首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It is known that anionic surface residues play a role in the long-range electrostatic attraction between acetylcholinesterase and cationic ligands. In our current investigation, we show that anionic residues also play an important role in the behavior of the ligand within the active site gorge of acetylcholinesterase. Negatively charged residues near the gorge opening not only attract positively charged ligands from solution to the enzyme, but can also restrict the motion of the ligand once it is inside of the gorge. We use Brownian dynamics techniques to calculate the rate constant kon for wild type and mutant acetylcholinesterase with a positively charged ligand. These calculations are performed by allowing the ligand to diffuse within the active site gorge. This is an extension of previously reported work in which a ligand was allowed to diffuse only to the enzyme surface. By setting the reaction criteria for the ligand closer to the active site, better agreement with experimental data is obtained. Although a number of residues influence the movement of the ligand within the gorge, Asp74 is shown to play a particularly important role in this function. Asp74 traps the ligand within the gorge, and in this way helps to ensure a reaction. © 1998 John Wiley & Sons, Inc. Biopoly 46: 465–474, 1998  相似文献   

2.
All proteins undergo local structural fluctuations (LSFs) or breathing motions. These motions are likely to be important for function but are poorly understood. LSFs were initially defined by amide hydrogen exchange (HX) experiments as opening events, which expose a small number of backbone amides to 1H/2H exchange, but whose exchange rates are independent of denaturant concentration. Here, we use size-dependent thiol-disulfide exchange (SX) to characterize LSFs in single cysteine-containing variants of myoglobin (Mb). SX complements HX by providing information on motions that disrupt side chain packing interactions. Most importantly, probe reagents of different sizes and chemical properties can be used to characterize the size of structural opening events and the properties of the open state. We use thiosulfonate reagents (126–274 Da) to survey access to Cys residues, which are buried at specific helical packing interfaces in Mb. In each case, the free energy of opening increases linearly with the radius of gyration of the probe reagent. The slope and the intercept are interpreted to yield information on the size of the opening events that expose the buried thiol groups. The slope parameter varies by over 10-fold among Cys positions tested, suggesting that the sizes of breathing motions vary substantially throughout the protein. Our results provide insight to the longstanding question: how rigid or flexible are proteins in their native states?  相似文献   

3.
We investigated the target sites of three inhibitory monoclonal antibodies on Electrophorus acetylcholinesterase (AChE). Previous studies showed that Elec-403 and Elec-410 are directed to overlapping but distinct epitopes in the peripheral site, at the entrance of the catalytic gorge, whereas Elec-408 binds to a different region. Using Electrophorus/rat AChE chimeras, we identified surface residues that differed between sensitive and insensitive AChEs: the replacement of a single Electrophorus residue by its rat homolog was able to abolish binding and inhibition, for each antibody. Reciprocally, binding and inhibition by Elec-403 and by Elec-410 could be conferred to rat AChE by the reverse mutation. Elec-410 appears to bind to one side of the active gorge, whereas Elec-403 covers its opening, explaining why the AChE-Elec-410 complex reacts faster than the AChE-Elec-403 or AChE-fasciculin complexes with two active site inhibitors, m-(N,N, N-trimethyltammonio)trifluoro-acetophenone and echothiophate. Elec-408 binds to the region of the putative "back door," distant from the peripheral site, and does not interfere with the access of inhibitors to the active site. The binding of an antibody to this novel regulatory site may inhibit the enzyme by blocking the back door or by inducing a conformational distortion within the active site.  相似文献   

4.
A 1 ns molecular dynamics simulation of unliganded mouse acetylcholinesterase (AChE) is compared to a previous simulation of mouse AChE complexed with huperzine A (HupA). Several common features are observed. In both simulations, the active site gorge fluctuates in size during the 1 ns trajectory and is completely pinched off several times. Many of the residues in the gorge that formed hydrogen bonds with HupA in the simulation of the complex now form hydrogen bonds with other protein residues and water molecules in the gorge. The opening of a “backdoor” entrance to the active site that was found in the simulation of the complex is also observed in the unliganded simulation. Differences between the two simulations include overall lower structural rms deviations for residues in the gorge in the unliganded simulation, a smaller diameter of the gorge in the absence of HupA, and the disappearance of a side channel that was frequently present in the liganded simulation. The differences between the two simulations can be attributed, in part, to the interaction of AChE with HupA. © 1999 John Wiley & Sons, Inc. Biopoly 50: 35–43, 1999  相似文献   

