首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We studied ecological correlates of body size (abundance and niche breadth) in gamasid mites parasitic on small mammals in 28 regions of the Palearctic. We predicted that smaller species would be characterized by higher abundance than larger species, all else (e.g. host species) being equal. We also predicted that host specificity of mites would decrease (that is, number of host species they use would increase) with an increase in their body size. We focused on mites collected from host bodies that include a) species that feed solely on host’s blood (obligate exclusive haematophages), b) species that feed on both host’s blood and small arthropods (obligate non‐exclusive haematophages), and c) facultative haematophages. We expected that the relationship between body size and abundance and/or host specificity would be more pronounced in obligate exclusively haematophagous mites than for obligate non‐exclusively and facultative haematophagous mites. Across all mite species across regions, mean abundance correlated negatively with body size. The same was true for obligate haematophagous species, but not for facultative haematophages. When mite communities on the same host in a location were considered, the negative body mass–abundance relationship was found in only 3 of 44 communities. Nevertheless, a meta‐analytic (across host species) estimate of the slope of this relationship appeared to be significantly negative. No significant relationship between mite body size and host specificity was found in the analyses across all mite species as well as in obligate exclusive or obligate non‐exclusive haematophages. However, the number of hosts used by facultative haematophagous mites decreased significantly with an increase in their body size. We explain the relationships between morphological (body size) and ecological (abundance and niche breadth) properties of ectoparasites by their interactions with hosts or physical environment.  相似文献   

2.
Scedosporium apiospermum is part of the Pseudallescheria-Scedosporium complex. Peptidorhamnomannans (PRMs) are cell wall glycopeptides present in some fungi, and their structures have been characterized in S. apiospermum, S. prolificans and Sporothrix schenckii. Prior work shows that PRMs can interact with host cells and that the glycopeptides are antigenic. In the present study, three monoclonal antibodies (mAbs, IgG1) to S. apiospermum derived PRM were generated and their effects on S. apiospermum were examined in vitro and in vivo. The mAbs recognized a carbohydrate epitope on PRM. In culture, addition of the PRM mAbs increased S. apiospermum conidia germination and reduced conidial phagocytosis by J774.16 macrophages. In a murine infection model, mice treated with antibodies to PRM died prior to control animals. Thus, PRM is involved in morphogenesis and the binding of this glycopeptide by mAbs enhanced the virulence of the fungus. Further insights into the effects of these glycopeptides on the pathobiology of S. apiospermum may lead to new avenues for preventing and treating scedosporiosis.  相似文献   

3.
Most membrane-enveloped viruses bud from infected cells by hijacking the host ESCRT machinery. The ESCRTs are recruited to the budding sites by viral proteins that contain short proline (Pro)-rich motifs (PRMs) known as late domains. The late domains probably evolved by co-opting host PRMs involved in the normal functions of ESCRTs in endosomal sorting and cytokinesis. The solution and crystal structures of PRMs bound to their interaction partners explain the conserved roles of Pro and other residues that predominate in these sequences. PRMs are often grouped together in much larger Pro-rich regions (PRRs) of as many as 150 residues. The PRR of the ESCRT-associated protein, ALIX, autoregulates its conformation and activity. The robustness of different viral budding and host pathways to impairments in Pro-based interactions varies considerably. The known biology of PRM recognition in the ESCRT pathway seems, in principle, compatible with antiviral development, given our increasingly nuanced understanding of the relative weakness and robustness of the host and viral processes.  相似文献   

