首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In meiosis, homologous recombination entails programmed DNA double-strand break (DSB) formation and synaptonemal complex (SC) assembly coupled with the DSB repair. Although SCs display extensive structural conservation among species, their components identified are poorly conserved at the sequence level. Here, we identified a novel SC component, designated CENTRAL REGION COMPONENT1 (CRC1), in rice (Oryza sativa). CRC1 colocalizes with ZEP1, the rice SC transverse filament protein, to the central region of SCs in a mutually dependent fashion. Consistent with this colocalization, CRC1 interacts with ZEP1 in yeast two-hybrid assays. CRC1 is orthologous to Saccharomyces cerevisiae pachytene checkpoint2 (Pch2) and Mus musculus THYROID RECEPTOR-INTERACTING PROTEIN13 (TRIP13) and may be a conserved SC component. Additionally, we provide evidence that CRC1 is essential for meiotic DSB formation. CRC1 interacts with HOMOLOGOUS PAIRING ABERRATION IN RICE MEIOSIS1 (PAIR1) in vitro, suggesting that these proteins act as a complex to promote DSB formation. PAIR2, the rice ortholog of budding yeast homolog pairing1, is required for homologous chromosome pairing. We found that CRC1 is also essential for the recruitment of PAIR2 onto meiotic chromosomes. The roles of CRC1 identified here have not been reported for Pch2 or TRIP13.  相似文献   

2.
B chromosomes (Bs) are supernumerary components of the genome and do not confer any advantages on the organisms that harbor them. The maintenance of Bs in natural populations is possible by their transmission at higher than Mendelian frequencies. Although drive is the key for understanding B chromosomes, the mechanism is largely unknown. We provide direct insights into the cellular mechanism of B chromosome drive in the male gametophyte of rye (Secale cereale). We found that nondisjunction of Bs is accompanied by centromere activity and is likely caused by extended cohesion of the B sister chromatids. The B centromere originated from an A centromere, which accumulated B-specific repeats and rearrangements. Because of unequal spindle formation at the first pollen mitosis, nondisjoined B chromatids preferentially become located toward the generative pole. The failure to resolve pericentromeric cohesion is under the control of the B-specific nondisjunction control region. Hence, a combination of nondisjunction and unequal spindle formation at first pollen mitosis results in the accumulation of Bs in the generative nucleus and therefore ensures their transmission at a higher than expected rate to the next generation.  相似文献   

3.
Like many other viruses, Tobacco mosaic virus replicates in association with the endoplasmic reticulum (ER) and exploits this membrane network for intercellular spread through plasmodesmata (PD), a process depending on virus-encoded movement protein (MP). The movement process involves interactions of MP with the ER and the cytoskeleton as well as its targeting to PD. Later in the infection cycle, the MP further accumulates and localizes to ER-associated inclusions, the viral factories, and along microtubules before it is finally degraded. Although these patterns of MP accumulation have been described in great detail, the underlying mechanisms that control MP fate and function during infection are not known. Here, we identify CELL-DIVISION-CYCLE protein48 (CDC48), a conserved chaperone controlling protein fate in yeast (Saccharomyces cerevisiae) and animal cells by extracting protein substrates from membranes or complexes, as a cellular factor regulating MP accumulation patterns in plant cells. We demonstrate that Arabidopsis (Arabidopsis thaliana) CDC48 is induced upon infection, interacts with MP in ER inclusions dependent on the MP N terminus, and promotes degradation of the protein. We further provide evidence that CDC48 extracts MP from ER inclusions to the cytosol, where it subsequently accumulates on and stabilizes microtubules. We show that virus movement is impaired upon overexpression of CDC48, suggesting that CDC48 further functions in controlling virus movement by removal of MP from the ER transport pathway and by promoting interference of MP with microtubule dynamics. CDC48 acts also in response to other proteins expressed in the ER, thus suggesting a general role of CDC48 in ER membrane maintenance upon ER stress.Plant viruses are obligate intracellular pathogens that replicate in association with host membranes (Laliberté and Sanfaçon, 2010) and subvert host intra- and intercellular trafficking pathways to achieve cell-to-cell and systemic spread (Harries and Ding, 2011; Niehl and Heinlein, 2011). In the case of the well-studied Tobacco mosaic virus (TMV), viral replication factories form on membranes of the endoplasmic reticulum (ER; Heinlein et al., 1995, 1998). As the plant ER is continuous between cells through plasmodesmata (PD; Ding et al., 1992), this membrane network provides a direct pathway for the spread