首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
For habitat specialists, fragmentation has major consequences as it means less suitable habitat for the species to live in. In a fragmented landscape, we would expect larger, but spatially more clustered, foraging ranges. We studied the impact of landscape fragmentation on the foraging range and habitat exploitation of a specialised forest bat by radiotracking 16 female lesser horseshoe bats Rhinolophus hipposideros in a landscape with connected woodland structures and in a highly fragmented landscape in Carinthia, Austria.Contrary to our expectations, spatial foraging behaviour was not influenced by fragmentation. No differences in the behaviour of the bats between the sites were evident for the foraging ranges (minimum convex polygon, MCP), the core foraging areas (50% kernel), nor the mean or the maximum distances from the roost. However, in the highly fragmented landscape, the foraging activity of individuals was spatially more clustered and the overall MCP of all bats of a colony was greater compared to the less fragmented landscape.Woodland was the most important foraging habitat for the lesser horseshoe bats at both study sites. Habitat selection at the individual MCPs was evident only at the site with low fragmentation. However, in the core foraging areas, woodland was significantly selected over all other habitat types at both study sites.We conclude that (1) conservation measures for colonies of lesser horseshoe bats should be undertaken within 2.5 km of the nursery roost, (2) woodland is the key foraging habitat particularly in the vicinity of the roost, and (3) any loss of woodland near the colonial roosts are likely to negatively influence the colony, since these bats do not seem to be able to adapt their spatial foraging behaviour in a degraded landscape. The inflexible spatial behaviour of this specialised bat highlights the need to compensate for any habitat loss within the foraging range of a bat colony.  相似文献   

2.
Trade-offs in resource selection by central-place foragers are driven by the need to balance the benefits of selecting resources against the costs of travel from the central place. For group-territorial central-place foraging birds, trade-offs in resource selection are likely to be complicated by a competitive advantage for larger groups at high group density that may limit accessibility of high-quality distant resources to small groups. We used the group-territorial, central-place foraging Red-cockaded Woodpecker Leuconotopicus borealis (RCW) as a case study to test predictions that increases in group density lead to differences in foraging distances and resource selection for groups of different sizes. We used GPS tracking and LiDAR-derived habitat data to model effects of group size on foraging distances and selection for high-quality pines (≥ 35.6 cm diameter at breast height (dbh)) and lower quality pines (25.4–35.6 cm dbh) by RCW groups across low (n = 14), moderate (n = 10) and high group density (n = 10) conditions. At low and moderate group density, all RCW groups selected distant high-quality pines in addition to those near the central place because competition for resources was low. In contrast, at high group density, larger groups travelled further to select high-quality pines, whereas smaller groups selected high-quality pines only when they were close to the central place and, conversely, were more likely to select lower quality pines at greater distances from the central place. Selection for high-quality pines only when close to the cavity tree cluster at high group density is important to long-term fitness of small RCW groups because it allows them to maximize benefits from both territorial defence and selecting high-quality resources while minimizing costs of competition. These relationships suggest that intraspecific competition at high group density entails substantive costs to smaller groups of territorial central-place foragers by limiting accessibility of distant high-quality foraging resources.  相似文献   

3.
Conservation increasingly operates at the landscape scale. For this to be effective, we need landscape scale information on species distributions and the environmental factors that underpin them. Species records are becoming increasingly available via data centres and online portals, but they are often patchy and biased. We demonstrate how such data can yield useful habitat suitability models, using bat roost records as an example. We analysed the effects of environmental variables at eight spatial scales (500 m – 6 km) on roost selection by eight bat species (Pipistrellus pipistrellus, P. pygmaeus, Nyctalus noctula, Myotis mystacinus, M. brandtii, M. nattereri, M. daubentonii, and Plecotus auritus) using the presence-only modelling software MaxEnt. Modelling was carried out on a selection of 418 data centre roost records from the Lake District National Park, UK. Target group pseudoabsences were selected to reduce the impact of sampling bias. Multi-scale models, combining variables measured at their best performing spatial scales, were used to predict roosting habitat suitability, yielding models with useful predictive abilities. Small areas of deciduous woodland consistently increased roosting habitat suitability, but other habitat associations varied between species and scales. Pipistrellus were positively related to built environments at small scales, and depended on large-scale woodland availability. The other, more specialist, species were highly sensitive to human-altered landscapes, avoiding even small rural towns. The strength of many relationships at large scales suggests that bats are sensitive to habitat modifications far from the roost itself. The fine resolution, large extent maps will aid targeted decision-making by conservationists and planners. We have made available an ArcGIS toolbox that automates the production of multi-scale variables, to facilitate the application of our methods to other taxa and locations. Habitat suitability modelling has the potential to become a standard tool for supporting landscape-scale decision-making as relevant data and open source, user-friendly, and peer-reviewed software become widely available.  相似文献   