4.
I studied the relationship between sex and infestation with ectoparasites in the water rat Scapteromys aquaticus from La Plata river marshland, Argentina. The Relative Density's Index (RDI) for males was 3.90% (females 3.60%). A total of 2653 ectoparasites were collected on 33 male hosts, and 1945 on 31 females. Ectoparasite specific richness (S) and diversity (H) were S = 14, H = 1.17 on males, and S = 10, H = 1.52 on females. The similarity between male and female rodents according to their ectoparasites was 75.00%. Although no ectoparasite species showed significant mean abundance (MA) differences between host sexes (p < 0.05), and only Laelaps manguinhosi prevalence was significantly higher on male hosts (N = 2.01, p < 0.05) in this study, there are reasons to think that the sex of the water rat affects ectoparasite burden and specific richness. This information has epidemiological potential because the closely related Scapteromys tumidus is involved in the transmission of Rickettsia coronii, which causes Marsella fever in humans.  相似文献   

5.
The peripheral blood leukocyte responses of chickens and turkeys inoculated with one of three strains of a chicken Eimeria species adapted to the turkey embryo with their respective parent lines, or with E. adenoeides of the turkey were studied. The adapted lines tended to cause hematological changes in chickens and turkeys similar to those caused by E. adenoeides. These parasites caused the most significant increases in large mononuclear white blood cells = (monocytes) in both chickens and turkeys. These results provide further evidence for a monocyte/macrophage effector mechanism in the rejection of heterologous species of Eimeria from a nonspecific host. The results also agree with previous studies that show that increases in mononuclear white blood cells during parent E. tenella and E. necatrix infections in chickens occur during the periods of greatest tissue damage (3–4 days after inoculation). The generally unaffected lymphocyte numbers and increases in mononuclear white blood cells during infections with the adapted lines probably explain the reduced pathogenicity and the lack of immunogenicity seen previously in chickens inoculated with these three lines. Possibly, monocytes/macrophages play a role in the host specificity of the parasites.  相似文献   

6.
Research on immune function in evolutionary ecology has frequently focused on avian ectoparasites (e.g., mites and lice). However, host immunogenetics involved with bird resistance to ectoparasites has not been determined. The critical role of the major histocompatibility complex (MHC) in adaptive immunity and high genetic variation found within the MHC make this gene complex useful for exploring the immunogenetic basis for bird resistance to ectoparasites. The objective of this study was to determine if the avian MHC influenced resistance to a blood-feeding ectoparasite. Four congenic lines of chickens, differing only at the MHC, were comparatively infested with a cosmopolitan ectoparasite of birds-northern fowl mite (NFM)-which is also a serious pest species of poultry. Mite infestations were monitored over time and mite densities (weekly and maximum) were compared among lines. Chickens with the MHC haplotype B21 were relatively resistant to NFM, compared with birds in the B15 congenic line (P < 0.02). To test for similar effects in an outbred genetic background, a separate experiment was performed with 107 commercial chickens (white leghorn, W-36 strain) infested with NFM. Hens were genotyped using a MHC microsatellite marker (LEI0258) and associations between MHC haplotype and NFM density were tested. The highest peak NFM populations occurred more often on hens with the B15 haplotype versus the B21 haplotype (P = 0.012), which supported the results of the congenic study. These data indicate the avian MHC influences ectoparasite resistance, which is relevant to disease ecology and avian-ectoparasite interaction.  相似文献   

7.
Vertebrate immune responses to ectoparasites influence pathogen transmission and host fitness costs. Few studies have characterized natural immune responses to ectoparasites and resultant fitness effects on the ectoparasite. These are critical gaps in understanding vertebrate-ectoparasite interaction, disease ecology and host-parasite co-adaptation. This study focused on an ectoparasite of birds—the northern fowl mite (NFM) (Ornithonyssus sylviarum). Based on prior evidence that chickens develop resistance to NFM, these experiments tested two hypotheses: (i) skin inflammation blocks mite access to blood, impairing development, reproduction and survival; and (ii) host immunogenetic variation influences the inflammatory response and subsequent effects on the ectoparasite. On infested hosts, histology of skin inflammation revealed increased epidermal cell number and size, immigration of leukocytes and deposition of serous exudates on the skin surface. Survival of adult mites and their offspring decreased as the area of skin inflammation increased during an infestation. Inflammation increased the distance to blood vessels beyond the length of mite mouthparts (100-160 μm) and prevented protonymphs and adults from reaching a blood source. Consequently, protonymphs could not complete development, evidenced by a significant inverse relationship between inflammation and protonymph feeding success, as well as an increasing protonymph/adult ratio. Adult females were unable to feed and reproduce, indicated by an inverse relationship between inflammation and egg production, and decreasing female/juvenile ratio. These combined impacts of host inflammation reversed NFM population growth. Intensity of inflammation was influenced by the genotype of the major histocompatibility complex (MHC), supporting previous research that linked these immunological loci with NFM resistance. Overall, these data provide a model for a mechanism of avian resistance to an ectoparasitic arthropod and the fitness costs to the parasite of that host defense.  相似文献   