of replicated virus from the replication sites in infected cells into the ER network of noninfected cells. The spread of plant viruses depends on virus-encoded movement proteins (MPs; Deom et al., 1987; Lucas, 2006). The MP of TMV facilitates the cell-to-cell passage of the infectious particle by forming a ribonucleoprotein complex with the viral RNA (Citovsky et al., 1990) and by increasing the size exclusion limit of PD (Wolf et al., 1989).During the course of infection, as well as when ectopically expressed, the MP associates with PD, the ER/actin network, and microtubules (Heinlein et al., 1995, 1998; Reichel and Beachy, 1998; Wright et al., 2007; Sambade et al., 2008; Hofmann et al., 2009; Boutant et al., 2010; Peña and Heinlein, 2012; Supplemental Fig. S1). Shortly after infection of a new cell, the MP localizes to small, mobile, ER-associated particles proposed to play a role in PD targeting of the viral RNA (Boyko et al., 2007; Sambade et al., 2008). Similar small, mobile MP particles are observed early upon ectopic expression of the protein. These particles colocalize with RNA and undergo stop-and-go movements in association with the ER (Sambade et al., 2008). The particle movements pause at microtubule proximal sites and their detachment requires microtubule polymerization (Sambade et al., 2008). These observations suggest that the interaction with the microtubule system plays a critical role in the maturation and ER-mediated delivery of infectious viral RNA particles to PD during early infection stages. Consistently, tobacco (Nicotiana tabacum) mutants with reduced microtubule dynamics exhibit reduced TMV movement (Ouko et al., 2010). Following virus movement, the previously infected cell further accumulates MP at the ER, a process that coincides with the formation of large ER inclusions that contain viral replicase and viral RNA in addition to MP and likely function as virus factories (Heinlein et al., 1998; Más and Beachy, 1999). In mature form, these inclusions may represent the so-called viroplasms or X-bodies described in the classical literature (Bawden and Sheffield, 1939; Esau and Cronshaw, 1967; Hills et al., 1987). Their formation is associated with rearrangements of the ER membrane and likely mediated by the accumulated MP since the inclusions diminish and reconstitute a native ER structure when MP becomes degraded by the 26S proteasome (Reichel and Beachy, 1998, 2000). Transfected cells accumulate MP in similar inclusions as those formed during infection, indicating that accumulated MP is indeed necessary and sufficient to form inclusions in association with the ER (Reichel and Beachy, 1998; Supplemental Fig. S1). Following accumulation of MP in virus factories, the infected cells accumulate the MP also along microtubules (Heinlein et al., 1998). The accumulation of MP in virus factories and on microtubules in cells behind the leading front of infection is dispensable for virus movement (Heinlein et al., 1998; Boyko et al., 2000a). At these late infection stages, the virus factories may enable the virus to produce high virion titers (Laliberté and Sanfaçon, 2010; Tilsner et al., 2012), and the subsequent accumulation along microtubules may play a role in withdrawing MP from the cell-to-cell communication pathway (Curin et al., 2007) and in stockpiling MP prior to degradation (Padgett et al., 1996; Gillespie et al., 2002).The molecular mechanisms that guide the MP to the ER and subsequently to microtubules during infection are not known. The MP is a hydrophobic protein that behaves like a membrane-integral or tightly membrane-associated protein in differential fractionation experiments and contains two predicted transmembrane domains (Reichel and Beachy, 1998; Brill et al., 2000, 2004) involved in ER association (Fujiki et al., 2006). The association with microtubules depends on MP amino acids 1 to 213 required for MP function (Kahn et al., 1998; Boyko et al., 2000b,Boyko et al., 2000c, 2002; Kotlizky et al., 2001). Moreover, certain amino acid exchange mutations known to affect the function of MP in virus movement in a temperature-sensitive manner also affect the ability of MP to interact with microtubules (Boyko et al., 2007,Boyko et al., 2000b). Interestingly, these mutations cluster together in a short domain of 25 amino acids showing a structural similarity with the M-loop of tubulin involved in tubulin-tubulin interactions (Boyko et al., 2000b; Waigmann et al., 2007). Importantly, this M-loop similarity domain overlaps with the predicted transmembrane domain (Brill et al., 2000, 2004) thus suggesting that the association of MP with membranes or microtubules is an alternative event that may depend on specific posttranslational modifications or specific folds of MP. However, although the different subcellular localizations of MPs during the course of infection indicate directional transport of MP from the ER to microtubules and may indicate different folds and functions of the protein when