首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The Moloney murine leukemia virus (MuLV) is a highly leukemogenic virus. To map the leukemogenic potential of Moloney MuLV, we constructed chimeric viral DNA genomes in vitro between parental cloned infectious viral DNA from Moloney and amphotropic 4070-A MuLVs. Infectious chimeric MuLVs were recovered by microinjection of recombinant DNA into NIH/3T3 cells and tested for their leukemogenic potential by inoculation into NIH/Swiss newborn mice. Parental Moloney MuLV and amphotropic 4070-A MuLV induced thymic and nonthymic leukemia, respectively, when inoculated intrathymically. With chimeric MuLVs, we found that the primary determinant of leukemogenicity of Moloney and amphotropic MuLVs lies within the 1.5-kilobase-pair ClaI-PvuI long terminal repeat (LTR)-containing fragment. The presence of additional Moloney env-pol sequences with the Moloney LTR enhanced the leukemogenic potential of a chimeric MuLV significantly, indicating that these sequences were also involved in tumor development. Since parental viruses induced different forms of leukemia, we could also map the viral sequences conferring this disease specificity. We found that the 1.5-kilobase-pair ClaI-PvuI LTR-containing fragment of Moloney MuLV was necessary and sufficient for a chimeric MuLV to induce thymic leukemia. Similarly, the same LTR-containing fragment of amphotropic MuLV was necessary and sufficient for a chimeric MuLV to induce nonthymic leukemia. Therefore, our results suggest that specific sequences within this short LTR-containing fragment determine two important viral functions: the ability to transform cells in vivo (leukemic transformation) and the selection of a specific population of cells to be transformed (disease specificity).  相似文献   

3.
To analyze the emergence of radiation leukemia virus (RadLV) variants in primary X-ray-induced C57BL/Ka thymoma and to identify the virus responsible for the very high leukemogenic potential of passaged Kaplan strain BL/VL3 preparation, we cloned several primary and passaged ecotropic RadLV infectious genomes. By restriction analysis, we found that BL/VL3 cells harbor three related but different ecotropic RadLVs. Their restriction map differs significantly from those of primary RadLVs. Hybridization analysis also indicated that BL/VL3 and primary RadLVs differ in their p15E and long terminal repeat (LTR) regions. As compared with the LTR sequence of the putative parental endogenous ecotropic provirus, the LTR sequence of primary weakly leukemogenic RadLV has only one change, a C-rich sequence, generating a 6-base-pair direct repeat just in front of the promotor. The LTR of the primary nonleukemogenic RadLV only showed few base changes, mainly clustered in R and U5. The LTR from a moderately leukemogenic passaged BL/VL3 RadLV had conserved the C-rich sequence and acquired a 43-base-pair direct repeat in U3 and several other point mutations, small insertions, and deletions scattered in U3, R, and U5. All cloned primary RadLVs were fibrotropic, and some were weakly leukemogenic. All cloned BL/VL3 RadLVs were thymotropic and nonfibrotropic. The block of their replication was found to be after the synthesis of unintegrated linear and supercoiled viral DNA. Most of the BL/VL3 RadLVs were moderately leukemogenic, and one (V-13) was highly leukemogenic, being as virulent as the Moloney strain. We propose a model for the emergence of the RadLV variants and show that the virus responsible for the high leukemogenic potential of BL/VL3 preparation is a nondefective, ecotropic, lymphotropic, nonfibrotropic, unique retrovirus which most likely arose from a parental primary RadLV similar to those studied here.  相似文献   