8.

Zoonotic and foodborne diseases pose a significant burden, decreasing both human and animal health. Modifying chickens to overexpress antimicrobials has the potential to decrease bacterial growth on poultry products and boost chicken innate immunity. Chickens overexpressing either ovotransferrin or avian β-defensin-3 (AvβD3) were generated using Tol-2 transposons. Transgene expression at the RNA and protein level was seen in egg white, breast muscle, and serum. There were significant differences in the immune cell populations in the blood, bursa, and spleen associated with transgene expression including an increased proportion of CD8+ cells in the blood of ovotransferrin and AvβD3 transgenic birds. Expression of the antimicrobials inhibited the in vitro growth of human and chicken bacterial pathogens and spoilage bacteria. For example, transgene expression significantly reduced growth of aerobic and coliform bacteria in breast muscle and decreased the growth of Salmonella enterica in egg white. Overall these results indicate that overexpression of antimicrobials in the chicken can impact the immune system and increase the antimicrobial capacity of poultry products.

  相似文献   

9.
Infectious laryngotracheitis virus (ILTV) is an alphaherpesvirus that causes severe and economically significant respiratory disease in poultry worldwide. Herein, the immunogenicity of two recombinant fowlpox viruses (rFPV-gB and rFPV-gB/IL18) containing ILTV glycoprotein B (gB) and chicken interleukin-18 (IL-18) were investigated in a challenge model. One-day-old specific-pathogen-free chickens were vaccinated by wing-web puncture with the two rFPVs and challenged with the virulent ILTV CG strain. There were differences in antibody levels elicited by either rFPV-gB/IL18 or rFPV-gB as determined using ELISA. The ratios of CD4(+) to CD8(+) in chickens immunized with rFPV-gB/IL18 were higher (P < 0.05) than in those immunized with rFPV-gB, and the level of proliferative response of the T cells in the rFPV-gB/IL18-vaccinated group was higher (P < 0.05) than that in the rFPV-gB group. All chickens immunized with rFPV-gB/IL18 were protected (10/10), whereas only eight of 10 of the chickens immunized with the rFPV-gB were protected. The results showed that the protective efficacy of the rFPV-gB vaccine could be enhanced by simultaneous expression of chicken IL-18.  相似文献   

10.
To evaluate the replication of a highly virulent avian influenza A virus in a potential reservoir host, mallard ducks (Anas platyrhynchos) were inoculated with the virulent strain A/Ty/Ont/7732/66 (H5N9). Viruses recovered from the ducks were analyzed by hemagglutination inhibition (HI) and enzyme-linked immunosorbent assay (ELISA) and found to possess antigenically altered viral hemagglutinins. Plaque formation on the Madin-Darby Canine Kidney (MDCK) cell line and on primary chicken embryo cells was investigated, and isolates recovered from the ducks differed from the wild type by being unable to form plaques on MDCK cells without trypsin. This phenotype did not appear to be due to inefficient cleavage of the hemagglutinin by host cell proteases since hemagglutinin immunoprecipitated from cell lysates was cleaved. Although the plaquing phenotype suggested attenuation of the isolates from the ducks, they were not significantly altered in their virulence for chickens shown by infectivity studies in vivo. These results indicate that replication of influenza A/Ty/Ont/7732/66 virus in ducks can produce antigenic and phenotypic variants which are still highly virulent for domestic poultry.  相似文献   

