首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The genome of Chlamydophila caviae (formerly Chlamydia psittaci, GPIC isolate) (1 173 390 nt with a plasmid of 7966 nt) was determined, representing the fourth species with a complete genome sequence from the Chlamydiaceae family of obligate intracellular bacterial pathogens. Of 1009 annotated genes, 798 were conserved in all three other completed Chlamydiaceae genomes. The C.caviae genome contains 68 genes that lack orthologs in any other completed chlamydial genomes, including tryptophan and thiamine biosynthesis determinants and a ribose-phosphate pyrophosphokinase, the product of the prsA gene. Notable amongst these was a novel member of the virulence-associated invasin/intimin family (IIF) of Gram-negative bacteria. Intriguingly, two authentic frameshift mutations in the ORF indicate that this gene is not functional. Many of the unique genes are found in the replication termination region (RTR or plasticity zone), an area of frequent symmetrical inversion events around the replication terminus shown to be a hotspot for genome variation in previous genome sequencing studies. In C.caviae, the RTR includes several loci of particular interest including a large toxin gene and evidence of ancestral insertion(s) of a bacteriophage. This toxin gene, not present in Chlamydia pneumoniae, is a member of the YopT effector family of type III-secreted cysteine proteases. One gene cluster (guaBA-add) in the RTR is much more similar to orthologs in Chlamydia muridarum than those in the phylogenetically closest species C.pneumoniae, suggesting the possibility of horizontal transfer of genes between the rodent-associated Chlamydiae. With most genes observed in the other chlamydial genomes represented, C.caviae provides a good model for the Chlamydiaceae and a point of comparison against the human atherosclerosis-associated C.pneumoniae. This crucial addition to the set of completed Chlamydiaceae genome sequences is enabling dissection of the roles played by niche-specific genes in these important bacterial pathogens.  相似文献   

2.
Recent characterization of chlamydial genes encoding functional peptidoglycan (PG)-synthesis proteins suggests that the Chlamydiaceae possess the ability to synthesize PG yet biochemical evidence for the synthesis of PG has yet to be demonstrated. The presence of D-amino acids in PG is a hallmark of bacteria. Chlamydiaceae do not appear to encode amino acid racemases however, a D-alanyl-D-alanine (D-Ala-D-Ala) ligase homologue (Ddl) is encoded in the genome. Thus, we undertook a genetics-based approach to demonstrate and characterize the D-Ala-D-Ala ligase activity of chlamydial Ddl, a protein encoded as a fusion with MurC. The full-length murC-ddl fusion gene from Chlamydia trachomatis serovar L2 was cloned and placed under the control of the arabinose-inducible ara promoter and transformed into a D-Ala-D-Ala ligase auxotroph of Escherichia coli possessing deletions of both the ddlA and ddlB genes. Viability of the E. coliDeltaddlADeltaddlB mutant in the absence of exogenous D-Ala-D-Ala dipeptide became dependent on the expression of the chlamydial murC-ddl thus demonstrating functional ligase activity. Domain mapping of the full-length fusion protein and site-directed mutagenesis of the MurC domain revealed that the structure of the full fusion protein but not MurC enzymatic activity was required for ligase activity in vivo. Recombinant MurC-Ddl exhibited substrate specificity for D-Ala. Chlamydia growth is inhibited by D-cycloserine (DCS) and in vitro analysis provided evidence for the chlamydial MurC-Ddl as the target for DCS sensitivity. In vivo sensitivity to DCS could be reversed by addition of exogenous D-Ala and D-Ala-D-Ala. Together, these findings further support our hypothesis that PG is synthesized by members of the Chlamydiaceae family and suggest that D-amino acids, specifically D-Ala, are present in chlamydial PG.  相似文献   

