With the availability of accurate methods to treat the electrostatic long-range interactions, molecular dynamics simulations have resulted in refined dynamical models of the structure of the hydration shell around RNA motifs. The models reviewed here range from basic Watson-Crick to more specific noncanonical base pairs, from "simple" double helices to RNA molecules displaying more complex tertiary folds, and from DNA/RNA hybrid double helices to RNA hybrids formed with a chemically modified strand. 相似文献
We present results of molecular dynamics simulations of lipid bilayers under a high transverse electrical field aimed at investigating their electroporation. Several systems are studied, namely 1), a bare bilayer, 2), a bilayer containing a peptide nanotube channel, and 3), a system with a peripheral DNA double strand. In all systems, the applied transmembrane electric fields (0.5 V.nm(-1) and 1.0 V.nm(-1)) induce an electroporation of the lipid bilayer manifested by the formation of water wires and water channels across the membrane. The internal structures of the peptide nanotube assembly and that of the DNA strand are hardly modified under field. For system 2, no perturbation of the membrane is witnessed at the vicinity of the channel, which indicates that the interactions of the peptide with the nearby lipids stabilize the bilayer. For system 3, the DNA strand migrates to the interior of the membrane only after electroporation. Interestingly enough, switching of the external transmembrane potential in cases 1 and 2 for few nanoseconds is enough to allow for complete resealing and reconstitution of the bilayer. We provide evidence that the electric field induces a significant lateral stress on the bilayer, manifested by surface tensions of magnitudes in the order of 1 mN.m(-1). This study is believed to capture the essence of several dynamical phenomena observed experimentally and provides a framework for further developments and for new applications. 相似文献
A modified molecular dynamics (MD) method in which atomic masses are weighted was developed previously for studying the conformational flexibility of neuroregulating tetrapeptide Phe-Met-Arg-Phe-amide (FMRF-amide). The method has now been applied to longer and constrained molecules, namely a disulfide-linked cyclic hexapeptide, c[CYFQNC], and its linear and "pseudo-cyclic" analogues. The sampling of dehedral conformational space of teh linear hexapeptide in mass-weighted MD simulations was found to be improved significantly over conventional MD simulations, as in the case of the shorter FMRF-amide molecule studied previously. In the cyclic hexapeptide, the internal constraint of the molecule due to the intramolecular disulfide bond (hence the absence of free terminals in the molecule) does not adversely affect the significant improvement of conformational sampling in mass-weighted MD simulations over normal MD simulations. The pseudo-cyclic polypeptide is identical to the linear CYFQNC molecule in amino acid sequence (i.e., side chains of the cysteine residues are reduced), but the positions of its two terminal heavy atoms were held fixed in space such that the molecule has a nearly cyclic conformation. For this molecule, the mass-weighted MD simulation generated a wide range of polypeptide backbone conformations covering the internal dihedral degrees of freedom; moreover, the physical space of the pseudo-cyclic structure was also sampled in a complete revolution of the entire molecular fragment about the two fixed termini during the simulation. These characteristics suggest that mass-weighted MD can also be an extremely useful method for conformational analyses of constrained molecules and, in particular, for modeling loops on protein surfaces. 相似文献
Muscle contraction is caused by directed movement of myosin heads along actin filaments. This movement is triggered by ATP hydrolysis, which occurs within the motor domain of myosin. The mechanism for this intramolecular process remains unknown owing to a lack of ways to observe the detailed motions of each atom in the myosin molecule. We carried out 10-ns all-atom molecular dynamics simulations to investigate the types of dynamic conformational changes produced in the motor domain by the energy released from ATP hydrolysis. The results revealed that the thermal fluctuations modulated by perturbation of ATP hydrolysis are biased in one direction that is relevant to directed movement of the myosin head along the actin filament. 相似文献