11.
Poultry outbreaks caused by H5N8 highly pathogenic avian influenza viruses (HPAIVs) occurred in Japan between December 2014 and January 2015. During the same period; H5N8 HPAIVs were isolated from wild birds and the environment in Japan. The hemagglutinin (HA) genes of these isolates were found to belong to clade 2.3.4.4 and three sub‐groups were distinguishable within this clade. All of the Japanese isolates from poultry outbreaks belonged to the same sub‐group; whereas wild bird isolates belonged to the other sub‐groups. To examine whether the difference in pathogenicity to chickens between isolates of different HA sub‐groups of clade 2.3.4.4 could explain why the Japanese poultry outbreaks were only caused by a particular sub‐group; pathogenicities of A/chicken/Miyazaki/7/2014 (Miyazaki2014; sub‐group C) and A/duck/Chiba/26‐372‐48/2014 (Chiba2014; sub‐group A) to chickens were compared and it was found that the lethality of Miyazaki2014 in chickens was lower than that of Chiba2014; according to the 50% chicken lethal dose. This indicated that differences in pathogenicity may not explain why the Japanese poultry outbreaks only involved group C isolates.  相似文献   

12.
Rodents play a significant role as reservoirs of zoonotic diseases. Nevertheless, in general their ectoparasite assemblage and host-ectoparasite associations are poorly known. This study intended to provide new insights into the relationships between ectoparasites and rodents in northeastern Iran. Rodents were captured using live traps during the years 2016–2020, and their ectoparasites were collected. Parasitological indices such as infestation rate, prevalence and mean intensity of infestation were analyzed. A total of 284 rodents, belonging to 17 species, were trapped and found to be infested by 178 ectoparasites from five orders Siphonaptera, Phthiraptera, Ixodida, Mesostigmata and Trombidiformes. The overall infestation rate was 50.3%. The flea Nosopsyllus fasciatus and the louse Polyplax asiatica dominated among all fleas and lice, respectively. Haemaphysalis punctata and Haemolaelaps sp. were recorded as the most abundant tick and mite, respectively. Nosopsyllus fasciatus exhibited low and Polyplax asiatica moderate host specificity. Approximately 64.2% of ectoparasites shared more than one host, and others were singletons. Seasonal fluctuations were found in the occurrence of ectoparasite; fleas and lice were more abundant in spring and winter, respectively. Ticks demonstrated high abundance in spring and summer and mites were more common in autumn. The overall prevalence of ectoparasite on male rodents was greater than that on females (56.4% vs. 44.4%), while similar mean intensities were detected for both sexes. This study extends the knowledge on the distribution, seasonality and host choice of four main groups of ectoparasites in association with rodents. Further studies are needed to provide deep insight into how relationships and interactions between ectoparasite and rodents are formed, and how they can be applied in epidemiology.  相似文献   

13.
Domestic animals may affect human-vector contact and parasite transmission rates. We investigated the relationships between host-feeding choices, site-specific host availability, bug nutritional status, stage and abundance of Triatoma infestans Klug (Heteroptera: Reduviidae) in rural houses of Pampa del Indio during spring. We identified the bloodmeal sources of 865 triatomines collected in 70 sites from four main ecotopes. The main sources in domiciles were human (65.9%), chicken (23.4%) and dog (22.4%); dog (64.4%, 35.3%) and chicken (33.1%, 75.4%) in kitchens and storerooms, respectively; and chicken (94.7%) in chicken coops. Using random-intercept logistic regression clustered by domicile, the fraction of human-fed triatomines strongly decreased with increasing proportions of chicken- and dog-fed bugs, dropping from 96.4% when no chicken or dog slept indoors at night to 59.4% when both did. The fraction of dog-fed bugs significantly decreased with increasing human and chicken blood indices, and marginally increased with an indoor-resting dog. Mixed blood meals occurred 3.62 times more often when a chicken or a dog slept indoors. Host blood source did not affect mean body weight adjusted for body length and bug stage. Indoor-resting chickens and dogs greatly modified human-bug contact rates, and may be targeted with long-lasting systemic insecticides to suppress infestation.  相似文献   