associated with these different subcellular components, the mechanism that controls the subcellular localization and, thus, the fate and function of MP is not known.Here, we identify CELL-DIVISION-CYCLE protein48 (CDC48), named p97/VCP (Valosin-containing protein) in mammals and Cdc48p in yeast (Saccharomyces cerevisiae), as a cellular factor regulating MP subcellular accumulation patterns. CDC48 functions are well characterized in mammalian and yeast systems but remain poorly investigated in plants. Yeast and mammalian CDC48s are essential, conserved chaperones involved in diverse cellular processes by controlling protein fate through extraction of substrates from membranes or complexes (Tsai et al., 2002; Meusser et al., 2005; Römisch, 2005; Rumpf and Jentsch, 2006; Schrader et al., 2009; Eisele et al., 2010; Meyer et al., 2012; Yamanaka et al., 2012). We show that virus infection leads to the induction of Arabidopsis (Arabidopsis thaliana) CDC48 isoforms and demonstrate a function of CDC48 in ER maintenance upon ER stress conditions. We further demonstrate that CDC48 interacts with MP and that CDC48 activity is required for MP degradation. Interaction of CDC48 with MP depends on the MP N terminus, which is required for degradation of the protein, for PD localization and microtubule accumulation of MP, and for function of MP in cell-to-cell transport of the viral RNA. Overexpressed CDC48 shifts MP subcellular localization from ER inclusions to microtubules, suggesting that CDC48 extracts the MP from ER-associated inclusions, where it accumulates in midstages of infection, to the cytosol, where it accumulates along microtubules during late infection stages. Moreover, overexpression of active, but not inactive, CDC48 inhibits virus movement. Our data demonstrate that a CDC48-dependent pathway leading to the clearance of ER-associated protein inclusions exists in plants, that plant viral MPs are substrates for this pathway, and that this pathway determines viral protein fate during infection. We suggest that CDC48-mediated extraction of MP from the ER is part of a plant defense response to remove MP from the ER, the compartment the virus uses for replication and movement.  相似文献   

4.
5.
During meiosis, homologous chromosomes pair and recombine via repair of programmed DNA double-strand breaks (DSBs). DSBs are formed in the context of chromatin loops, which are anchored to the proteinaceous axial element (AE). The AE later serves as a framework to assemble the synaptonemal complex (SC) that provides a transient but tight connection between homologous chromosomes. Here, we showed that DESYNAPTIC2 (DSY2), a coiled-coil protein, mediates DSB formation and is directly involved in SC assembly in maize (Zea mays). The dsy2 mutant exhibits homologous pairing defects, leading to sterility. Analyses revealed that DSB formation and the number of RADIATION SENSITIVE51 (RAD51) foci are largely reduced, and synapsis is completely abolished in dsy2 meiocytes. Super-resolution structured illumination microscopy showed that DSY2 is located on the AE and forms a distinct alternating pattern with the HORMA-domain protein ASYNAPTIC1 (ASY1). In the dsy2 mutant, localization of ASY1 is affected, and loading of the central element ZIPPER1 (ZYP1) is disrupted. Yeast two-hybrid and bimolecular fluorescence complementation experiments further demonstrated that ZYP1 interacts with DSY2 but does not interact with ASY1. Therefore, DSY2, an AE protein, not only mediates DSB formation but also bridges the AE and central element of SC during meiosis.  相似文献   

6.
Brassinosteroid (BR) and gibberellin (GA) are two predominant hormones regulating plant cell elongation. A defect in either of these leads to reduced plant growth and dwarfism. However, their relationship remains unknown in rice (Oryza sativa). Here, we demonstrated that BR regulates cell elongation by modulating GA metabolism in rice. Under physiological conditions, BR promotes GA accumulation by regulating the expression of GA metabolic genes to stimulate cell elongation. BR greatly induces the expression of D18/GA3ox-2, one of the GA biosynthetic genes, leading to increased GA1 levels, the bioactive GA in rice seedlings. Consequently, both d18 and loss-of-function GA-signaling mutants have decreased BR sensitivity. When excessive active BR is applied, the hormone mostly induces GA inactivation through upregulation of the GA inactivation gene GA2ox-3 and also represses BR biosynthesis, resulting in decreased hormone levels and growth inhibition. As a feedback mechanism, GA extensively inhibits BR biosynthesis and the BR response. GA treatment decreases the enlarged leaf angles in plants with enhanced BR biosynthesis or signaling. Our results revealed a previously unknown mechanism underlying BR and GA crosstalk depending on tissues and hormone levels, which greatly advances our understanding of hormone actions in crop plants and appears much different from that in Arabidopsis thaliana.  相似文献   

7.