4.
Habitat for the northern bobwhite (Colinus virginianus) has declined and changed drastically in spatial structure throughout the last century. Undoubtedly such changes have impacted bobwhite and may have altered their ability to access available habitat. We investigated whether landscape resistance, geographic distance, or interstate highway barriers were related to dispersal and gene flow of bobwhite in central and southern Illinois. Landscape resistance was determined from two empirically informed models depicting habitat suitability for bobwhite. During 2007–2008, hunters submitted bobwhite tissue samples from which we amplified 11 microsatellites. The relationship between individual genetic distances and spatial variables was analyzed with Mantel tests and causal modeling was used to verify the spatial variables influencing gene flow. Genetic distance was correlated with geographic distance but showed no relationship with interstate highway barriers. Habitat suitability did not enhance gene flow, and was inversely related in some partial Mantel tests. We suggest that bobwhite dispersal from suitable habitat patches may be less frequent than from suboptimal habitats. Bobwhite may be able to access suitable habitat across gaps of unsuitable habitat but distance limits their dispersal. Because available habitat for bobwhites may have a greater likelihood of being colonized when closer to occupied habitat, we suggest that lands closer to occupied habitat should be targeted for conservation or habitat improvement efforts.  相似文献   

5.
Research in foraging theory has been dominated by studies ofactive foragers choosing among patches and among prey withina patch. Studies of central-place foraging have mainly focusedon loading decisions of an animal provisioning a central place.The problem faced by a sit-and-wait forager that encountersprey at a distance has received little attention. In this studywe tested foraging theory predictions for such foragers, Anolisgingivinus females in the West Indies island of Anguilla. Wepresented lizards with antlion larvae at various distances.Experiment 1 showed that an individual's probability of pursuingprey decreases with the prey's distance and is best describedby a sigmoidal function (which may be as steep as a step function).This function's inflection point defines a cutoff distance.Experiment 3 tested how cutoff distance changes as a functionof prey size. Cutoff distances were greater for larger prey,as predicted for an energy-maximizing forager. Experiments 2and 4 tested how cutoff distance changes as a function of preyabundance. As predicted, cutoff distance were greater at a sitewhere prey abundance was lower. Furthermore, cutoff distancesdecreased immediately following prey augmentation and returnedto previous values within one day of ending augmentation. Thus,moles' foraging behavior is a dynamic process, consistent withthe qualitative predictions of foraging theory. We attributethe success of this study in supporting fundamental foragingtheory predictions to the lizards exhibiting natural behaviorunder field conditions and to particular advantages of studyingsit-and-wait foragers.  相似文献   

6.
Given the pervasive influence of human induced habitat fragmentation in ecological processes, landscape models are a welcome advance. The development of GIS software has allowed a greater use of these models and of analyses of the relationship between species and habitat variables. Habitat suitability models are thus theoretical concepts that can be used for planning in fragmented landscapes and habitat conservation. The most commonly used models are based on single species and on the assignment of suitability values for some environmental variables. Generally the cartographic basis for modeling suitability are thematic maps produced by a Boolean logic. In this paper we propose a model based on a set of focal species and on maps produced by a fuzzy classification method. Focal species, selected by an expert-based approach, provide a practical way of extending the scope of habitat suitability models to the conservation of biodiversity at landscape scale. The utilisation of a classification method that applies a continuity criterion may allow more consideration of the connectivity of an area because it allows a better detection of ecological gradients within a landscape. We applied this methodology to the Tuscany region focusing on terrestrial mammals. Performing a fuzzy classification we produced five land cover maps and through image processing operations we obtained a suitability model which applies a continuity criterion. The resulting suitability fuzzy model seems better for the study of connectivity and fragmentation, especially in areas with high spatial complexity.  相似文献   