5.
Two molecular dynamics simulations were performed for a modeled complex of mouse acetylcholinesterase liganded with huperzine A (HupA). Analysis of these simulations shows that HupA shifts in the active site toward Tyr 337 and Phe 338, and that several residues in the active site area reach out to make hydrogen bonds with the inhibitor. Rapid fluctuations of the gorge width are observed, ranging from widths that allow substrate access to the active site, to pinched structures that do not allow access of molecules as small as water. Additional openings or channels to the active site are found. One opening is formed in the side wall of the active site gorge by residues Val 73, Asp 74, Thr 83, Glu 84, and Asn 87. Another opening is formed at the base of the gorge by residues Trp 86, Val 132, Glu 202, Gly 448, and Ile 451. Both of these openings have been observed separately in the Torpedo californica form of the enzyme. These channels could allow transport of waters and ions to and from the bulk solution. © 1999 John Wiley & Sons, Inc. Biopoly 50: 347–359, 1999  相似文献   

6.
In the double-stranded DNA containing bacteriophages, hundreds of copies of capsid protein subunits polymerize to form icosahedral shells, called procapsids, into which the viral genome is subsequently packaged to form infectious virions. High assembly fidelity requires the assistance of scaffolding protein molecules, which interact with the capsid proteins to insure proper geometrical incorporation of subunits into the growing icosahedral lattices. The interactions between the scaffolding and capsid proteins are transient and are subsequently disrupted during DNA packaging. Removal of scaffolding protein is achieved either by proteolysis or alternatively by some form of conformational switch that allows it to dissociate from the capsid. To identify the switch controlling scaffolding protein association and release, hydrogen deuterium exchange was applied to Bacillus subtilis phage Ø29 scaffolding protein gp7 in both free and procapsid-bound forms. The H/D exchange experiments revealed highly dynamic and cooperative opening motions of scaffolding molecules in the N-terminal helix-loop-helix (H-L-H) region. The motions can be promoted by destabilizing the hydrophobic contact between two helices. At low temperature where high energy motions were damped, or in a mutant in which the helices were tethered through the introduction of a disulfide bond, this region displayed restricted cooperative opening motions as demonstrated by a switch in the exchange kinetics from correlated EX1 exchange to uncorrelated EX2 exchange. The cooperative opening rate was increased in the procapsid-bound form, suggesting this region might interact with the capsid protein. Its dynamic nature might play a role in the assembly and release mechanism.  相似文献   

7.
Existence of alternative entrances in acetylcholinesterase (AChE) could explain the contrast between the very high AChE catalytic efficiency and the narrow and long access path to the active site revealed by X-ray crystallography. Alternative entrances could facilitate diffusion of the reaction products or at least water and ions from the active site. Previous molecular dynamics simulations identified side door and back door as the most probable alternative entrances. The simulations of non-inhibited AChE suggested that the back door opening events occur only rarely (0.8% of the time in the 10ns trajectory). Here we present a molecular dynamics simulation of non-inhibited AChE, where the back door opening appears much more often (14% of the time in the 12ns trajectory) and where the side door opening was observed quite frequently (78% of trajectory time). We also present molecular dynamics, where the back door does not open at all, or where large conformational changes of the AChE omega loop occur together with alternative passage opening events. All these differences in AChE dynamical behavior are caused by different protonation states of two glutamate residues located on bottom of the active site gorge (Glu202 and G450 in Mus musculus AChE). Our results confirm the results of previous molecular dynamics simulations, expand the view and suggest the probable reasons for the overall conformational behavior of AChE omega loop.  相似文献   