4.
To map the viral sequences encoding the leukemogenic determinant(s) of nondefective murine leukemia viruses (MuLVs), we constructed chimeric viral genomes in vitro between cloned viral DNAs from the highly leukemogenic Gross passage A (Gross A) MuLV and from the related nonleukemogenic BALB/c N-tropic MuLV. Infectious chimeric MuLVs, recovered from murine cells microinjected with these DNAs, were inoculated into newborn mice to test the leukemogenic potential of these viruses. We found that the U3 long terminal repeat region from Gross A genomes was sufficient to confer an intermediate leukemogenic potential to chimeric MuLVs. Sequencing data indicated that the U3 tandem direct repeat was responsible for this effect. Adding most of the Gross A p15E-coding sequences to the Gross A U3 long terminal repeat enhanced the leukemogenic potential of chimeric viruses significantly. Adding a larger 3'-end env region (all p15E-coding sequences and 345 base pairs of the carboxy terminus of gp70) to the Gross A U3 long terminal repeat restored the full leukemogenic potential of Gross A MuLV. Chimeric viruses harboring only the Gross A 3'-end env region were, however, nonleukemogenic. Similar chimeric MuLVs, constructed with genomes from the parental weakly leukemogenic BALB/c B-tropic MuLVs and nonleukemogenic BALB/c N-tropic MuLVs, were also studied. Our data indicate that the U3 tandem direct repeat sequences appear to be necessary and sufficient to confer some leukemogenic potential to MuLV. However, env 3'-end sequences, mostly the p15E-encoding sequences, are required for the expression of fully leukemic phenotypes.  相似文献   

5.
The infectious virus derived from the molecularly cloned genome of the neurotropic ecotropic murine Cas-BR-E retrovirus was previously shown to have retained the ability to induce hind-limb paralysis and leukemia when inoculated into susceptible mice (P. Jolicoeur, N. Nicolaiew, L. DesGroseillers, and E. Rassart, J. Virol. 45:1159-1163, 1983). To map the viral sequences encoding the leukemogenic determinant(s) of this virus, we used chimeric viral genomes constructed in vitro between cloned viral DNAs from the leukemogenic Cas-BR-E murine leukemia virus (MuLV) and from the related nonleukemogenic amphotropic 4070-A MuLV. Infectious chimeric MuLVs, recovered from NIH 3T3 cells microinjected with these DNAs, were inoculated into newborn NIH Swiss, SIM.S, and SWR/J mice to test their leukemogenic potential. We found that each chimeric MuLV, harboring either the long terminal repeat, the gag-pol, or the pol-env region of the Cas-BR-E MuLV genome, was leukemogenic, indicating that this virus harbors several determinants of leukemogenicity mapping in different regions of its genome. This result suggests that the amphotropic 4070-A MuLV has multiple regions along its genome which prevent the expression of its leukemogenic phenotype, and it also shows that substitution of only one of these regions for Cas-BR-E MuLV sequences is sufficient to make it leukemogenic.  相似文献   

6.
The Gross passage A murine leukemia virus (MuLV) is a highly leukemogenic, ecotropic fibrotropic retrovirus. Its genome is similar to that of other nonleukemogenic ecotropic fibrotropic MuLVs but differs at the 3' end and in the long terminal repeat. To determine whether these modifications were related to its leukemogenic potential, we constructed a viral DNA recombinant in vitro with cloned infectious DNA from this highly leukemogenic Gross passage A MuLV and from a weakly leukemogenic endogenous BALB/c B-tropic MuLV. Infectious viruses, recovered after microinjection of murine cells with recombinant DNA, were injected into newborn mice. We show here that the Gross passage A 1.35-kilobase-pair KpnI fragment (harboring part of gp70, all of p15E, and the long terminal repeat) is sufficient to confer a high leukemogenic potential to this recombinant.  相似文献   