7.
Availability of certain habitats or landscape configurations can cause differential habitat selection in animal species. Landscape complexity can affect foraging scales, home ranges and movement, but its effect on habitat selection is not well documented. We aimed to examine differences in colony site selection of herons and egrets in different regions. We studied whether landscape complexities could affect their scale of selection and habitat preferences. We used colony distribution data and land-use maps for two neighboring regions, Ibaraki and Chiba prefectures in Japan, to create random forest models for analyzing habitat preferences and important scales of selection. We did cross-validation of the models, adjusted for its respective region's land-use maps with changing scales. The scales that best explained colony distribution were 1-, 4-, 10- and 15-km in the Ibaraki region, and 1- and 10-km in the Chiba region. Evergreen forest was the most important variable for Ibaraki at 4-km and for the Chiba at 1-km. The importance of other variables differed for other models. Cross-validation showed that herons and egrets had the same habitat preferences at a 4-km scale in Ibaraki and at a 1-km scale in Chiba. The scale of selection was reduced in Chiba, where the main foraging resources for herons and egrets was more complex. Differences in landscape complexities did not affect habitat preferences but resulted in differences in the scale of selection. Habitat selection models created at the landscape level can be useful to study behavioral aspects difficult to describe with direct observation in detail.  相似文献   

8.
Central-place foragers, such as ants, beavers, and colonial seabirds, can act as biological conduits, subsidizing local communities with allochthonous resources. To explore the consequences of such biologically vectored resource redistribution, we draw on an example from cave ecology and develop a population-level model of central-place foraging based on the dispersal kernel framework. We explore how the size of the patch in which central-place foraging occurs and the spatial distribution of foragers within that patch feed back to influence the population dynamics of the central-place forager and the species richness of the associated recipient community. We demonstrate that the particular way in which a population of central-place foragers uses space has two important effects. First, space use determines the stability of the forager population and establishes patch size thresholds for persistence, stable equilibria, and limit cycles. Second, alternative foraging kernels lead to qualitatively different scaling relationships between the size of the foraging patch and species richness back at the central place. These analyses provide a new link among elements of ecology related to animal behavior, population dynamics, and species diversity while also providing a novel perspective on the utility of integrodifference equations for problems in spatial ecology.  相似文献   

9.
Rands SA  Whitney HM 《PloS one》2011,6(10):e25971
The areas of wild land around the edges of agricultural fields are a vital resource for many species. These include insect pollinators, to whom field margins provide both nest sites and important resources (especially when adjacent crops are not in flower). Nesting pollinators travel relatively short distances from the nest to forage: most species of bee are known to travel less than two kilometres away. In order to ensure that these pollinators have sufficient areas of wild land within reach of their nests, agricultural landscapes need to be designed to accommodate the limited travelling distances of nesting pollinators. We used a spatially-explicit modelling approach to consider whether increasing the width of wild strips of land within the agricultural landscape will enhance the amount of wild resources available to a nesting pollinator, and if it would impact differently on pollinators with differing foraging strategies. This was done both by creating field structures with a randomised geography, and by using landscape data based upon the British agricultural landscape. These models demonstrate that enhancing field margins should lead to an increase in the availability of forage to pollinators that nest within the landscape. With the exception of species that only forage within a very short range of their nest (less than 125 m), a given amount of field margin manipulation should enhance the proportion of land available to a pollinator for foraging regardless of the distance over which it normally travels to find food. A fixed amount of field edge manipulation should therefore be equally beneficial for both longer-distance nesting foragers such as honeybees, and short-distance foragers such as solitary bees.  相似文献   

10.
Extensive resources are allocated to managing vertebrate pests, yet spatial understanding of pest threats, and how they respond to management, is limited at the regional scale where much decision-making is undertaken. We provide regional-scale spatial models and management guidance for European rabbits (Oryctolagus cuniculus) in a 260,791 km2 region in Australia by determining habitat suitability, habitat susceptibility and the effects of the primary rabbit management options (barrier fence, shooting and baiting and warren ripping) or changing predation or disease control levels. A participatory modelling approach was used to develop a Bayesian network which captured the main drivers of suitability and spread, which in turn was linked spatially to develop high resolution risk maps. Policy-makers, rabbit managers and technical experts were responsible for defining the questions the model needed to address, and for subsequently developing and parameterising the model. Habitat suitability was determined by conditions required for warren-building and by above-ground requirements, such as food and harbour, and habitat susceptibility by the distance from current distributions, habitat suitability, and the costs of traversing habitats of different quality. At least one-third of the region had a high probability of being highly suitable (support high rabbit densities), with the model supported by validation. Habitat susceptibility was largely restricted by the current known rabbit distribution. Warren ripping was the most effective control option as warrens were considered essential for rabbit persistence. The anticipated increase in disease resistance was predicted to increase the probability of moderately suitable habitat becoming highly suitable, but not increase the at-risk area. We demonstrate that it is possible to build spatial models to guide regional-level management of vertebrate pests which use the best available knowledge and capture fine spatial-scale processes.  相似文献   