Germline and early embryo development constitute ideal model systems to study the establishment of polarity, cell identity, and asymmetric cell divisions (ACDs) in plants. We describe here the function of the MATH-BTB domain protein MAB1 that is exclusively expressed in the germ lineages and the zygote of maize (Zea mays). mab1 (RNA interference [RNAi]) mutant plants display chromosome segregation defects and short spindles during meiosis that cause insufficient separation and migration of nuclei. After the meiosis-to-mitosis transition, two attached nuclei of similar identity are formed in mab1 (RNAi) mutants leading to an arrest of further germline development. Transient expression studies of MAB1 in tobacco (Nicotiana tabacum) Bright Yellow-2 cells revealed a cell cycle–dependent nuclear localization pattern but no direct colocalization with the spindle apparatus. MAB1 is able to form homodimers and interacts with the E3 ubiquitin ligase component Cullin 3a (CUL3a) in the cytoplasm, likely as a substrate-specific adapter protein. The microtubule-severing subunit p60 of katanin was identified as a candidate substrate for MAB1, suggesting that MAB1 resembles the animal key ACD regulator Maternal Effect Lethal 26 (MEL-26). In summary, our findings provide further evidence for the importance of posttranslational regulation for asymmetric divisions and germline progression in plants and identified an unstable key protein that seems to be involved in regulating the stability of a spindle apparatus regulator(s).  相似文献   

8.
9.
Divinyl reductase (DVR) converts 8-vinyl groups on various chlorophyll intermediates to ethyl groups, which is indispensable for chlorophyll biosynthesis. To date, five DVR activities have been detected, but adequate evidence of enzymatic assays using purified or recombinant DVR proteins has not been demonstrated, and it is unclear whether one or multiple enzymes catalyze these activities. In this study, we systematically carried out enzymatic assays using four recombinant DVR proteins and five divinyl substrates and then investigated the in vivo accumulation of various chlorophyll intermediates in rice (Oryza sativa), maize (Zea mays), and cucumber (Cucumis sativus). The results demonstrated that both rice and maize DVR proteins can convert all of the five divinyl substrates to corresponding monovinyl compounds, while both cucumber and Arabidopsis (Arabidopsis thaliana) DVR proteins can convert three of them. Meanwhile, the OsDVR (Os03g22780)-inactivated 824ys mutant of rice exclusively accumulated divinyl chlorophylls in its various organs during different developmental stages. Collectively, we conclude that a single DVR with broad substrate specificity is responsible for reducing the 8-vinyl groups of various chlorophyll intermediates in higher plants, but DVR proteins from different species have diverse and differing substrate preferences, although they are homologous.Chlorophyll (Chl) molecules universally exist in photosynthetic organisms. As the main component of the photosynthetic pigments, Chl molecules perform essential processes of absorbing light and transferring the light energy in the reaction center of the photosystems (Fromme et al., 2003). Based on the number of vinyl side chains, Chls are classified into two groups, 3,8-divinyl (DV)-Chl and 3-monovinyl (MV)-Chl. The DV-Chl molecule contains two vinyl groups at positions 3 and 8 of the tetrapyrrole macrocycle, whereas the MV-Chl molecule contains a vinyl group at position 3 and an ethyl group at position 8 of the macrocycle. Almost all of the oxygenic photosynthetic organisms contain MV-Chls, with the exceptions of some marine picophytoplankton species that contain only DV-Chls as their primary photosynthetic pigments (Chisholm et al., 1992; Goericke and Repeta, 1992; Porra, 1997).The classical single-branched Chl biosynthetic pathway proposed by Granick (1950) and modified by Jones (1963) assumed the rapid reduction of the 8-vinyl group of DV-protochlorophyllide (Pchlide) catalyzed by a putative 8-vinyl reductase. Ellsworth and Aronoff (1969) found evidence for both MV and DV forms of several Chl biosynthetic intermediates between magnesium-protoporphyrin IX monomethyl ester (MPE) and Pchlide in Chlorella spp. mutants. Belanger and Rebeiz (1979, 1980) reported that the Pchlide pool of etiolated higher plants contains both MV- and DV-Pchlide. Afterward, following