14.
A cDNA encoding a 174-amino-acid orthologue of a tick histamine release factor (HRF) was identified from the haematophagous poultry red mite Dermanyssus gallinae. The predicted D. gallinae HRF protein (Dg-HRF-1) sequence is highly conserved with the tick HRFs (identity 52-54%) and to a lesser degree with translationally controlled tumour proteins (TCTP) from mammals and other invertebrates (range 38-47%). Phylogenetically, Dg-HRF-1 partitions with the tick HRF clade suggesting a shared linage and potentially similar function(s). A recombinant Dg-HRF-1 protein (rDg-HRF-1) was produced and shown to induce degranulation of rat peritoneal mast cells in vitro, confirming conservation of the histamine-releasing function in D. gallinae. Polyclonal antibodies were generated in rabbits and hens to rDg-HRF-1. Western blotting demonstrated that native Dg-HRF is a soluble protein and immunohistochemical staining of mite sections revealed that the distribution of Dg-HRF, although ubiquitous, is more common in mite reproductive, digestive and synganglion tissues. A survey of hens housed continuously in a mite-infested commercial poultry unit failed to identify IgY specific for recombinant or native Dg-HRF, indicating that Dg-HRF is not exposed to the host during infestation/feeding and may therefore have potential as a vaccine using the concealed antigen approach. To test the protective capability of rDg-HRF-1, fresh heparinised chicken blood was enriched with yolk-derived anti-Dg-HRF IgY antibodies and fed to semi-starved mites using an in vitro feeding system. A statistically significant increase in mortality was shown (P = 0.004) in mites fed with anti-Dg-HRF IgY after just one blood meal. The work presented here demonstrates, to our knowledge for the first time, the feasibility of vaccinating hens with recombinant D. gallinae antigens to control mite infestation and the potential of rDg-HRF-1 as a vaccine antigen.  相似文献   

15.
Previous studies found a relationship between blood parasite infection and bird gender, with higher prevalence in males. Some studies also found a relationship between host plumage color and parasitic infection, while others did not. Here, we investigated the blood parasite prevalence in correlation with sex and plumage color in free-range chickens (Gallus gallus domesticus) in China. We analyzed a total of 297 blood samples, out of which 234 chickens tested positive for haemosporidian parasites, with 78.5% parasite prevalence. Out of 139 males, 118 tested positive with 84.8% parasite prevalence while 116 of 158 female samples tested positive (73.4%). Leucocytotozoon was the most frequent genus isolated (193 infected individuals /234 birds), followed by Plasmodium (41 infected individuals/234 birds), with no Haemoproteus parasites being detected. There were no significant differences in the body parameters and chicken color plumages with regards to the infection status. Our study indicated that blood parasite infection was significantly different between male and female chickens, with infection prevalent in males.  相似文献   