Molecular dynamics simulations of the binding of the heterochiral tripeptide KkN to the transactivation responsive (TAR) RNA of HIV-1 is presented, using an all-atom force field with explicit water. To obtain starting structures for the TAR-KkN complex, semirigid docking calculations were performed that employ an NMR structure of free TAR RNA. The molecular dynamics simulations show that the starting structures in which KkN binds to the major groove of TAR (as it is the case for the Tat-TAR complex of HIV-1) are unstable. On the other hand, the minor-groove starting structures are found to lead to several binding modes, which are stabilized by a complex interplay of stacking, hydrogen bonding, and electrostatic interactions. Although the ligand does not occupy the binding position of Tat protein, it is shown to hinder the interhelical motion of free TAR RNA. The latter is presumably necessary to achieve the conformational change of TAR RNA to bind Tat protein. Considering the time evolution of the trajectories, the binding process is found to be ligand-induced and cooperative. That is, the conformational rearrangement only occurs in the presence of the ligand and the concerted motion of the ligand and a large part of the RNA binding site is necessary to achieve the final low-energy binding state. 相似文献
Stearoylsphingomyelin (SSM) bilayers containing 0, 22, and 50 mol % cholesterol (Chol) and a pentadecanoyl-stearoylphosphatidylcholine (15SPC) bilayer containing 22 mol % Chol were molecular dynamics simulated at two temperatures (37 degrees C and 60 degrees C). 15SPC is the best PC equivalent of SSM. The Chol effect on the SSM bilayer differs significantly from that on the 15SPC bilayer. At the same temperature and Chol content, H-bonding of Chol with SSM is more extensive than with 15SPC. SSM-Chol H-bonding anchors the OH group of Chol in the lower regions of the SSM-Chol bilayer interface. Such a location strengthens the influence of Chol on the SSM chains. In effect, the phase of the SSM-Chol bilayer containing 22 mol % Chol at 37 degrees C is shifted from the gel to the liquid-ordered phase, and the bilayer displays similar properties below and above the main phase-transition temperature for a pure SSM bilayer of approximately 45 degrees C. In contrast, due to a higher location, Chol is not able to change the phase of the 15SPC-Chol bilayer, which at 37 degrees C remains in the gel phase. Chol affects both the core and interface of the SSM bilayer. With increasing Chol content, the order of SSM chains and hydration of SSM headgroups increase, whereas polar interactions between lipids decrease. 相似文献
All-atom molecular dynamics (MD) simulations of protein folding allow analysis of the folding process at an unprecedented level of detail. Unfortunately, such simulations have not yet reached their full potential both due to difficulties in sufficiently sampling the microsecond timescales needed for folding, and because the force field used may yield neither the correct dynamical sequence of events nor the folded structure. The ongoing study of protein folding through computational methods thus requires both improvements in the performance of molecular dynamics programs to make longer timescales accessible, and testing of force fields in the context of folding simulations. We report a ten-microsecond simulation of an incipient downhill-folding WW domain mutant along with measurement of a molecular time and activated folding time of 1.5 microseconds and 13.3 microseconds, respectively. The protein simulated in explicit solvent exhibits several metastable states with incorrect topology and does not assume the native state during the present simulations. 相似文献
A review of the works on the computer simulation of the globular protein dynamics is given. Methodological aspects of the simulation procedure are outlined briefly. Main peculiarities of protein dynamics revealed in the course of simulation of pancreatic trypsin inhibitor and cytochrome c are presented. The causes of "anomalous" processes, inherent in the simulated behaviour of model proteins are discussed. These "anomalous" processes are: continuous drift of the structure and its deviation from the experimental one, determined by X-ray analysis. Both processes are supposed to be the consequence of the reduced conformational rigidity of the model protein in comparison to the real one. Among the possible reasons for this reduced rigidity absence of the water molecules, hydrating peptide groups in the real protein, may be mentioned. Analogy between "anomalous" processes in the simulated protein dynamics and some phenomena observed in the real proteins during their functioning is drawn. 相似文献