the further detection of MV- and DV-tetrapyrrole intermediates and their biosynthetic interconversion in tissues and extracts of different plants (Belanger and Rebeiz, 1982; Duggan and Rebeiz, 1982; Tripathy and Rebeiz, 1986, 1988; Parham and Rebeiz, 1992, 1995; Kim and Rebeiz, 1996), a multibranched Chl biosynthetic heterogeneity was proposed (Rebeiz et al., 1983, 1986, 1999; Whyte and Griffiths, 1993; Kolossov and Rebeiz, 2010).Biosynthetic heterogeneity refers to the biosynthesis of a particular metabolite by an organelle, tissue, or organism via multiple biosynthetic routes. Varieties of reports lead to the assumption that Chl biosynthetic heterogeneity originates mainly in parallel DV- and MV-Chl biosynthetic routes. These routes are interconnected by 8-vinyl reductases that convert DV-tetrapyrroles to MV-tetrapyrroles by conversion of the vinyl group at position 8 of ring B to the ethyl group (Parham and Rebeiz, 1995; Rebeiz et al., 2003). DV-MPE could be converted to MV-MPE in crude homogenates from etiolated wheat (Triticum aestivum) seedlings (Ellsworth and Hsing, 1974). Exogenous DV-Pchlide could be partially converted to MV-Pchlide in barley (Hordeum vulgare) plastids (Tripathy and Rebeiz, 1988). 8-Vinyl chlorophyllide (Chlide) a reductases in etioplast membranes isolated from etiolated cucumber (Cucumis sativus) cotyledons and barley and maize (Zea mays) leaves were found to be very active in the conversion of exogenous DV-Chlide a to MV-Chlide a (Parham and Rebeiz, 1992, 1995). Kim and Rebeiz (1996) suggested that Chl biosynthetic heterogeneity in higher plants may originate at the level of DV magnesium-protoporphyrin IX (Mg-Proto) and would be mediated by the activity of a putative 8-vinyl Mg-Proto reductase in barley etiochloroplasts and plastid membranes. However, since these reports did not use purified or recombinant enzyme, it is not clear whether the reductions of the 8-vinyl groups of various Chl intermediates are catalyzed by one enzyme of broad specificity or by multiple enzymes of narrow specificity, which actually has become one of the focus issues in Chl biosynthesis.Nagata et al. (2005) and Nakanishi et al. (2005) independently identified the AT5G18660 gene of Arabidopsis (Arabidopsis thaliana) as an 8-vinyl reductase, namely, divinyl reductase (DVR). Chew and Bryant (2007) identified the DVR BciA (CT1063) gene of the green sulfur bacterium Chlorobium tepidum, which is homologous to AT5G18660. An enzymatic assay using a recombinant Arabidopsis DVR (AtDVR) on five DV substrates revealed that the major substrate of AtDVR is DV-Chlide a, while the other four DV substrates could not be converted to corresponding MV compounds (Nagata et al., 2007). Nevertheless, a recombinant BciA is able to reduce the 8-vinyl group of DV-Pchlide to generate MV-Pchlide (Chew and Bryant, 2007). Recently, we identified the rice (Oryza sativa) DVR encoded by Os03g22780 that has sequence similarity with the Arabidopsis DVR gene AT5G18660. We also confirmed that the recombinant rice DVR (OsDVR) is able to not only convert DV-Chlide a to MV-Chlide a but also to convert DV-Chl a to MV-Chl a (Wang et al., 2010). Thus, it is possible that the reductions of the 8-vinyl groups of various Chl biosynthetic intermediates are catalyzed by one enzyme of broad specificity.In this report, we extended our studies to four DVR proteins and five DV substrates. First, ZmDVR and CsDVR genes were isolated from maize and cucumber genomes, respectively, using a homology-based cloning approach. Second, enzymatic assays were systematically carried out using recombinant OsDVR, ZmDVR, CsDVR, and AtDVR as representative DVR proteins and using DV-Chl a, DV-Chlide a, DV-Pchlide a, DV-MPE, and DV-Mg-Proto as DV substrates. Third, we examined the in vivo accumulations of various Chl intermediates in rice, maize, and cucumber. Finally, we systematically investigated the in vivo accumulations of Chl and its various intermediates in the OsDVR (Os03g22780)-inactivated 824ys mutant of rice (Wang et al., 2010). The results strongly suggested that a single DVR protein with broad substrate specificity is responsible for reducing the 8-vinyl groups of various intermediate molecules of Chl biosynthesis in higher plants, but DVR proteins from different species could have diverse and differing substrate preferences even though they are homologous.  相似文献   

10.