16.
Avian leukosis virus (ALV) poses a major threat to poultry. The chicken gut microbiota plays critical roles in host performance, health and immunity. However, the effect of viral infection on the microbiota of Chinese local chickens is not well understood. In this study, we performed high-throughput 16S rRNA gene sequencing and evaluated the gut microbiota profiles using faeces from ALV subgroup J (ALV-J)-infected and healthy Huiyang bearded chickens (Chinese local chickens). At the phylum level, ALV-J infection mainly increased the abundance of Bacteroidetes and Proteobacteria and decreased that of Firmicutes. An analysis at the order, family and genus levels showed that the abundance of Lactobacillales, Lactobacillaceae and Lactobacillus was the highest in normal chicken faeces, accounting for 89·07%, 86·47% and 86·46%, respectively, of phylotypes. Moreover, samples from ALV-J-infected chickens were enriched with Bacteroidales, Clostridiales, Bacteroidaceae, Ruminococcaceae, Lachnospiraceae and Bacteroides. Our findings highlight that ALV-J infection alters the gut microbiota and disrupts the host–microbial homeostasis in chickens, which may be involved in the pathogenesis of ALV-J infection.  相似文献   

17.
Campylobacter jejuni (C. jejuni) is one of the most common causes of human bacterial enteritis worldwide primarily due to contaminated poultry products. Previously, we found a significant difference in C. jejuni colonization in the ceca between two genetically distinct broiler lines (Line A (resistant) has less colony than line B (susceptible) on day 7 post inoculation). We hypothesize that different mechanisms between these two genetic lines may affect their ability to resist C. jejuni colonization in chickens. The molecular mechanisms of the local host response to C. jejuni colonization in chickens have not been well understood. In the present study, to profile the cecal gene expression in the response to C. jejuni colonization and to compare differences between two lines at the molecular level, RNA of ceca from two genetic lines of chickens (A and B) were applied to a chicken whole genome microarray for a pair-comparison between inoculated (I) and non-inoculated (N) chickens within each line and between lines. Our results demonstrated that metabolism process and insulin receptor signaling pathways are key contributors to the different response to C. jejuni colonization between lines A and B. With C. jejuni inoculation, lymphocyte activation and lymphoid organ development functions are important for line A host defenses, while cell differentiation, communication and signaling pathways are important for line B. Interestingly, circadian rhythm appears play a critical role in host response of the more resistant A line to C. jejuni colonization. A dramatic differential host response was observed between these two lines of chickens. The more susceptible line B chickens responded to C. jejuni inoculation with a dramatic up-regulation in lipid, glucose, and amino acid metabolism, which is undoubtedly for use in the response to the colonization with little or no change in immune host defenses. However, in more resistant line A birds the host defense responses were characterized by an up-regulation lymphocyte activation, probably by regulatory T cells and an increased expression of the NLR recognition receptor NALP1. To our knowledge, this is the first time each of these responses has been observed in the avian response to an intestinal bacterial pathogen.  相似文献   

18.
Host age is one of the key factors in host–parasite relationships as it possibly affects infestation levels, parasite-induced mortality of a host, and parasite distribution among host individuals. We tested two alternative hypotheses about infestation pattern and survival under parasitism in relation to host age. The first hypothesis assumes that parasites are recruited faster than they die and, thus, suggests that adult hosts will show higher infestation levels than juveniles because the former have more time to accumulate parasites. The second hypothesis assumes that parasites die faster than they are recruited and, thus, suggests that adults will show lower infestation levels because of acquired immune response and/or the mortality of heavily infested juveniles and, thus, selection for less infested adults. As the negative effects of parasites on host are often intensity-dependent, we expected that the age-related differences in infestation may be translated to lower or higher survival under parasitism of adults, in the cases of the first and the second hypotheses, respectively. We manipulated ectoparasite numbers using insecticide and assessed the infestation pattern in adult and juvenile gerbils (Gerbillus andersoni) in the Negev Desert. We found only a partial support for age-dependent parasitism. No age-related differences in infestation and distribution among host individuals were found after adjusting the ectoparasite numbers to the host’s surface area. However, age-related differences in survival under parasitism were revealed. The survival probability of parasitized juveniles decreased in about 48% compared to unparasitized hosts while the survival probability of adults was not affected by ectoparasites. Our results suggest that the effect of host age on host–parasite dynamics may not explicitly be determined by age-dependent differences in ectoparasite recruitment or mortality processes but may also be affected by other host-related and parasite-related traits.  相似文献   