Irisin is found closely associated with promoting the browning of beige fat cells in white adipose tissue. The crystal structure reveals that irisin forms a continuous inter-subunit β-sheet dimer. Here, molecular dynamics (MD) simulation and steered molecular dynamics (SMD) simulation were performed to investigate the dissociation process and the intricate interactions between the two irisin monomers. In the process of MD, the interactions between the monomers were roughly analyzed through the average numbers of both hydrophobic contacts and H-bonds. Then, SMD was performed to investigate the accurate interaction energy between the monomers. By the analysis of dissociation energy, the van der Waals (vdW) force was identified as the major energy to maintain the dimer structure, which also verified the results of MD simulation. Meanwhile, 11 essential residues were discovered by the magnitude of rupture force during dissociation. Among them, residues Arg75, Glu79, Ile77, Ala88, and Trp90 were reported in a previous study using the method of mutagenesis and size exclusion chromatography, and several new important residues (Arg72, Leu74, Phe76, Gln78, Val80, and Asp91) were also identified. Interestingly, the new important residues that we discovered and the important residues that were reported are located in the opposite side of the β-sheet of the dimer. 相似文献
Molecular dynamics simulations of a model membrane with inserted cholesterol molecules have been performed to study the perturbing influence of cholesterol. In the fluid phase of a lipid bilayer at 13 mol% concentration of cholesterol, local ordering of the hydrocarbon chains is induced. This perturbation decays with the distance from the cholesterol, and the effect extends 1.25 nm. It can be monitored in several ways, e.g., by an order parameter corresponding to deuterium nuclear magnetic resonance quadrupolar splittings, by the fraction of gauche bonds, or by the local bilayer thickness. At constant surface density, the local ordering is accompanied by disordering of the bulk phase, and, consequently, the net ordering effect is small. After compressing the system laterally in accordance with experimentally known surface areas, the bulk order parameters agree with those of a pure system, and the average order parameters are in accordance with experimental data. The necessity for this lateral compression is supported by calculated lateral pressures. At lower cholesterol concentration (3%), no direct perturbing effect is observed. A smaller lateral pressure than in a pure system indicates that the system with cholesterol is expected to have a smaller surface area, which would result in an increase of the order parameters, thus accounting for the experimental observations. The lack of spatial variation is, however, puzzling and may indicate a cooperative ordering effect. 相似文献
Methane hydrate is a crystalline compound with methane molecules enclosed in cages formed by hydrogen-bonded water molecules. Understanding the mechanism of nucleation and crystal growth from methane vapour and liquid water is important for all hydrate applications. However, processes near the water/methane interface are still unclear. In this work, we focused on the crystal growth of methane hydrate seeds located near the water/methane interface. We performed molecular dynamics (MD) simulation and analysed the crystal growth of the hydrate seed at the interface. New cages formed in the liquid water phase were stabilised when they shared faces with the hydrate seed. We also investigated the crystal growth rate as the time development of the number of methane molecules trapped in hydrate cages, based on the trajectory of the MD simulation. The calculated growth rate in the direction that covers the interface was 1.38 times that in the direction towards the inside of the water phase. 相似文献
Classical molecular dynamics simulations are used to investigate the nuclear motions associated with photoinduced electron transfer in plastocyanin. The blue copper protein is modeled using a molecular mechanics potential; potential parameters for the copper-protein interactions are determined using an x-ray crystallographic structure and absorption and resonance Raman spectra. Molecular dynamics simulations yield a variety of information about the ground (oxidized) and optically excited (charge-transfer) states: 1) The probability distribution of the potential difference between the states, which is used to determine the coordinate and energy displacements, places the states well within the Marcus inverted region. 2) The two-time autocorrelation function of the difference potential in the ground state and the average of the difference potential after instantaneous excitation to the excited state are very similar (confirming linear response in this system); their decay indicates that vibrational relaxation occurs in about 1 ps in both states. 3) The spectral densities of various internal coordinates begin to identify the vibrations that affect the optical transition; the spectral density of the difference potential correlation function should also prove useful in quantum simulations of the back electron transfer. 4) Correlation functions of the protein atomic motions with the difference potential show that the nuclear motions are correlated over a distance of more than 20 A, especially along proposed electron transport paths. 相似文献