7.
Recombinant phages containing murine leukemia virus (MuLV)-reactive DNA sequences were isolated after screening of a BALB/c mouse embryo DNA library and from shotgun cloning of EcoRI-restricted AKR/J mouse liver DNA. Twelve different clones were isolated which contained incomplete MuLV proviral DNA sequences extending various distances from either the 5' or 3' long terminal repeat (LTR) into the viral genome. Restriction maps indicated that the endogenous MuLV DNAs were related to xenotropic MuLVs, but they shared several unique restriction sites among themselves which were not present in known MuLV proviral DNAs. Analyses of internal restriction fragments of the endogenous LTRs suggested the existence of at least two size classes, both of which were larger than the LTRs of known ecotropic, xenotropic, or mink cell focus-forming (MCF) MuLV proviruses. Five of the six cloned endogenous MuLV proviral DNAs which contained envelope (env) DNA sequences annealed to a xenotropic MuLV env-specific DNA probe; in addition, four of these five also hybridized to an ecotropic MuLV-specific env DNA probe. Cloned MCF 247 proviral DNA also contained such dual-reactive env sequences. One of the dual-reactive cloned endogenous MuLV DNAs contained an env region that was indistinguishable by AluI and HpaII digestion from the analogous segment in MCF 247 proviral DNA and may therefore represent a progenitor for the env gene of this recombinant MuLV. In addition, the endogenous MuLV DNAs were highly related by AluI cleavage to the Moloney MuLV provirus in the gag and pol regions.  相似文献   

8.
The helper virus has been shown to play a critical role in the development of lymphoma induced by the defective Abelson murine leukemia virus (A-MuLV). Indeed, A-MuLV pseudotyped with some viruses, such as the Moloney MuLV, has been shown to be highly lymphogenic, whereas A-MuLV pseudotyped with other viruses, such as the BALB/c endogenous N-tropic MuLV, has been shown to be devoid of lymphogenic potential (N. Rosenberg and D. Baltimore, J. Exp. Med. 147:1126-1141, 1978; C. D. Scher, J. Exp. Med. 147: 1044-1053, 1978). To map the viral DNA sequences encoding the determinant of the lymphogenic potential of Moloney MuLV when complexed with A-MuLV, we constructed chimeric helper viral DNA genomes in vitro between parental cloned infectious viral DNA genomes from Moloney MuLV and from BALB/c endogenous N-tropic MuLV. Chimeric helper MuLVs, recovered after transfection of NIH 3T3 cells were used to rescue A-MuLV, and the pseudotypes were inoculated into newborn NIH Swiss, CD-1, and SWR/J mice to test their lymphogenic potential. We found that a 0.44-kilobase-pair PstI-KpnI long terminal repeat-containing fragment from the Moloney MuLV was sufficient to confer some, but not complete, lymphogenic potential to a chimeric virus (p7M2) in NIH Swiss and SWR/J mice, but not in CD-1 mice. The addition of the 3'-end env sequences (comprising the carboxy terminus of gp70 and all p15E) to the U3 long terminal repeat sequences restored the full lymphogenic potential of the Moloney MuLV. Our data indicate that the 3'-end sequences of the helper Moloney MuLV are somehow involved in the development of lymphoma induced by A-MuLV. The same sequences have previously been found to harbor the determinant of leukemogenicity and of disease specificity of Moloney MuLV when inoculated alone.  相似文献   

9.
We have recently shown that a molecularly cloned ecotropic retrovirus, initially isolated from the brain of a paralyzed wild mouse, retained the ability to induce hind limb paralysis when inoculated into susceptible mice (Jolicoeur et al., J. Virol. 45:1159-1163, 1983). To map the viral DNA sequences encoding the determinant of paralysis, we constructed chimeric viral DNA genomes in vitro between parental cloned infectious viral DNA genomes from this neurotropic murine leukemia virus (MuLV) and from nonneurotropic amphotropic 4070-A MuLV. Infectious chimeric MuLVs, recovered after microinjection of NIH 3T3 cells with these recombinant DNAs, were inoculated into newborn SIM.S and SWR/J mice to test the paralysis-inducing potential. We found that the 3.9-kilobase-pair SalI-ClaI fragment of the neurotropic MuLV comprising the 3' end of pol and all env sequences was sufficient to confer the paralysis-inducing potential to chimeric viruses. Therefore, this region of the neurotropic MuLV genome most likely harbors the primary determinant of paralysis.  相似文献   