19.
Nests of cavity‐nesting birds usually harbor some species of haematophagous ectoparasites that feed on the incubating adults and nestlings. Given the negative impact of ectoparasites on nestlings there will be selection on hosts to reduce parasite infestations through behavioural means. We have experimentally reduced the abundance of all ectoparasites in nests of pied flycatchers Ficedula hypoleuca to explore both whether there are changes in the frequency and duration of putative anti‐parasite behaviours by tending adults, as well as whether such anti‐parasite behaviours are able to compensate for the deleterious effects that parasites may have on nestlings. Heat treatment of nests substantially decreased the density of ectoparasites, and thereby positively affected nestling growth. The frequency and intensity of female grooming and nest sanitation behaviours during the incubation and nestling periods decreased as a consequence of the experimental reduction of ectoparasite infestation. Although nestlings begged more intensely in infested nests, the experiment had no significant effect on parental provisioning effort. Reduction of parasites resulted in larger nestlings shortly before fledging and increased fledging success. This study shows a clear effect of a complete natural nest ectoparasite fauna on parental behaviour at the nest and nestling growth in a cavity‐nesting bird. Although ectoparasites induce anti‐parasite behaviours in females, these behaviours are not able to fully remove parasite's deleterious effects on nestling growth and survival.  相似文献   

20.
ABSTRACT: BACKGROUND: DNA vaccines offer several advantages over conventional vaccines in the development of effective vaccines against avian influenza virus (AIV). However, one of the limitations of the DNA vaccine in poultry is that it induces poor immune responses. In this study, chicken interleukin (IL) -15 and IL-18 were used as genetic adjuvants to improve the immune responses induced from the H5 DNA vaccination in chickens. The immunogenicity of the recombinant plasmid DNA was analysed based on the antibody production, T cell responses and cytokine production, following inoculation in 1-day-old (Trial 1) and 14-day-old (Trial 2) specific-pathogen-free chickens. Hence, the purpose of the present study was to explore the role of chicken IL-15 and IL-18 as adjuvants following the vaccination of chickens with the H5 DNA vaccine. RESULTS: The overall HI antibody titer in chickens immunized with pDis/H5 + pDis/IL-15 was higher compared to chickens immunized with pDis/H5 (p < 0.05). The findings revealed that the inoculation of the 14-day-old chickens exhibited a shorter time to achieve the highest HI titer in comparison to the inoculation of the 1-day-old chickens. The cellular immunity was assessed by the flow cytometry analysis to enumerate CD4+ and CD8+ T cells in the peripheral blood. The chickens inoculated with pDis/H5 + pDis/IL-15 demonstrated the highest increase in CD4+ T cells population relative to the control chickens. However, this study revealed that pDis/H5 + pDis/IL-15 was not significant (P > 0.05) in inducing CD8+ T cells. Meanwhile, with the exception of Trial 1, the flow cytometry results for Trial 2 demonstrated that the pDis/H5 + pDis/IL-18 inoculated group was able to trigger a higher increase in CD4+ T cells than the pDis/H5 group (P < 0.05). On the other hand, the pDis/H5 + pDis/IL-18 group was not significant (P > 0.05) in modulating CD8+ T cells population in both trials. The pDis/H5 + pDis/IL-15 inoculated group showed the highest IL-15 gene expression in both trials compared to other inoculated groups (P < 0.05). Similar results were obtained for the IL-18 expression where the pDis/H5 + pDis/IL-18 groups in both trials (Table 8) were significantly higher compared to the control group (P < 0.05). However, the expressions of other cytokines remained low or undetected by GeXP assay. CONCLUSIONS: This study shows the diverse immunogenicity of pDis/H5 co-administered with chicken IL-15 and IL-18,with pDis/H5 + pDis/IL-15 being a better vaccine candidate compared to other groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号