in the caudate, superior temporal gyrus, right insula and supplementary motor area.

Conclusions

Women with AN and BN activate top-down cognitive control in response to food images, yet women with BN have increased activation in reward and somatosensory regions, which might impinge on cognitive control over food consumption and binge eating.  相似文献   

13.
Objective: To examine the effects of dietary protein and obesity classification on energy‐restriction‐induced changes in weight, body composition, appetite, mood, and cardiovascular and kidney health. Research Methods and Procedures: Forty‐six women, ages 28 to 80, BMI 26 to 37 kg/m2, followed a 12‐week 750‐kcal/d energy‐deficit diet containing higher protein (HP, 30% protein) or normal protein (NP, 18% protein) and were retrospectively subgrouped according to obesity classification [pre‐obese (POB), BMI = 26 to 29.9 kg/m2; obese (OB), BMI = 30 to 37 kg/m2). Results: All subjects lost weight, fat mass, and lean body mass (LBM; p < 0.001). With comparable weight loss, LBM losses were less in HP vs. NP (?1.5 ± 0.3 vs. ?2.8 ± 0.5 kg; p < 0.05) and POB vs. OB (?1.2 ± 0.3 vs. ?2.9 ± 0.4 kg; p < 0.005). The main effects of protein and obesity on LBM changes were independent and additive; POB‐HP lost less LBM vs. OB‐NP (p < 0.05). The energy‐restriction‐induced decline in satiety was less pronounced in HP vs. NP (p < 0.005). Perceived pleasure increased with HP and decreased with NP (p < 0.05). Lipid‐lipoprotein profile and blood pressure improved and kidney function minimally changed with energy restriction (p < 0.05), independently of protein intake. Discussion: Consuming a higher‐protein diet and accomplishing weight loss before becoming obese help women preserve LBM. Use of a higher‐protein diet also improves perceptions of satiety and pleasure during energy restriction.  相似文献   

14.
Recent brain imaging studies using functional magnetic resonance imaging (fMRI) have implicated insula and anterior cingulate cortices in the empathic response to another's pain. However, virtually nothing is known about the impact of the voluntary generation of compassion on this network. To investigate these questions we assessed brain activity using fMRI while novice and expert meditation practitioners generated a loving-kindness-compassion meditation state. To probe affective reactivity, we presented emotional and neutral sounds during the meditation and comparison periods. Our main hypothesis was that the concern for others cultivated during this form of meditation enhances affective processing, in particular in response to sounds of distress, and that this response to emotional sounds is modulated by the degree of meditation training. The presentation of the emotional sounds was associated with increased pupil diameter and activation of limbic regions (insula and cingulate cortices) during meditation (versus rest). During meditation, activation in insula was greater during presentation of negative sounds than positive or neutral sounds in expert than it was in novice meditators. The strength of activation in insula was also associated with self-reported intensity of the meditation for both groups. These results support the role of the limbic circuitry in emotion sharing. The comparison between meditation vs. rest states between experts and novices also showed increased activation in amygdala, right temporo-parietal junction (TPJ), and right posterior superior temporal sulcus (pSTS) in response to all sounds, suggesting, greater detection of the emotional sounds, and enhanced mentation in response to emotional human vocalizations for experts than novices during meditation. Together these data indicate that the mental expertise to cultivate positive emotion alters the activation of circuitries previously linked to empathy and theory of mind in response to emotional stimuli.  相似文献   

15.
Objective: To explore neuroanatomical sites of eating behavior, we have developed a simple functional magnetic resonance imaging (fMRI) paradigm to image hunger vs. satiety using visual stimulation. Methods and Procedures: Twelve healthy, lean, nonsmoking male subjects participated in this study. Pairs of food‐neutral and food‐related pictures were presented in a block design, after a 14‐h fast and 1 h after ad libitum ingestion of a mixed meal. Statistically, a general linear model for serially autocorrelated observations with a P level <0.001 was used. Results: During the hunger condition, significantly enhanced brain activity was found in the left striate and extrastriate cortex, the inferior parietal lobe, and the orbitofrontal cortices. Stimulation with food images was associated with increased activity in both insulae, the left striate and extrastriate cortex, and the anterior midprefrontal cortex. Nonfood images were associated with enhanced activity in the right parietal lobe and the left and right middle temporal gyrus. A significant interaction in activation pattern between the states of hunger and satiety and stimulation with food and nonfood images was found for the left anterior cingulate cortex, the superior occipital sulcus, and in the vicinity of the right amygdala. Discussion: These preliminary data from a homogenous healthy male cohort suggest that central nervous system (CNS) activation is not only altered with hunger and satiety but that food and nonfood images have also specific effects on regional brain activity if exposure takes place in different states of satiety. Wider use of our or a similar approach would help to establish a uniform paradigm to map hunger and satiety to be used for further experiments.  相似文献   