8.
9.
The dynamics of ligand movement through the constricted region of the acetylcholinesterase gorge is important in understanding how the ligand gains access to and is released from the active site of the enzyme. Molecular dynamics simulations of the simple ligand, tetramethylammonium, crossing this bottleneck region are conducted using umbrella potential sampling and activated flux techniques. The low potential of mean force obtained is consistent with the fast reaction rate of acetylcholinesterase observed experimentally. From the results of the activated dynamics simulations, local conformational fluctuations of the gorge residues and larger scale collective motions of the protein are found to correlate highly with the ligand crossing.  相似文献   

10.
To delineate the role of peptide backbone flexibility and rapid molecular motion in acetylcholinesterase catalysis and inhibitor association, we investigated the decay of fluorescence anisotropy at three sites of fluorescein conjugation to cysteine-substitution mutants of the enzyme. One cysteine was placed in a loop at the peripheral site near the rim of the active center gorge (H287C); a second was in a helical region outside of the active center gorge (T249C); a third was at the tip of a small, flexible omega loop well separated from the gorge (A262C). Mutation and fluorophore conjugation did not appreciably alter catalytic or inhibitor binding parameters of the enzyme. The results show that each site examined was associated with a high degree of segmental motion; however, the A262C and H287C sites were significantly more flexible than the T249C site. Association of the active center inhibitor, tacrine, and the peripheral site peptide inhibitor, fasciculin, had no effect on the anisotropy decay of fluorophores at positions 249 and 262. Fasciculin, but not tacrine, on the other hand, dramatically altered the decay profile of the fluorophore at the 287 position, in a manner consistent with fasciculin reducing the segmental motion of the peptide chain in this local region. The results suggest that the motions of residues near the active center gorge and across from the Cys(69)-Cys(96) omega loop are uncoupled and that ligand binding at the active center or the peripheral site does not influence acetylcholinesterase conformational dynamics globally, but induces primarily domain localized decreases in flexibility proximal to the bound ligand.  相似文献   

11.
Large-scale conformational change is a common feature in the catalytic cycles of enzymes. Many enzymes function as homodimers with active sites that contain elements from both chains. Symmetric and anti-symmetric cooperative motions in homodimers can potentially lead to correlated active site opening and/or closure, likely to be important for ligand binding and release. Here, we examine such motions in two different domain-swapped homodimeric enzymes: the DcpS scavenger decapping enzyme and citrate synthase. We use and compare two types of all-atom simulations: conventional molecular dynamics simulations to identify physically meaningful conformational ensembles, and rapid geometric simulations of flexible motion, biased along normal mode directions, to identify relevant motions encoded in the protein structure. The results indicate that the opening/closure motions are intrinsic features of both unliganded enzymes. In DcpS, conformational change is dominated by an anti-symmetric cooperative motion, causing one active site to close as the other opens; however a symmetric motion is also significant. In CS, we identify that both symmetric (suggested by crystallography) and asymmetric motions are features of the protein structure, and as a result the behaviour in solution is largely non-cooperative. The agreement between two modelling approaches using very different levels of theory indicates that the behaviours are indeed intrinsic to the protein structures. Geometric simulations correctly identify and explore large amplitudes of motion, while molecular dynamics simulations indicate the ranges of motion that are energetically feasible. Together, the simulation approaches are able to reveal unexpected functionally relevant motions, and highlight differences between enzymes.  相似文献   

12.
Buried water molecules and the water molecules in the active-site gorge are analyzed for five crystal structures of acetylcholinesterase from Torpedo californica in the resolution range 2.2-2.5 A (native enzyme, and four inhibitor complexes). A total of 45 buried hydration sites are identified, which are populated with between 36 and 41 water molecules. About half of the buried water is located in a distinct region neighboring the active-site gorge. Most of the buried water molecules are very well conserved among the five structures, and have low displacement parameters, B, of magnitudes similar to those of the main-chain atoms of the central beta-sheet structure. The active-site gorge of the native enzyme is filled with over 20 water molecules, which have poor hydrogen-bond coordination with an average of 2.9 polar contacts per water molecule. Upon ligand binding, distinct groups of these water molecules are displaced, whereas the others remain in positions similar to those that they occupy in the native enzyme. Possible roles of the buried water molecules are discussed, including their possible action as a lubricant to allow large-amplitude fluctuations of the loop structures forming the gorge wall. Such fluctuations are required to facilitate traffic of substrate, products and water molecules to and from the active-site. Because of their poor coordination, the gorge water molecules can be considered as "activated" as compared to bulk water. This should allow their easy displacement by incoming substrate. The relatively loose packing of the gorge water molecules leaves numerous small voids, and more efficient space-filling by substrates and inhibitors may be a major driving force of ligand binding.  相似文献   