3.
Chlamydophila felis (Chlamydia psittaci feline pneumonitis agent) is a worldwide spread pathogen for pneumonia and conjunctivitis in cats. Herein, we determined the entire genomic DNA sequence of the Japanese C. felis strain Fe/C-56 to understand the mechanism of diseases caused by this pathogen. The C. felis genome is composed of a circular 1,166,239 bp chromosome encoding 1005 protein-coding genes and a 7552 bp circular plasmid. Comparison of C. felis gene contents with other Chlamydia species shows that 795 genes are common in the family Chlamydiaceae species and 47 genes are specific to C. felis. Phylogenetic analysis of the common genes reveals that most of the orthologue sets exhibit a similar divergent pattern but 14 C. felis genes accumulate more mutations, implicating that these genes may be involved in the evolutional adaptation to the C. felis-specific niche. Gene distribution and orthologue analyses reveal that two distinctive regions, i.e. the plasticity zone and frequently gene-translocated regions (FGRs), may play important but different roles for chlamydial genome evolution. The genomic DNA sequence of C. felis provides information for comprehension of diseases and elucidation of the chlamydial evolution.  相似文献   

4.
Chlamydiaceae are obligate intracellular Gram-negative bacteria found all over the world and known to cause various forms of disease in animals and humans. Urban pigeons are known to be an important reservoir of Chlamydia psittaci, the agent of human psittacosis. In this study, we examined the influence of pigeon houses used to regulate pigeon populations and of melanin-based coloration on several epidemiological parameters of Chlamydiaceae in 708 urban pigeons in Paris. We also identified species and genotypes of Chlamydiaceae present in Parisian populations. First, our results revealed that pigeons roosting and breeding in pigeon houses were equally infected by Chlamydiaceae as those that did not. Second, we found that dark melanic pigeons excreted more Chlamydiaceae than pale melanic ones. Finally, species and strain diversities were very low: all samples were of C. psittaci genotype B. Nevertheless, two atypical Chlamydiaceae were identified based on 16S rRNA and ompA sequences. Our study thus highlights the importance of considering environmental and host phenotype when investigating the epidemiology of infectious diseases.  相似文献   

5.
A simple technique providing a means for rapid genetic differentiation of chlamydial strains is described. The technique is based on a single-step sequence-specific separation of PCR-amplified DNA fragments by electrophoresis in an agarose gel containing a DNA ligand - bisbenzimide-PEG. A hypervariable region at the 5' end of the omp2 gene of Chlamydiaceae species encoding the 60-kDa cysteine-rich outer membrane protein was selected as a target for PCR. The appropriate fragments were amplified from strains of Chlamydia trachomatis, Chlamydophila pneumoniae, and Chlamydophila psittaci, and the PCR products originating from different species were electrophoretically separated in the presence of the DNA ligand. We therefore demonstrated that PCR with a single pair of primers followed by simple agarose gel electrophoresis with bisbenzimide-PEG can be applied to the differentiation of three members of the family Chlamydiaceae which are commonly recognized as human pathogens.  相似文献   

6.
The fungal genus Neurospora has a distinguished history as a laboratory model in genetics and biochemistry. The most recent milestone in this history has been the sequencing of the genome of the best known species, N. crassa. The hope and promise of a complete genome sequence is a full understanding of the biology of the organism. Full understanding cannot be achieved, however, in the absence of fundamental knowledge of natural history. We report that species of Neurospora, heretofore thought to occur mainly in moist tropical and subtropical regions, are common primary colonizers of trees and shrubs killed by forest fires in western North America, in regions that are often cold and dry. Surveys in 36 forest-fire sites from New Mexico to Alaska yielded more than 500 cultures, 95% of which were the rarely collected N. discreta. Initial characterization of genotypes both within a site and on a single tree showed diversity consistent with sexual reproduction of N. discreta. These discoveries fill important gaps in knowledge of the distribution of members of the genus on both large and small spatial scales and provide the framework for future studies in new regions and microhabitats. The overall result is that population biology and genetics now can be combined, placing the genus Neurospora in a unique position to expand its role in experimental biology as a useful model organism for ecology, population genetics and evolution.  相似文献   