We describe a statistical approach to the validation and improvement of molecular dynamics simulations of macromolecules. We emphasize the use of molecular dynamics simulations to calculate thermodynamic quantities that may be compared to experimental measurements, and the use of a common set of energetic parameters across multiple distinct molecules. We briefly review relevant results from the theory of stochastic processes and discuss the monitoring of convergence to equilibrium, the obtaining of confidence intervals for summary statistics corresponding to measured quantities, and an approach to validation and improvement of simulations based on out-of-sample prediction. We apply these methods to replica exchange molecular dynamics simulations of a set of eight helical peptides under the AMBER potential using implicit solvent. We evaluate the ability of these simulations to quantitatively reproduce experimental helicity measurements obtained by circular dichroism. In addition, we introduce notions of statistical predictive estimation for force-field parameter refinement. We perform a sensitivity analysis to identify key parameters of the potential, and introduce Bayesian updating of these parameters. We demonstrate the effect of parameter updating applied to the internal dielectric constant parameter on the out-of-sample prediction accuracy as measured by cross-validation. 相似文献
An analysis of a 400 ps molecular dynamics simulation of the 164 amino acid enzyme T4 lysozyme is presented. The simulation was carried out with all hydrogen atoms modeled explicitly, the inclusion of all 152 crystallographic waters and at a temperature of 300 K. Temporal analysis of the trajectory versus energy, hydrogen bond stability, r.m.s. deviation from the starting crystal structure and radius of gyration, demonstrates that the simulation was both stable and representative of the average experimental structure. Average structural properties were calculated from the enzyme trajectory and compared with the crystal structure. The mean value of the C alpha displacements of the average simulated structure from the X-ray structure was 1.1 +/- 0.1 A; differences of the backbone phi and psi angles between the average simulated structure and the crystal structure were also examined. Thermal-B factors were calculated from the simulation for heavy and backbone atoms and both were in good agreement with experimental values. Relationships between protein secondary structure elements and internal motions were studied by examining the positional fluctuations of individual helix, sheet and turn structures. The structural integrity in the secondary structure units was preserved throughout the simulation; however, the A helix did show some unusually high atomic fluctuations. The largest backbone atom r.m.s. fluctuations were found in non-secondary structure regions; similar results were observed for r.m.s. fluctuations of non-secondary structure phi and psi angles. In general, the calculated values of r.m.s. fluctuations were quite small for the secondary structure elements. In contrast, surface loops and turns exhibited much larger values, being able to sample larger regions of conformational space. The C alpha difference distance matrix and super-positioning analyses comparing the X-ray structure with the average dynamics structure suggest that a 'hinge-bending' motion occurs between the N- and C-terminal domains. 相似文献
Atomic motions in protein molecules have been studied by molecular dynamics (MD) simulations; dynamics simulation methods have also been employed in conformational studies of polypeptide molecules. It was found that when atomic masses are weighted, the molecular dynamics method can significantly increase the sampling of dihedral conformation space in such studies, compared to a conventional MD simulation of the same total simulation time length. Herein the theoretical study of molecular conformation sampling by the molecular dynamics-based simulation method in which atomic masses are weighted is reported in detail; moreover, a numerical scheme for analyzing the extensive conformational sampling in the simulation of a tetrapeptide amide molecule is presented. From numerical analyses of the mass-weighted molecular dynamics trajectories of backbone dihedral angles, low-resolution structures covering the entire backbone dihedral conformation space of the molecule were determined, and the distribution of rotationally stable conformations in this space were analyzed quantitatively. The theoretical analyses based on the computer simulation and numerical analytical methods suggest that distinctive regimes in the conformational space of the peptide molecule can be identified. 相似文献