13.
The acetylcholinesterase found in the venom of Bungarus fasciatus (BfAChE) is produced as a soluble, non-amphiphilic monomer with a canonical catalytic domain but a distinct C terminus compared with the other vertebrate enzymes. Moreover, the peripheral anionic site of BfAChE, a surface site located at the active site gorge entrance, bears two substitutions altering sensitivity to cationic inhibitors. Antibody Elec410, generated against Electrophorus electricus acetylcholinesterase (EeAChE), inhibits EeAChE and BfAChE by binding to their peripheral sites. However, both complexes retain significant residual catalytic activity, suggesting incomplete gorge occlusion by bound antibody and/or high frequency back door opening. To explore a novel acetylcholinesterase species, ascertain the molecular bases of inhibition by Elec410, and document the determinants and mechanisms for back door opening, we solved a 2.7-Å resolution crystal structure of natural BfAChE in complex with antibody fragment Fab410. Crystalline BfAChE forms the canonical dimer found in all acetylcholinesterase structures. Equally represented open and closed states of a back door channel, associated with alternate positions of a tyrosine phenol ring at the active site base, coexist in each subunit. At the BfAChE molecular surface, Fab410 is seated on the long Ω-loop between two N-glycan chains and partially occludes the gorge entrance, a position that fully reflects the available mutagenesis and biochemical data. Experimentally based flexible molecular docking supports a similar Fab410 binding mode onto the EeAChE antigen. These data document the molecular and dynamic peculiarities of BfAChE with high frequency back door opening, and the mode of action of Elec410 as one of the largest peptidic inhibitors targeting the acetylcholinesterase peripheral site.  相似文献   

14.
The capitate is often considered the "keystone" of the carpus, not simply because of its central and prominent position in the wrist, but also because of its mechanical interactions with neighboring bones. The purpose of this study was to determine in vivo three-dimensional capitate kinematics. Twenty uninjured wrists were investigated using a recently developed, non-invasive markerless bone registration (MBR) technique. Surface contours of the capitate, third metacarpal and radius were extracted from computed tomography images of seven wrist positions and the three-dimensional motions of the capitate and third metacarpal were calculated with respect to the radius in wrist flexion-extension and radio-ulnar deviation. We found that in vivo capitate motion does not simply occur about a single pivot point like a universal joint, as demonstrated by non-intersecting rotation axes for different capitate motions. The distance between flexion and ulnar deviation axes was 3.9+/-2.0 mm, and the distance between extension and ulnar deviation axes was 3.9+/-1.4 mm. Furthermore, capitate axes for males tended to be located more distally than axes for females. However, we believe that this result is related to subject size and not to gender. We also found that there is minimal relative motion between the capitate and third metacarpal during these in vivo wrist motions. These findings demonstrate the complexity of capitate kinematics, as well as the different mechanisms through which wrist flexion, extension, radial deviation and ulnar deviation occur.  相似文献   