10.
Despite the high degree of homology (91%) between the nucleotide sequences of the Friend-mink cell focus-forming (MCF) and the Moloney murine leukemia virus (MuLV) genomic long terminal repeats (LTRs), the pathogenicities determined by the LTR sequences of the two viruses are quite different. Friend-MCF MuLV is an erythroid leukemia virus, and Moloney MuLV is a lymphoid leukemia virus. To map the LTR sequences responsible for the different disease specificities, we constructed nine viruses with LTRs recombinant between the Friend-MCF and Moloney MuLVs. Analysis of the leukemia induced with the recombinant viruses showed that a 195-base-pair nucleotide sequence, including a 75-base-pair nucleotide Moloney enhancer, is responsible for the tissue-specific leukemogenicity of Moloney MuLV. However, not only the enhancer but also its downstream sequences appear to be necessary. The Moloney virus enhancer and its downstream sequence exerted a dominant effect over that of the Friend-MCF virus, but the enhancer sequence alone did not. The results that three of the nine recombinant viruses induced both erythroid and lymphoid leukemias supported the hypothesis that multiple viral genetic determinants control both the ability to cause leukemia and the type of leukemia induced.  相似文献   

11.
Moloney murine leukemia virus (MuLV) can be a potent inducer of promonocytic leukemias in mice that are undergoing a chronic inflammatory response. The neoplasms are, at least in part, associated with insertional mutagenesis of the c-myb locus. Evidence is presented for the existence of at least two genetic elements of the virus that are crucial to induction of this disease but are not required for viral replication in hematopoietic tissues or induction of lymphoid disease. These genetic elements were detected by testing the pathogenicity of recombinants between Moloney and Friend MuLVs, the latter of which is nonleukemic to myeloid cells under these conditions, and by testing Moloney MuLV-based viruses that have nonretroviral sequences inserted at specific endonuclease sites in their long terminal repeats (LTRs). Analysis of the Moloney/Friend recombinants showed that there are sequences within the structural gene domain of Moloney, but not Friend, MuLV that are necessary for promonocytic leukemia, whereas the LTRs of the MuLVs are equally effective for promonocytic tumor formation and insertional mutagenesis of the c-myb gene. Experiments with viruses which were mutagenized in the LTR by insertions demonstrated that there is a specific genetic element in the U3 region of the LTR of Moloney MuLV, upstream of the 75-base-pair enhancer which, when interrupted, results in loss of leukemogenicity for cells in the monocytic lineage but not cells in the lymphoid lineage. We conclude, therefore, that promonocytic leukemia induction, in Moloney MuLV-infected mice undergoing a chronic inflammatory response, requires specific sequences in the structural gene region of Moloney MuLV as well as other sequences in the regulatory region of the virus.  相似文献   

12.
The viral DNA genome of the leukemogenic Gross passage A virus was cloned in phage Charon 21A as an infectious molecule. The virus recovered by transfection with this infectious DNA was ecotropic, N-tropic, fibrotropic, and XC+. It was leukemogenic when reinjected into newborn SIM mice, indicating that ecotropic murine leukemia virus (MuLV) from an AKR mouse thymoma can harbor leukemogenic sequences. Its restriction map was similar to that of nonleukemogenic AKR MuLV, its putative parent, but differed at the 3' end and in the long terminal repeat (LTR). The nucleotide sequence of the Gross A virus LTR was identical to the AKR MuLV LTR sequence (Van Beveren et al., J. Virol. 41:542-556, 1982) in U5, R, and part of U3. All differences between both LTRs were found in U3. Only one copy of the U3 tandem direct repeat was conserved in the Gross A virus LTR, and it was rearranged by the insertion of a 36-base-pair sequence and by five point mutations. Only one additional point mutation common to several oncogenic MuLVs was present in U3. These structural changes in the U3 LTR and at the 3' end of the genome may be related to the leukemogenicity of this virus.  相似文献   