The effect of pressure on the structure and mobility of Sperm Wale Apomyoglobin was studied by Molecular Dynamics computer simulation at 1 bar and 3 kbar (1 atm=1.01325 bar=101.325 kPa). The results are in good agreement with the available experimental data, allowing further analysis of other features of the effect of pressure on the protein solution. From the analysis of Secondary Structures (SS) along the trajectories it is observed that alpha-helixes are favoured under pressure at the expense of bends, turns and 3-helixes. The studies of mobility show that although the general mobility is restricted under pressure this is not true for some particular residues. The studies of tertiary structure show important conformational changes. The evolution of the Solvent Accessed Surface (SAS) with pressure shows a notorious increase due almost completely to a biased raise in the hydrophobic area exposed, which consequently shows that the hydrophobic interaction is considerably weaker under high hydrostatic pressure conditions. 相似文献
The anti-hypertensive drugs amlodipine, atenolol and lisinopril, in ordinary and PEGylated forms, with different combined-ratios, were studied by molecular dynamics simulations using GROMACS software. Twenty simulation systems were designed to evaluate the interactions of drug mixtures with a dimyristoylphosphatidylcholine (DMPC) lipid bilayer membrane, in the presence of water molecules. In the course of simulations, various properties of the systems were investigated, including drug location, diffusion and mass distribution in the membrane; drug orientation; the lipid chain disorder as a result of drug penetration into the DMPC membrane; the number of hydrogen bonds; and drug surface area. According to the results obtained, combined drugs penetrate deeper into the DMPC lipid bilayer membrane, and the lipid chains remain ordered. Also, the combined PEGylated drugs, at a combination ratio of 1:1:1, enhance drug penetration into the DMPC membrane, reduce drug agglomeration, orient the drug in a proper angle for easy penetration into the membrane, and decrease undesirable lipotoxicity due to distorted membrane self-assembly and thickness.
Molecular dynamics simulations of a tetraheme cytochrome c3 were performed to investigate dynamic aspects of the motion of the axial heme iron ligands. It was found that persistent transitions between alternate axial imidazole orientations of the histidine incorporated in the CXXCH heme binding sequence occurred via correlated motions. The correlated motions involved virtually all of the atoms comprising the polypeptide backbone of the heme binding sequence as well as the histidine imidazole side-chain. 相似文献
Molecular dynamics simulation of ganglioside GD1a attached to the upper layer of a fully hydrated lipid bilayer of dimyristoyl phosphatidyl choline (DMPC) at room temperature under periodic boundary conditions was performed. The time average conformation of GD1a reveals that the terminal sialic acid is more exposed into the solvent than the internal branched one. Many interresidual contacts between N-acetyl galactosamine-internal branched sialic acid; external Gal-external sialic acid; N-acetyl galactosamine-internal gal are also observed. The conformation of the GD1-hexasaccharide is stabilized by a number of intra molecular hydrogen bonds that were previously observed experimentally. The simulation results indicate that the presence of a single GD1a molecule has local effects on the bilayer. A local disorder in the arrangement of the acyl chains as well as the head groups is evident in the upper layer due to the presence of GD1a. 相似文献
The DNA origami method has brought nanometer-precision fabrication to molecular biology labs, offering myriads of potential applications in the fields of synthetic biology, medicine, molecular computation, etc. Advancing the method further requires controlling self-assembly down to the atomic scale. Here we demonstrate a computational method that allows the equilibrium structure of a large, complex DNA origami object to be determined to atomic resolution. Through direct comparison with the results of cryo-electron microscopy, we demonstrate de novo reconstruction of a 4.7 megadalton pointer structure by means of fully atomistic molecular dynamics simulations. Furthermore, we show that elastic network-guided simulations performed without solvent can yield similar accuracy at a fraction of the computational cost, making this method an attractive approach for prototyping and validation of self-assembled DNA nanostructures. 相似文献