15.
In the simplest model of channel mechanosensitivity, expanded states are favored by stretch. We showed previously that stretch accelerates voltage-dependent activation and slow inactivation in a Kv channel, but whether these transitions involve expansions is unknown. Thus, while voltage-gated channels are mechanosensitive, it is not clear whether the simplest model applies. For Kv pore opening steps, however, there is excellent evidence for concerted expansion motions. To ask how these motions respond to stretch, therefore, we have used a Kv1 mutant, Shaker ILT, in which the step immediately prior to opening is rate limiting for voltage-dependent current. Macroscopic currents were measured in oocyte patches before, during, and after stretch. Invariably, and directly counter to prediction for expansion-derived free energy, ILT current activation (which is limited by the concerted step prior to pore opening) slowed with stretch and the g(V) curve reversibly right shifted. In WTIR (wild type, inactivation removed), the g(V) (which reflects independent voltage sensor motions) is left shifted. Stretch-induced slowing of ILT activation was fully accounted for by a decreased basic forward rate, with no change of gating charge. We suggest that for the highly cooperative motions of ILT activation, stretch-induced disordering of the lipid channel interface may yield an entropy increase that dominates over any stretch facilitation of expanded states. Since tail current tau(V) reports on the opposite (closing) motions, ILT and WTIR tau(V)(tail) were determined, but the stretch responses were too complex to shed much light. Shaw is the Kv3 whose voltage sensor, introduced into Shaker, forms the chimera that ILT mimics. Since Shaw2 F335A activation was reportedly a first-order concerted transition, we thought its activation might, like ILT's, slow with stretch. However, Shaw2 F335A activation proved to be sigmoid shaped, so its rate-limiting transition was not a concerted pore-opening transition. Moreover, stretch, via an unidentified non-rate-limiting transition, augmented steady-state current in Shaw2 F335A. Since putative area expansion and compaction during ILT pore opening and closing were not the energetically consequential determinants of stretch modulation, models incorporating fine details of bilayer structural forces will probably be needed to explain how, for Kv channels, bilayer stretch slows some transitions while accelerating others.  相似文献   

16.
The purpose of this study was to compare passive to active testing on the kinematics of the elbow and forearm using a load-controlled testing apparatus that simulates muscle loading. Ten fresh-frozen upper extremities were tested. Active control was achieved by employing computer-controlled pneumatic actuators attached to the tendons of the brachialis, biceps, triceps, brachioradialis and pronator teres. Motion of the radius and ulna relative to the humerus was measured with an electromagnetic tracking system. Active elbow flexion produced more repeatable motion of the radius and ulna than when tested passively (p<0.05). The decrease in variability, as determined from the standard deviation of five successive trials in each specimen, was 76.5 and 58.0% for the varus-valgus and internal-external motions respectively (of the ulna relative to the humerus). The variability in flexion during simulated active forearm supination was 30.6% less than during passive testing. Thus under passive control, in the absence of stability provided by muscular loading across the joint, these uncontrolled motions produce increased variability amongst trials. The smooth and repeatable motions resulting from active control, that probably model more closely the physiologic state, appear to be beneficial in the evaluation of unconstrained kinematics of the intact elbow and forearm.  相似文献   

17.
To understand the dynamic aspects of multispecificity of ubiquitin, we studied nine ubiquitin–ligand (partner protein) complexes by normal mode analysis based on an elastic network model. The coupling between ubiquitin and ligand motions was analyzed by decomposing it into rigid‐body (external) and vibrational (internal) motions of each subunit. We observed that in total the external motions in one of the subunits largely dominated the coupling. The combination of external motions of ubiquitin and the ligands showed general trends of rotations and translations. Moreover, we observed that the rotational motions of ubiquitin were correlated to the ligand orientations. We also identified ubiquitin atomic vibrations that differentiated the orientation of the ligand molecule. We observed that the extents of coupling were correlated to the shapes of the ligands, and this trend was more pronounced when the coupling involved vibrational motions of the ligand. In conclusion, an intricate interplay between internal and external motions of ubiquitin and the ligands help understand the dynamics of multispecificity, which is mostly guided by the shapes of the ligands and the complex. Proteins 2014; 82:77–89. © 2013 Wiley Periodicals, Inc.  相似文献   