7.
A number of bacteriophages belonging to the Microviridae have been described infecting chlamydiae. Phylogenetic studies divide the Chlamydiaceae into two distinct genera, Chlamydia and Chlamydophila, containing three and six different species, respectively. In this work we investigated the biological properties and host range of the recently described bacteriophage Chp2 that was originally discovered in Chlamydophila abortus. The obligate intracellular development cycle of chlamydiae has precluded the development of quantitative approaches to assay bacteriophage infectivity. Thus, we prepared hybridomas secreting monoclonal antibodies (monoclonal antibodies 40 and 55) that were specific for Chp2. We demonstrated that Chp2 binds both C. abortus elementary bodies and reticulate bodies in an enzyme-linked immunosorbent assay. Monoclonal antibodies 40 and 55 also detected bacteriophage Chp2 antigens in chlamydia-infected eukaryotic cells. We used these monoclonal antibodies to monitor the ability of Chp2 to infect all nine species of chlamydiae. Chp2 does not infect members of the genus Chlamydia (C. trachomatis, C. suis, or C. muridarum). Chp2 can infect C. abortus, C. felis, and C. pecorum but is unable to infect other members of this genus, including C. caviae and C. pneumoniae, despite the fact that these chlamydial species support the replication of very closely related bacteriophages.  相似文献   

8.
Chlamydiaceae are obligate intracellular bacterial pathogens characterized by a wide range of vertebrate host, tissue tropism and spectrum of diseases. To get insights into the biological mechanisms involved in these differences, we have put forward a computational and experimental procedure to identify the genome recombination hotspots, as frequent sequence variation allows rapid adaptation to environmental changes. We find a larger potential for recombination in Chlamydophila pneumoniae genomes as compared with Chlamydia trachomatis or Chlamydia muridarum. Such potential is mostly concentrated in a family of seven previously uncharacterized species-specific elements that we named ppp for C.pneumoniae polymorphic protein genes, which have the potential to vary by homologous recombination and slipped-mispair. Experimentally, we show that these sequences are indeed highly polymorphic among a collection of nine C.pneumoniae strains of very diverse geographical and pathological origins, mainly by slippage of a poly(C) tract. We also show that most elements are transcribed during infection. In silico analyses suggest that Ppps correspond to outer membrane proteins. Given their species specificity, their putative location in the outer membrane and their extreme polymorphism, Ppps are most likely to be important in the pathogenesis of C.pneumoniae and could represent targets for future vaccine development.  相似文献   

9.
10.
The developmental cycle of Chlamydiaceae occurs in a membrane compartment called an inclusion. IncA is a member of a family of proteins synthesized and secreted onto the inclusion membrane by bacteria. IncA proteins from different species of Chlamydiaceae show little sequence similarity. We report that the biochemical properties of Chlamydia trachomatis and Chlamydia caviae are conserved. Both proteins self-associate to form multimers. When artificially expressed by the host cell, they localize to the endoplasmic reticulum. Strikingly, heterologous expression of IncA in the endoplasmic reticulum completely inhibits concomitant inclusion development. Using truncated forms of IncA from C. caviae, we show that expression of the C-terminal cytoplasmic domain of the protein at the surface of the endoplasmic reticulum is sufficient to disrupt the bacterial developmental cycle. On the other hand, development of a C. trachomatis strain that does not express IncA is not inhibited by artificial IncA expression, showing that the disruptive effect observed with the wild-type strain requires direct interactions between IncA molecules at the inclusion and on the endoplasmic reticulum. Finally, we modeled IncA tetramers in parallel four helix bundles based on the structure of the SNARE complex, a conserved structure involved in membrane fusion in eukaryotic cells. Both C. trachomatis and C. caviae IncA tetramers were highly stable in this model. In conclusion, we show that the property of IncA proteins to assemble into multimeric structures is conserved between chlamydial species, and we propose that these proteins may have co-evolved with the SNARE machinery for a role in membrane fusion.  相似文献   