13.
An infectious NZB xenotropic murine leukemia virus (MuLV) provirus (NZB was molecularly cloned from the Hirt supernatant of NZB-IU-6-infected mink cells, and the nucleotide sequence of its env gene and long terminal repeat (LTR) was determined. The partial nucleotide sequence previously reported for the env gene of NFS-Th-1 xenotropic proviral DNA (Repaske, et al., J. Virol. 46:204-211, 1983) is identical to that of the infectious NZB xenotropic MuLV DNA reported here. Alignment of nucleotide or deduced amino acid sequences, or both, of xenotropic, mink cell focus-forming, and ecotropic MuLV proviral DNAs in the env region identified sequence differences among the three host range classes of C-type MuLVs. Major differences were confined to the 5' half of env; a high degree of homology was found among the three classes of MuLVs in the 3' half of env. Alignment of the nucleotide sequence of the LTR of NZB xenotropic MuLV with those of the LTRs of NFS-Th-1 xenotropic, mink cell focus-forming, and ecotropic MuLVs revealed extensive homology between the LTRs of xenotropic and MCF247 MuLVs. An inserted 6-base-pair repeat 5' to the TATA box was a unique feature of both NZB and NFS-Th-1 xenotropic LTRs.  相似文献   

14.
Genomes of murine leukemia viruses isolated from wild mice.   总被引:41,自引:29,他引:12       下载免费PDF全文
The genomes of murine leukemia viruses (MuLV) isolated from wild mice have been studied. Detailed restriction endonuclease maps of the 8.8-kilobase (kb) unintegrated linear viral DNAs were derived for five ecotropic and five amphotropic MuLV's from California field mice, for Friend MuLV, and for one ecotropic and one xenotropic MuLV from Mus musculus castaneus. In general, the California MuLV's were similar in their leftward 6 kb (corresponding to the leftward long terminal repeat [LTR], gag, and pol) and rightward 1 kb (7.8 to 8.8 kb, corresponding to p15E and the rightward LTR). For the region spanning 6.0 to 7.7 kb (which includes the sequences that encode gp70) the amphotropic MuLV's shared few enzyme sites with the ecotropic MuLV's, although the California ecotropic MuLV's were highly related to each other in this region, as were the amphotropic MuLV's. Cross-hybridization studies between amphotropic and California ecotropic MuLV DNAs indicated that they were not homologous in the region 6.3 to 7.6 kb; the California ecotropic viral DNAs cross-hybridized in this region to AKR ecotropic MuLV. When the California viral DNAs were compared with AKR ecotropic viral DNA, many differences in enzyme sites were noted throughout the genome. The U3 regions of the wild mouse LTRs showed partial homology to this region in AKR MuLV. The LTR of Moloney MuLV was highly related to that of the California MuLV's, whereas the LTR of Friend MuLV appeared to be a recombinant between the two types of LTRs. The M. musculus castaneus isolates were most closely related to ecotropic and xenotropic MuLV's isolated from inbred mice. One amphotropic MuLV DNA was cloned from supercoiled viral DNA at its unique EcoRI site in pBR322. Viral DNAs with one and two LTRs were isolated. After digestion with EcoRI, DNAs of both types were infectious. It is concluded that ecotropic and amphotropic MuLV's differ primarily in the region which encodes gp70.  相似文献   