11.
Predation risk influences prey use of space. However, little is known about how predation risk influences breeding habitat selection and the fitness consequences of these decisions. The nest sites of central-place foraging predators may spatially anchor predation risk in the landscape. We explored how the spatial dispersion of avian predator nests influenced prey territory location and fitness related measures. We placed 249 nest boxes for migrant pied flycatchers Ficedula hypoleuca , at distances between 10 and 630 m, around seven different sparrowhawk nests Accipiter nisus . After closely monitoring flycatcher nests we found that flycatcher arrival dates, nest box occupation rates and clutch size showed a unimodal relationship with distance from sparrowhawk nests. This relationship suggested an optimal territory location at intermediate distances between 330 and 430 m from sparrowhawk nests. Furthermore, pied flycatcher nestling quantity and quality increased linearly with distance from sparrowhawk nests. These fitness related measures were between 4 and 26% larger in flycatcher nestlings raised far from, relative to those raised nearby, sparrowhawk nests. Our results suggest that breeding sparrowhawk affected both flycatcher habitat selection and reproductive success. We propose that nesting predators create predictable spatial variation in predation risk for both adult prey and possibly their nests, to which prey individuals are able to adaptively respond. Recognising predictable spatial variation in perceived predation risk may be fundamental for a proper understanding of predator-prey interactions and indeed prey species interactions.  相似文献   

12.
We investigate how central-place seed foragers with a nest in the proximity of one or more seed sources determine the formation of different vegetation patterns. In particular, we discuss the ecological conditions that lead to the formation of hump-shaped (Janzen–Connell) patterns in a two-dimensional landscape. Our analysis shows that central-place predation can generate Janzen–Connell patterns even if predators’ movement strategies are exclusively based on resource abundance, both in the single-plant/single-nest case and in a forest with several seed sources. We also show that social foraging may either promote or work against the formation of Janzen–Connell patterns, depending upon the way foragers take advantage of social interactions.  相似文献   

13.
Across a large mountain area of the western Swiss Alps, we used occurrence data (presence‐only points) of bird species to find suitable modelling solutions and build reliable distribution maps to deal with biodiversity and conservation necessities of bird species at finer scales. We have performed a multi‐scale method of modelling, which uses distance, climatic, and focal variables at different scales (neighboring window sizes), to estimate the efficient scale of each environmental predictor and enhance our knowledge on how birds interact with their complex environment. To identify the best radius for each focal variable and the most efficient impact scale of each predictor, we have fitted univariate models per species. In the last step, the final set of variables were subsequently employed to build ensemble of small models (ESMs) at a fine spatial resolution of 100 m and generate species distribution maps as tools of conservation. We could build useful habitat suitability models for the three groups of species in the national red list. Our results indicate that, in general, the most important variables were in the group of bioclimatic variables including “Bio11” (Mean Temperature of Coldest Quarter), and “Bio 4” (Temperature Seasonality), then in the focal variables including “Forest”, “Orchard”, and “Agriculture area” as potential foraging, feeding and nesting sites. Our distribution maps are useful for identifying the most threatened species and their habitat and also for improving conservation effort to locate bird hotspots. It is a powerful strategy to improve the ecological understanding of the distribution of bird species in a dynamic heterogeneous environment.  相似文献   

14.
Gene flow and functional connectivity in the natterjack toad   总被引:6,自引:0,他引:6  
Functional connectivity is a key factor for the persistence of many specialist species in fragmented landscapes. However, connectivity estimates have rarely been validated by the observation of dispersal movements. In this study, we estimated functional connectivity of a real landscape by modelling dispersal for the endangered natterjack toad (Bufo calamita) using cost distance. Cost distance allows the evaluation of 'effective distances', which are distances corrected for the costs involved in moving between habitat patches in spatially explicit landscapes. We parameterized cost-distance models using the results of our previous experimental investigation of natterjack's movement behaviour. These model predictions (connectivity estimates from the GIS study) were then confronted to genetic-based dispersal rates between natterjack populations in the same landscape using Mantel tests. Dispersal rates between the populations were inferred from variation at six microsatellite loci. Based on these results, we conclude that matrix structure has a strong effect on dispersal rates. Moreover, we found that cost distances generated by habitat preferences explained dispersal rates better than did the Euclidian distances, or the connectivity estimate based on patch-specific resistances (patch viscosity). This study is a clear example of how landscape genetics can validate operational functional connectivity estimates.  相似文献   