18.
Motion of the wrist bones is complicated and difficult to measure. Noninvasive measurement of carpal kinematics using medical images has become popular This technique is difficult and most investigators employ custom software. The objective of this paper is to describe a validated methodology for measuring carpal kinematics from computed tomography (CT) scans using commercial software. Four cadaveric wrists were CT imaged in neutral, full flexion, and full extension. A registration block was attached to the distal radius and used to align the data sets from each position. From the CT data, triangulated surface models of the radius, lunate, and capitate bones were generated using commercial software. The surface models from each wrist position were read into engineering design software that was used to calculate the centroid (position) and principal mass moments of inertia (orientation) of (1) the capitate and lunate relative to the fixed radius and (2) the capitate relative to the lunate. These data were used to calculate the helical axis kinematics for the motions from neutral to extension and neutral to flexion. The kinematics were plotted in three dimensions using a data visualization software package. The accuracy of the method was quantified in a separate set of experiments in which an isolated capitate bone was subjected to two different known rotation/translation motions for ten trials each. For comparison to in vivo techniques, the error in distal radius surface matching was determined using the block technique as a gold standard. The motion that the lunate and capitate underwent was half that of the overall wrist flexion-extension range of motion. Individually, the capitate relative to the lunate and the lunate relative to the radius generally flexed or extended about 30 deg, while the entire wrist (capitate relative to radius) typically flexed or extended about 60 deg. Helical axis translations were small, ranging from 0.6 mm to 1.8 mm across all motions. The accuracy of the method was found to be within 1.4 mm and 0.5 deg (95% confidence intervals). The mean error in distal radius surface matching was 2.4 mm and 1.2 deg compared to the use of a registration block. Carpal kinematics measured using the described methodology were accurate, reproducible, and similar to findings of previous investigators. The use of commercially available software should broaden the access of researchers interested in measuring carpal kinematics using medical imaging.  相似文献   

19.
We introduce the term ‘silent agonists’ to describe ligands that can place the α7 nicotinic acetylcholine receptor (nAChR) into a desensitized state with little or no apparent activation of the ion channel, forming a complex that can subsequently generate currents when treated with an allosteric modulator. KC-1 (5′-phenylanabaseine) was synthesized and identified as a new silent agonist for the α7 nAChR; it binds to the receptor but does not activate α7 nAChR channel opening when applied alone, and its agonism is revealed by co-application with the type II positive allosteric modulator PNU-120596 in the Xenopus oocyte system. The concise synthesis was accomplished in three steps with the C–C bonds formed via Pd-catalyzed mono-arylation and organolithium coupling with N-Boc piperidinone. Comparative structural analyses indicate that a positive charge, an H-bond acceptor, and an aryl ring in a proper arrangement are needed to constitute one class of silent agonist for the α7 nAChR. Because silent agonists may act on signaling pathways not involving ion channel opening, this class of α7 nAChR ligands may constitute a new alternative for the development of α7 nAChR therapeutics.  相似文献   

20.
Irreversible inactivation of human acetylcholinesterase (hAChE) by organophosphorous pesticides (OPs) and chemical weapon agents (CWA) has severe morbidity and mortality consequences. We present data from quantum mechanics/molecular mechanics (QM/MM) and 80 classical molecular dynamics (MD) simulations of the apo and soman-adducted forms of hAChE to investigate the effects on the dynamics and protein structure when the catalytic Serine 203 is phosphonylated. We find that the soman phosphonylation of the active site Ser203 follows a water assisted addition-elimination mechanism with the elimination of the fluoride ion being the highest energy barrier at 6.5 kcal/mole. We observe soman-dependent changes in backbone and sidechain motions compared to the apo form of the protein. These alterations restrict the soman-adducted hAChE to a structural state that is primed for the soman adduct to be cleaved and removed from the active site. The altered motions and resulting structures provide alternative pathways into and out of the hAChE active site. In the soman-adducted protein both side and back door pathways are viable for soman adduct access. Correlation analysis of the apo and soman adducted MD trajectories shows that the correlation of gorge entrance and back door motion is disrupted when hAChE is adducted. This supports the hypothesis that substrate and product can use two different pathways as entry and exit sites in the apo form of the protein. These alternative pathways have important implications for the rational design of medical countermeasures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号