15.
We previously reported the establishment of several lymphoid cell lines from X-ray-induced thymomas of C57BL/Ka mice, and all, except one, produce retroviruses (P. Sankar-Mistry and P. Jolicoeur, J. Virol.35:270-275, 1980). Biological characterization of five of these new primary radiation leukemia viruses (RadLVs) indicated that they had a B-tropic, fibrotropic, and ecotropic host range and were leukemogenic when reinjected into C57BL/Ka newborn mice. The leukemogenic potential of one isolate (G(6)T(2)) was further assessed and shown to be retained after prolonged passaging on fibroblasts in vitro. Restriction endonuclease analysis of the DNA of four of our new RadLV isolates (G(6)T(2), Ti-7, Ti-8, and Ti-9) revealed that G(6)T(2) and Ti-7 murine leukemia virus (MuLV) genomes had identical restriction maps, whereas Ti-8 and Ti-9 genomes were different from each other and from the G(6)T(2) and Ti-7 genomes. The physical maps of these genomes were similar to that of known ecotropic MuLV genomes (including the C57BL/Ka endogenous ecotropic MuLV) within their long terminal repeats, env, the right portion of pol, and the left portion of gag. However, a region covering the end of gag and the beginning of pol was different and showed several similarities with xenotropic MuLV genomes of BALB/c, AKR, and C58 mice previously mapped. Our results suggest that these primary RadLV genomes are recombinants between the parental ecotropic MuLV genome and a nonecotropic (xenotropic) sequence. This nonecotropic gag-pol region might be important in conferring the leukemogenic potential to these isolates. Therefore, these RadLVs appear to form a new class of leukemogenic recombinant MuLVs recovered from leukemic tissues of mice. They appear to be distinct from the recombinant AKR mink cell focus-inducing MuLVs which have a dual-tropic host range and harbor xenotropic env sequences. To further study the leukemogenic potential of these RadLVs, the genome of one of them (G(6)T(2)) was cloned in Charon 21A as an infectious molecule.  相似文献   

16.
BALB/c JLS V9 cells recently infected with Harvey sarcoma virus-murine leukemia virus (HSV-MuLV) complex contained unintegrated HSV linear DNA of 6.0-kilobase pair mass. The cells also contained two HSV closed circular DNA species along with MuLV-encoded linear and closed circular DNA species. HSV 6.0-kilobase pair linear DNA induced focal transformation upon transfection of NIH 3T3 mouse fibroblasts, and the biological activity of HSV DNA did not require helper MuLV functions. A physical map of restriction endonuclease cleavage sites along HSV 6.0-kilobase pair linear DNA was derived. Comparison of this map with one for Moloney MuLV DNA showed that the HSV and Moloney MuLV genomes are identical near their viral RNA 3' ends.  相似文献   

17.
Structures of somatically acquired murine leukemia virus (MuLV) genomes present in the DNA of a large panel of MuLV-induced C57BL and BALB/c B and non-T/non-B cell lymphomas were compared with those present in MuLV-induced T-cell lymphomas induced in the same low-"spontaneous"-lymphoma-incidence mice. Analyses were performed with probes specific for the gp70, p15E, and U3-long terminal repeat (LTR) regions of ecotropic AKV MuLV and a mink cell focus-forming virus (MCF)-LTR probe annealing with U3-LTR sequences of a unique endogenous xenotropic MuLV, which also hybridizes with U3-LTR sequences of a substantial portion of somatically acquired MCF genomes in spontaneous AKR thymomas. The DNAs of both T- and B-cell tumors induced by neonatal inoculation with the highly oncogenic C57BL-derived MCF 1233 virus predominantly contain integrated MCF proviruses. In contrast, the DNAs of more slowly developing B and non-T/non-B cell lymphomas induced by poorly oncogenic ecotropic or MCF C57BL MuLV isolates mostly contain somatically acquired ecotropic MuLV genomes. Approximately 50% of the spontaneous C57BL lymphoma DNAs contain somatically acquired MuLV genomes. None of the integrated MuLV proviruses annealed with the MCF-LTR probe, which indicates a clear difference in LTR structure with a substantial portion of the somatically acquired MuLV genomes present in the DNA of spontaneous AKR thymomas. This study stresses a dominant role of MuLV with ecotropic gp70 and LTR sequences in the development of slowly arising MuLV-induced B and non-T/non-B cell lymphomas.  相似文献   