15.
Abstract Habitat models are now broadly used in conservation planning on public lands. If implemented correctly, habitat modelling is a transparent and repeatable technique for describing and mapping biodiversity values, and its application in peri‐urban and agricultural landscape planning is likely to expand rapidly. Conservation planning in such landscapes must be robust to the scrutiny that arises when biodiversity constraints are placed on developers and private landholders. A standardized modelling and model evaluation method based on widely accepted techniques will improve the robustness of conservation plans. We review current habitat modelling and model evaluation methods and provide a habitat modelling case study in the New South Wales central coast region that we hope will serve as a methodological template for conservation planners. We make recommendations on modelling methods that are appropriate when presence‐absence and presence‐only survey data are available and provide methodological details and a website with data and training material for modellers. Our aim is to provide practical guidelines that preserve methodological rigour and result in defendable habitat models and maps. The case study was undertaken in a rapidly developing area with substantial biodiversity values under urbanization pressure. Habitat maps for seven priority fauna species were developed using logistic regression models of species‐habitat relationships and a bootstrapping methodology was used to evaluate model predictions. The modelled species were the koala, tiger quoll, squirrel glider, yellow‐bellied glider, masked owl, powerful owl and sooty owl. Models ranked sites adequately in terms of habitat suitability and provided predictions of sufficient reliability for the purpose of identifying preliminary conservation priority areas. However, they are subject to multiple uncertainties and should not be viewed as a completely accurate representation of the distribution of species habitat. We recommend the use of model prediction in an adaptive framework whereby models are iteratively updated and refined as new data become available.  相似文献   

16.
Hagen EM  Sabo JL 《Oecologia》2011,166(3):751-760
River and riparian areas provide an important foraging habitat for insectivorous bats owing to high insect availability along waterways. However, structural characteristics of the riverine landscape may also influence the location of foraging bats. We used bat detectors to compare bat activity longitudinally along river reaches with contrasting channel confinement, ratio of valley floor width to active channel width, and riparian vegetation, and laterally with distance from the river along three different reach types. We measured rates of insect emergence from the river and aerial insect availability above the river and laterally up to 50-m into the riparian habitat in order to assess the relationship between food resources and insectivorous bat activity. Longitudinally, bat activity was concentrated along confined reaches in comparison to unconfined reaches but was not related to insect availability. Laterally, bats tracked exponential declines in aquatic insects with distance from the river. These data suggest that along the lateral dimension bats track food resources, but that along the longitudinal dimension channel shape and landscape structure determine bat distributions more than food resources.  相似文献   

17.
Control of mobile pests frequently requires area‐wide management (AWM) that spans commercial and non‐commercial habitats. Spatial modelling of habitat suitability can guide investment and implementation of AWM, but current approaches rarely capture population drivers, including local foraging, at an appropriate spatial resolution. To support the development of AWM for the fruit fly pest, Bactrocera tryoni (Tephritidae), we developed a habitat suitability model for the three premier fruit‐growing regions in south‐eastern Australia (~34,780 km2). Expert elicitation and published literature was used to develop a Bayesian network to model the drivers of B. tryoni habitat suitability, as determined by the ability of populations to persist and increase. The effect of uncertainty was tested through sensitivity analysis. The model was then linked with spatially explicit data (at 10 m resolution) to generate risk maps, using moving windows to capture local foraging movement. Habitat suitability was most strongly influenced by host availability within a distance of 200 m. Climate stress, and soil moisture for pupation, was also limiting. Experts were uncertain regarding the relative importance of drivers of host availability (host preference, host density, fruit seasonality), but this did not greatly affect model outputs. Independent trapping data supported model predictions, but their value was limited as traps were placed almost exclusively in optimal or suitable habitat. Amenability to AWM, when assessed as the ratio of suitable or optimal habitat that was under non‐horticultural versus horticultural land‐uses, differed by region (0.15–1.17). However, risk‐mapping did identify where ratios were locally most favourable (lowest). Also, predominantly local dispersal by B. tryoni suggests AWM for pest suppression could be applied at a landscape‐scale. Results show that a relatively simple model could capture the multi‐scale drivers of population dynamics and the complexity of landscapes sufficiently to guide AWM of a mobile pest.  相似文献   

18.