11.
In rod-shaped bacteria, the bacterial actin ortholog MreB is considered to organize the incorporation of cell wall precursors into the side-wall, whereas the tubulin homologue FtsZ is known to tether incorporation of cell wall building blocks at the developing septum. For intracellular bacteria, there is no need to compensate osmotic pressure by means of a cell wall, and peptidoglycan has not been reliably detected in Chlamydiaceae. Surprisingly, a nearly complete pathway for the biosynthesis of the cell wall building block lipid II has been found in the genomes of Chlamydiaceae. In a previous study, we discussed the hypothesis that conservation of lipid II biosynthesis in cell wall-lacking bacteria may reflect the intimate molecular linkage of cell wall biosynthesis and cell division and thus an essential role of the precursor in cell division. Here, we investigate why spherical-shaped chlamydiae harbor MreB which is almost exclusively found in elongated bacteria (i.e. rods, vibrios, spirilla) whereas they lack the otherwise essential division protein FtsZ. We demonstrate that chlamydial MreB polymerizes in vitro and that polymerization is not inhibited by the blocking agent A22. As observed for MreB from Bacillus subtilis, chlamydial MreB does not require ATP for polymerization but is capable of ATP hydrolysis in phosphate release assays. Co-pelleting and bacterial two-hybrid experiments indicate that MreB from Chlamydophila (Chlamydia) pneumoniae interacts with MurF, MraY and MurG, three key components in lipid II biosynthesis. In addition, MreB polymerization is improved in the presence of MurF. Our findings suggest that MreB is involved in tethering biosynthesis of lipid II and as such may be necessary for maintaining a functional divisome machinery in Chlamydiaceae.  相似文献   

12.
Nucleotide sequences from strains of the four species currently in the genus Chlamydia, C. pecorum, C. pneumoniae, C. psittaci, and C. trachomatis were investigated. In vitro-amplified RNA genes of the ribosomal small subunit from 30 strains of C. pneumoniae and C. pecorum were subjected to solid-phase DNA sequencing of both strands. The human isolates of C. pneumoniae differed in only one position in the 16S rRNA gene, indicating genetic homogeneity among these strains. Interestingly, horse isolate N16 of C. pneumoniae was found to be closely related to the human isolates of this species, with a 98.9% nucleotide similarity between their 16S rRNA sequences. The type strain and koala isolates of C. pecorum were also found to be very similar to each other, possessing two different 16S rRNA sequences with only one-nucleotide difference. Furthermore, the C. pecorum strains truncated the 16S rRNA molecule by one nucleotide compared to the molecules of the other chlamydial species. This truncation was found to result in loss of a unilaterally bulged nucleotide, an attribute present in all other eubacteria. The phylogenetic structure of the genus Chlamydia was determined by analysis of 16S rRNA sequences. All phylogenetic trees revealed a distinct line of descent of the family Chlamydiaceae built of two main clusters which we denote the C. pneumoniae cluster and the C. psittaci cluster. The clusters were verified by bootstrap analysis of the trees and signature nucleotide analysis. The former cluster contained the human isolates of C. pneumoniae and equine strain N16. The latter cluster consisted of C. psittaci, C. pecorum, and C. trachomatis. The members of the C. pneumoniae cluster showed tight clustering and strain N16 is likely to be a subspecies of C. pneumoniae since these strains also share some antigenic cross-reactivity and clustering of major outer membrane protein gene sequences. C. psittaci and strain N16 branched early out of the respective cluster, and interestingly, their inclusion bodies do not stain with iodine. Furthermore, they also share less reliable features like normal elementary body morphology and plasmid content. Therefore, the branching order presented here is very likely a true reflection of evolution, with strain N16 of the species C. pneumoniae and C. psittaci forming early branches of their respective cluster and with C. trachomatis being the more recently evolved species within the genus Chlamydia.  相似文献   