18.
PVC-211 murine leukemia virus (MuLV) is a replication-competent, ecotropic type C retrovirus that was isolated after passage of the Friend virus complex through F344 rats. Unlike viruses in the Friend virus complex, it does not cause erythroleukemia but causes a rapidly progressive hind limb paralysis when injected into newborn rats and mice. We have isolated an infectious DNA clone (clone 3d) of this virus which causes neurological disease in animals as efficiently as parental PVC-211 MuLV. The restriction map of clone 3d is very similar to that of the nonneuropathogenic, erythroleukemogenic Friend murine leukemia virus (F-MuLV), suggesting that PVC-211 MuLV is a variant of F-MuLV and that no major structural alteration was involved in its derivation. Studies with chimeric viruses between PVC-211 MuLV clone 3d and wild-type F-MuLV clone 57 indicate that at least one determinant for neuropathogenicity resides in the 2.1-kb XbaI-ClaI fragment containing the gp70 coding region of PVC-211 MuLV. Compared with nonneuropathogenic ecotropic MuLVs, the env gene of PVC-211 MuLV encodes four unique amino acids in the gp70 protein. Nucleotide sequence analysis also revealed a deletion in the U3 region of the long terminal repeat (LTR) of PVC-211 MuLV clone 3d compared with F-MuLV clone 57. In contrast to the env gene of PVC-211 MuLV, particular sequences within the U3 region of the viral LTR do not appear to be required for neuropathogenicity. However, the changes in the LTR of PVC-211 MuLV may be responsible for the failure of this virus to cause erythroleukemia, because chimeric viruses containing the U3 region of F-MuLV clone 57 were erythroleukemogenic whereas those with the U3 of PVC-211 MuLV clone 3d were not.  相似文献   

19.
Radiation leukemia viruses (RadLVs) are a group of murine leukemia viruses which are induced by radiation and cause T-cell leukemia. Viral clones isolated from the BL/VL3 lymphoid cell line derived from a thymoma show variable tropism and leukemogenic potential. We have constructed chimeric viruses by in vitro recombination between two viruses, a RadLV that is thymotropic and an endogenous ecotropic virus that is nonthymotropic. We show here that, in contrast to thymotropism determinants identified previously, which lie in the long terminal repeat (LTR), it is the envelope region that is responsible for the thymotropism of BL/VL3 RadLV. The nonthymotropic virus which we have rendered thymotropic by transfer of the env region of RadLV in the present study has been shown previously to become thymotropic when the LTR of another thymotropic virus is inserted in its genome. Thus, the LTR and envelope gene may be involved in complementary action to lead to thymotropism.  相似文献   

20.
We have studied the replication of ecotropic murine leukemia viruses (MuLV) in the spleens and thymuses of mice infected with the lymphocytic leukemia-inducing virus Moloney MuLV (M-MuLV), with the erythroleukemia-inducing virus Friend MuLV (F-MuLV), or with in vitro-constructed recombinants between these viruses in which the long terminal repeat (LTR) sequences have been exchanged. At 1 week after infection both the parents and the LTR recombinants replicated predominantly in the spleens with only low levels of replication in the thymus. At 2 weeks after infection, the patterns of replication in the spleens and thymuses were strongly influenced by the type of LTR. Viruses containing the M-MuLV LTR exhibited a remarkable elevation in thymus titers which frequently exceeded the spleen titers, whereas viruses containing the F-MuLV LTR replicated predominantly in the spleen. In older preleukemic mice (5 to 8 weeks of age) the structural genes of M-MuLV or F-MuLV predominantly influenced the patterns of replication. Viruses containing the structural genes of M-MuLV replicated efficiently in both the spleen and thymus, whereas viruses containing the structural genes of F-MuLV replicated predominantly in the spleen. In leukemic mice infected with the recombinant containing F-MuLV structural genes and the M-MuLV LTR, high levels of virus replication were observed in splenic tumors but not in thymic tumors. This phenotypic difference suggested that tumors of the spleen and thymus may have originated by the independent transformation of different cell types. Quantification of polytropic MulVs in late-preleukemic mice infected with each of the ecotropic MuLVs indicated that the level of polytropic MuLV replication closely paralleled the level of replication of the ecotropic MuLVs in all instances. These studies indicated that determinants of tissue tropism are contained in both the LTR and structural gene sequences of F-MuLV and M-MuLV and that high levels of ecotropic or polytropic MuLV replication, per se, are not sufficient for leukemia induction. Our results further suggested that leukemia induction requires a high level of virus replication in the target organ only transiently during an early preleukemic stage of disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号