Background

Straw-coloured fruit bats (Eidolon helvum) migrate over vast distances across the African continent, probably following seasonal bursts of resource availability. This causes enormous fluctuations in population size, which in turn may influence the bats’ impact on local ecosystems. We studied the movement ecology of this central-place forager with state-of-the-art GPS/acceleration loggers and concurrently monitored the seasonal fluctuation of the colony in Accra, Ghana. Habitat use on the landscape scale was assessed with remote sensing data as well as ground-truthing of foraging areas.

Principal Findings

During the wet season population low (~ 4000 individuals), bats foraged locally (3.5–36.7 km) in urban areas with low tree cover. Major food sources during this period were fruits of introduced trees. Foraging distances almost tripled (24.1–87.9 km) during the dry season population peak (~ 150,000 individuals), but this was not compensated for by reduced resting periods. Dry season foraging areas were random with regard to urban footprint and tree cover, and food consisted almost exclusively of nectar and pollen of native trees.

Conclusions and Significance

Our study suggests that straw-coloured fruit bats disperse seeds in the range of hundreds of meters up to dozens of kilometres, and pollinate trees for up to 88 km. Straw-coloured fruit bats forage over much larger distances compared to most other Old World fruit bats, thus providing vital ecosystem services across extensive landscapes. We recommend increased efforts aimed at maintaining E. helvum populations throughout Africa since their keystone role in various ecosystems is likely to increase due to the escalating loss of other seed dispersers as well as continued urbanization and habitat fragmentation.  相似文献   

19.
Animal populations are frequently limited by the availability of food or of habitat. In central-place foragers, the cost of accessing these resources is distance-dependent rather than uniform in space. However, in seabirds, a widely studied exemplar of this paradigm, empirical population models have hitherto ignored this cost. In part, this is because non-independence among colonies makes it difficult to define population units. Here, we model the effects of both resource availability and accessibility on populations of a wide-ranging, pelagic seabird, the black-browed albatross Thalassarche melanophris. Adopting a multi-scale approach, we define regional populations objectively as spatial clusters of colonies. We consider two readily quantifiable proxies of resource availability: the extent of neritic waters (the preferred foraging habitat) and net primary production (NPP). We show that the size of regional albatross populations has a strong dependence, after weighting for accessibility, on habitat availability and to a lesser extent, NPP. Our results provide indirect support for the hypothesis that seabird populations are regulated from the bottom-up by food availability during the breeding season, and also suggest that the spatio-temporal predictability of food may be limiting. Moreover, we demonstrate a straightforward, widely applicable method for estimating resource limitation in populations of central-place foragers.  相似文献   

20.
Spatial distribution and habitat selection are integral to the study of animal ecology. Habitat selection may optimize the fitness of individuals. Hutchinsonian niche theory posits the fundamental niche of species would support the persistence or growth of populations. Although niche‐based species distribution models (SDMs) and habitat suitability models (HSMs) such as maximum entropy (Maxent) have demonstrated fair to excellent predictive power, few studies have linked the prediction of HSMs to demographic rates. We aimed to test the prediction of Hutchinsonian niche theory that habitat suitability (i.e., likelihood of occurrence) would be positively related to survival of American beaver (Castor canadensis), a North American semi‐aquatic, herbivorous, habitat generalist. We also tested the prediction of ideal free distribution that animal fitness, or its surrogate, is independent of habitat suitability at the equilibrium. We estimated beaver monthly survival probability using the Barker model and radio telemetry data collected in northern Alabama, United States from January 2011 to April 2012. A habitat suitability map was generated with Maxent for the entire study site using landscape variables derived from the 2011 National Land Cover Database (30‐m resolution). We found an inverse relationship between habitat suitability index and beaver survival, contradicting the predictions of niche theory and ideal free distribution. Furthermore, four landscape variables selected by American beaver did not predict survival. The beaver population on our study site has been established for 20 or more years and, subsequently, may be approaching or have reached the carrying capacity. Maxent‐predicted increases in habitat use and subsequent intraspecific competition may have reduced beaver survival. Habitat suitability‐fitness relationships may be complex and, in part, contingent upon local animal abundance. Future studies of mechanistic SDMs incorporating local abundance and demographic rates are needed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号