13.
Genome sequencing of Chlamydia trachomatis serovar D has identified polymorphic membrane proteins (Pmp) that are a newly recognized protein family unique to the Chlamydiaceae family. Cumulative data suggest that these diverse proteins are expressed on the cell surface and might be immunologically important. We performed phylogenetic analyses and statistical modeling with 18 reference serovars and 1 genovariant of C. trachomatis to examine the evolutionary characteristics and comparative genetics of PmpC and pmpC, the gene that encodes this protein. We also examined 12 recently isolated ocular and urogenital clinical samples, since reference serovars are laboratory adapted and may not represent strains that are presently responsible for human disease. Phylogenetic reconstructions revealed a clear distinction for disease groups, corresponding to levels of tissue specificity and virulence of the organism. Further, the most prevalent serovars, E, F, and Da, formed a distinct clade. According to the results of comparative genetic analyses, these three genital serovars contained two putative insertion sequence (IS)-like elements with 10- and 15-bp direct repeats, respectively, while all other genital serovars contained one IS-like element. Ocular trachoma serovars also contained both insertions. Previously, no IS-like elements have been identified for Chlamydiaceae. Surprisingly, 7 (58%) of 12 clinical isolates revealed pmpC sequences that were identical to the sequences of other serovars, providing clear evidence for a high rate of whole-gene recombination. Recombination and the differential presence of IS-like elements among distinct disease and prevalence groups may contribute to genome plasticity, which may lead to adaptive changes in tissue tropism and pathogenesis over the course of the organism's evolution.  相似文献   

14.
Genetic relationships were reported for Chlamydia psittaci derived from psittacine birds, pigeons, turkeys, humans, cats, muskrats, cattle, and sheep and for C. trachomatis, including representative strains of the three biovars, through physical analysis of genomic DNA including DNA fingerprinting with restriction endonuclease SalI, DNA-DNA hybridization in solution with S1 nuclease, and Southern analysis with genomic DNA probes. A total of 26 strains were divided into four groups of C. psittaci and two groups of C. trachomatis, on the basis of DNA fingerprints. The six groups of Chlamydia spp. were related to host origin: two avian groups (Av1 and Av2), one feline and muskrat group (Fe1), one ruminant group (Ru1), one C. trachomatis biovars trachoma and lymphogranuloma group (CtHu), and one C. trachomatis mouse biovar group (CtMo), although an ovine abortion strain belonged to the avian group Av2. DNA-DNA hybridization assay and Southern analysis with genomic DNA probes indicated three DNA homology groups in the genus Chlamydia: an avian-feline group (groups Av1, Av2, and Fe1), a ruminant group (group Ru1), and a C. trachomatis group (groups CtHu and CtMo). Furthermore, the Southern analysis indicated that the homologous sequences (DNA homology of at least 14%) within the avian-feline group were distributed along the whole genome, whereas the homologous sequences (DNA homology of less than 24%) among the three DNA homology groups were localized in distinct regions of the genome DNA. These results suggest that Chlamydia spp. are derived from a common ancestor and have diverged into various groups showing restricted host ranges as a natural characteristic and that the species C. psittaci should be differentiated into groups related to host origin and DNA homology.  相似文献   