16.
Rats that consume a diet 50% rich in protein exhibit hyperactivity and hyperresponsiveness to nociceptive stimuli, in which facilitation of dopaminergic activity has been implicated. We studied the regional changes in the concentrations of dopamine (DA) and its metabolites, dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) in the brains of rats that were maintained on high-protein (HP, 50% casein), normal-protein (NP, 20% casein), and low-protein (LP, 8% casein) diets for 36 weeks. Brain nuclei that represented different DAergic systems were punchdissected and analyzed using HPLC. In the substantia nigra, the striatum, and the dentate gyrus, DA concentrations decreased and increased, respectively, with a decrease and increase in dietary protein (p<0.05 compared to the NP diet). Similar trends in the effect of the HP diet were observed in the ventral tegmental area, amygdala, frontal cortex, subiculum, centromedial nucleus (CM) of the thalamus, and inferior colliculi (IC), although the differences in DA concentrations were not statistically significant. These brain areas also showed a pattern of decreased DA concentration in association with the LP diet, and the differences were statistically significant (p<0.05) in the CM and IC. DA concentrations in most regions of the midbrain and brainstem were not different between the diet groups, nor were consistent trends observed in those regions. Also, there were no consistent relationships between DOPAC/DA and HVA/DA ratios and dietary protein level. These data suggest that only discrete dopaminergic neuronal circuits in the rat forebrain were sensitive to changes in dietary protein level.  相似文献   

17.
Increased propensity for risky behavior in adolescents, particularly in peer groups, is thought to reflect maturational imbalance between reward processing and cognitive control systems that affect decision-making. We used functional magnetic resonance imaging (fMRI) to investigate brain functional correlates of risk-taking behavior and effects of peer influence in 18–19-year-old male adolescents. The subjects were divided into low and high risk-taking groups using either personality tests or risk-taking rates in a simulated driving task. The fMRI data were analyzed for decision-making (whether to take a risk at intersections) and outcome (pass or crash) phases, and for the influence of peer competition. Personality test-based groups showed no difference in the amount of risk-taking (similarly increased during peer competition) and brain activation. When groups were defined by actual task performance, risk-taking activated two areas in the left medial prefrontal cortex (PFC) significantly more in low than in high risk-takers. In the entire sample, risky decision-specific activation was found in the anterior and dorsal cingulate, superior parietal cortex, basal ganglia (including the nucleus accumbens), midbrain, thalamus, and hypothalamus. Peer competition increased outcome-related activation in the right caudate head and cerebellar vermis in the entire sample. Our results suggest that the activation of the medial (rather than lateral) PFC and striatum is most specific to risk-taking behavior of male adolescents in a simulated driving situation, and reflect a stronger conflict and thus increased cognitive effort to take risks in low risk-takers, and reward anticipation for risky decisions, respectively. The activation of the caudate nucleus, particularly for the positive outcome (pass) during peer competition, further suggests enhanced reward processing of risk-taking under peer influence.  相似文献   

18.
A 53-year old woman with tic doloureaux, affecting her right maxillary division of the trigeminal nerve (V2), could elicit shooting pains by slightly tapping her teeth when off medication. The pains, which she normally rated as > 6/10 on a visual analog scale (VAS), were electric shock-like in nature. She had no other spontaneous or ongoing background pain affecting the region. Based on her ability to elicit these tics, functional magnetic resonance imaging (fMRI) was performed while she produced brief shocks every 2 minutes on cue (evoked pain) over a 20 min period. In addition, she had 1–2 spontaneous shocks manifested between these evoked pains over the course of functional image acquisition. Increased fMRI activation for both evoked and spontaneous tics was observed throughout cortical and subcortical structures commonly observed in experimental pain studies with healthy subjects; including the primary somatosensory cortex, insula, anterior cingulate, and thalamus. Spontaneous tics produced more decrease in signals in a number of regions including the posterior cingulate cortex and amygdala, suggesting that regions known to be involved in expectation/anticipation may have been activated for the evoked, but not spontaneous, tics. In this patient there were large increases in activation observed in the frontal regions, including the anterior cingulate cortex and the basal ganglia. Spontaneous tics showed increased activation in classic aversion circuitry that may contribute to increased levels of anxiety. We believe that this is the first report of functional imaging of brain changes in tic-doloureaux.  相似文献   

19.
20.
Small DM  Gerber JC  Mak YE  Hummel T 《Neuron》2005,47(4):593-605
Odors perceived through the mouth (retronasally) as flavor are referred to the oral cavity, whereas odors perceived through the nose (orthonasally) are referred to the external world. We delivered vaporized odorants via the orthonasal and retronasal routes and measured brain response with fMRI. Comparison of retronasal versus orthonasal delivery produced preferential activity in the mouth area at the base of the central sulcus, possibly reflecting olfactory referral to the mouth, associated with retronasal olfaction. Routes of delivery produced differential activation in the insula/operculum, thalamus, hippocampus, amygdala, and caudolateral orbitofrontal cortex in orthonasal > retronasal and in the perigenual cingulate and medial orbitofrontal cortex in retronasal > orthonasal in response to chocolate, but not lavender, butanol, or farnesol, so that an interaction of route and odorant may be inferred. These findings demonstrate differential neural recruitment depending upon the route of odorant administration and suggest that its effect is influenced by whether an odorant represents a food.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号