15.
Chlamydia psittaci is a zoonotic pathogen associated primarily with avian chlamydiosis. New chlamydial agents with suspected zoonotic potential were recently detected from domestic poultry in Germany and France indicating that the spectrum of Chlamydiaceae encountered in birds is not confined to a single chlamydial species. For further characterization, a specific real-time PCR targeting the conserved 16S rRNA gene was developed and validated for a specific detection of these atypical Chlamydiaceae. In order to address the epidemiological importance of the new chlamydial agents and their distribution, Chlamydiaceae-positive chicken samples collected from flocks from five different countries were examined. The results confirmed that C.psittaci is not the predominant chlamydial species among chickens examined and suggested that the new chlamydial agents could putatively be widespread in poultry flocks (France, Greece, Croatia, Slovenia and China at least) justifying their systematic investigation when poultry samples are submitted to laboratories for avian chlamydiosis diagnosis. Besides, 16S rRNA-based dendrogram, including sequences from both isolates of the new chlamydial agents or positive samples as well as representative sequences from species belonging to the order Chlamydiales, showed the new chlamydial agents to form a distinct line of descent separated from those of other chlamydial species, but clearly grouped within the family Chlamydiaceae. Finally, the phylogenetic tree inferred from the multi-locus sequence typing based on four housekeeping fragments (gatA, gidA, enoA and hflX) and the ompA-based dendrogram showed an almost identical topology of the new chlamydial agents with that recovered by 16S rRNA-based dendrogram. Interestingly, partial ompA gene sequences displayed considerable diversity among isolates.  相似文献   

16.
The family Chlamydiaceae contains nine species pathogenic to humans and animals, but their routine identification is hampered by inadequate detection methods. In an attempt to find a new region for PCR detection and discrimination of the Chlamydiaceae species, the 3 end of the omp2 gene of Chlamydiaceae has been examined. Since sequence data for this part of the genes of Chlamydophila felis and Chlamydia suis had not been available, the near full length of the omp2 genes of these species were cloned and sequenced. Consensus primers enabling amplification of a previously untargeted region spanning 1,030 bp at the 3 end of the gene were designed. Discrimination of all nine Chlamydiaceae species was achieved via RFLP analysis of the amplicons with RsaI and HinfI or RsaI and TaqI endonucleases or via electrophoretic mobility analysis of the RsaI restriction fragments in agarose gel with bisbenzimide-PEG. Intraspecies uniformity of the RFLP patterns was evaluated by the typing of reference strains, isolates of human and animal origin from culture collections, and clinical specimens, and by computer analysis of GenBank sequences. The 3 end of the omp2 gene was shown to be an appropriate marker region suitable for rapid identification of Chlamydiaceae species and can be used for characterization of collection strains and new isolates in taxonomic, epidemiological, and clinical purposes.  相似文献   

17.
Originally, the Chlamydiales order was represented by a single family, the Chlamydiaceae, composed of several pathogens, such as Chlamydia trachomatis, Chlamydia pneumoniae, Chlamydia psittaci and Chlamydia abortus. Recently, 6 new families of Chlamydia-related bacteria have been added to the Chlamydiales order. Most of these obligate intracellular bacteria are able to replicate in free-living amoebae. Amoebal co-culture may be used to selectively isolate amoeba-resisting bacteria. This method allowed in a previous work to discover strain CRIB 30, from an environmental water sample. Based on its 16S rRNA gene sequence similarity with Criblamydia sequanensis, strain CRIB 30 was considered as a new member of the Criblamydiaceae family. In the present work, phylogenetic analyses of the genes gyrA, gyrB, rpoA, rpoB, secY, topA and 23S rRNA as well as MALDI-TOF MS confirmed the taxonomic classification of strain CRIB 30. Morphological examination revealed peculiar star-shaped elementary bodies (EBs) similar to those of C. sequanensis. Therefore, this new strain was called "Estrella lausannensis". Finally, E. lausannensis showed a large amoebal host range and a very efficient replication rate in Acanthamoeba species. Furthermore, E. lausannensis is the first member of the Chlamydiales order to grow successfully in the genetically tractable Dictyostelium discoideum, which opens new perspectives in the study of chlamydial biology.  相似文献   

18.
Water buffalo (Bubalus bubalis) are affected by high rates of embryonic mortality and abortion related to infectious diseases and non-infectious factors. A number of viral and bacterial infections have been associated with reproductive failure, but there is limited information on the role of chlamydial infections.

In order to investigate the presence and the role of Chlamydiaceae in water buffalo a retrospective study was performed in a herd with a history of reproductive failure. During an 11-month period, the pregnant heifers suffered an abortion rate of 36.8% between the 3rd and 7th month of pregnancy. Antibodies to Chlamydiaceae were detected in 57% of the aborted cows, and in 0% of the overtly healthy cows used as control. By a nested-PCR assay, three of 14 vaginal swabs from aborted animals tested positive for Chlamydophila agents and, additionally, three out of seven aborted fetuses tested positive for Chlamydophila spp., with two being co-infections by Cp. abortus and Cp. pecorum and one being characterised as Cp. abortus. Sequence analysis of the amplicons confirmed the results of the nested-PCR. The presence of anti-Chlamydiaceae antibodies in more than half of the aborting animals (P < 0.002) and the detection of Chlamydophila agents in several fetal organs and in the vaginal swabs are consistent with the history of abortions observed in the herd and suggest an abortifacient role by Chlamydophila spp. in water buffalo (B. Bubalis) herds.  相似文献   


19.
Members of the family Chlamydiaceae possess at least 13 genes, distributed throughout the chromosome, that are homologous with genes of known type III secretion systems (TTS). The aim of this study was to use putative TTS proteins of Chlamydophila pneumoniae, whose equivalents in other bacterial TTS function as chaperones, to identify interactions between chlamydial proteins. Using the BacterioMatch Two-Hybrid Vector system (Stratagene, La Jolla, Calif.), lcrH-2 and sycE, positions 1021 and 0325, respectively, from C. pneumoniae CM-1 were used as "bait" to identify target genes (positions 0324, 0705, 0708, 0808 to 0810, 1016 to 1020, and 1022) in close proximity on the chromosome. Interaction between the products of the lcrH-2 (1021) and lcrE (copN) (0324) genes was detected and confirmed by pull-down experiments and enzyme immunoassays using recombinant LcrH-2 and LcrE. As further confirmation of this interaction, the homologous genes from Chlamydia trachomatis, serovar E, and Chlamydophila psittaci, Texas turkey, were also cloned in the two-hybrid system to determine if LcrH-2 and LcrE would interact with their orthologs in other species. Consistent with their genetic relatedness, LcrH-2 from C. pneumoniae interacted with LcrE produced from the three species of Chlamydiaceae; LcrH-2 from C. psittaci reacted with LcrE from C. pneumoniae but not from C. trachomatis; and C. trachomatis LcrH-2 did not react with LcrE from the other two species. Deletions from the N and C termini of LcrE from C. pneumoniae identified the 50 C-terminal amino acids as essential for the interaction with LcrH-2. Thus, it appears that in the Chlamydiaceae TTS, LcrH-2 interacts with LcrE, and therefore it may serve as a chaperone for this protein.  相似文献   

20.
Abstract: Intrageneric relationships in the genus Nicotiana were investigated by comparison of DNA sequences of the matK gene of the chloroplast genome. A total of 40 taxa were examined in this study, representing 39 of the approximately 70 wild species of this genus. We obtained the full sequences of the 1530 bp matK ORFs; no variations in length due to insertions or deletions were found. The phylogenetic trees obtained from maximum parsimony (MP) and neighbour-joining (NJ) methods were fundamentally consistent. The genus Nicotiana formed a clade in these trees. The traditional classification of this genus was mostly in agreement with the molecular phylogeny. However, all three subgenera and some sections did not form a monophyletic group. Character-state mappings were used to infer a centre of origin, biogeographic history, and transition of chromosome number. The results support the previous hypothesis that this genus originated in South America and subsequently spread to other continents. The suggestion that the ancestral basic chromosome number is x = 12 and that polyploidy and aneuploidy have occurred independently several times during the evolution of Nicotiana species is also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号