The chloroplast-encoded low molecular weight protein PsbN is annotated as a photosystem II (PSII) subunit. To elucidate the localization and function of PsbN, encoded on the opposite strand to the psbB gene cluster, we raised antibodies and inserted a resistance cassette into PsbN in both directions. Both homoplastomic tobacco (Nicotiana tabacum) mutants ∆psbN-F and ∆psbN-R show essentially the same PSII deficiencies. The mutants are extremely light sensitive and failed to recover from photoinhibition. Although synthesis of PSII proteins was not altered significantly, both mutants accumulated only ∼25% of PSII proteins compared with the wild type. Assembly of PSII precomplexes occurred at normal rates, but heterodimeric PSII reaction centers (RCs) and higher order PSII assemblies were not formed efficiently in the mutants. The ∆psbN-R mutant was complemented by allotopic expression of the PsbN gene fused to the sequence of a chloroplast transit peptide in the nuclear genome. PsbN represents a bitopic trans-membrane peptide localized in stroma lamellae with its highly conserved C terminus exposed to the stroma. Significant amounts of PsbN were already present in dark-grown seedling. Our data prove that PsbN is not a constituent subunit of PSII but is required for repair from photoinhibition and efficient assembly of the PSII RC.  相似文献   

11.
The current dogma for cell wall polysaccharide biosynthesis is that cellulose (and callose) is synthesized at the plasma membrane (PM), whereas matrix phase polysaccharides are assembled in the Golgi apparatus. We provide evidence that (1,3;1,4)-β-d-glucan (mixed-linkage glucan [MLG]) does not conform to this paradigm. We show in various grass (Poaceae) species that MLG-specific antibody labeling is present in the wall but absent over Golgi, suggesting it is assembled at the PM. Antibodies to the MLG synthases, cellulose synthase-like F6 (CSLF6) and CSLH1, located CSLF6 to the endoplasmic reticulum, Golgi, secretory vesicles, and the PM and CSLH1 to the same locations apart from the PM. This pattern was recreated upon expression of VENUS-tagged barley (Hordeum vulgare) CSLF6 and CSLH1 in Nicotiana benthamiana leaves and, consistent with our biochemical analyses of native grass tissues, shown to be catalytically active with CSLF6 and CSLH1 in PM-enriched and PM-depleted membrane fractions, respectively. These data support a PM location for the synthesis of MLG by CSLF6, the predominant enzymatically active isoform. A model is proposed to guide future experimental approaches to dissect the molecular mechanism(s) of MLG assembly.  相似文献   

12.
13.
14.
The retromer is involved in recycling lysosomal sorting receptors in mammals. A component of the retromer complex in Arabidopsis thaliana, vacuolar protein sorting 29 (VPS29), plays a crucial role in trafficking storage proteins to protein storage vacuoles. However, it is not known whether or how vacuolar sorting receptors (VSRs) are recycled from the prevacuolar compartment (PVC) to the trans-Golgi network (TGN) during trafficking to the lytic vacuole (LV). Here, we report that VPS29 plays an essential role in the trafficking of soluble proteins to the LV from the TGN to the PVC. maigo1-1 (mag1-1) mutants, which harbor a knockdown mutation in VPS29, were defective in trafficking of two soluble proteins, Arabidopsis aleurain-like protein (AALP):green fluorescent protein (GFP) and sporamin:GFP, to the LV but not in trafficking membrane proteins to the LV or plasma membrane or via the secretory pathway. AALP:GFP and sporamin:GFP in mag1-1 protoplasts accumulated in the TGN but were also secreted into the medium. In mag1-1 mutants, VSR1 failed to recycle from the PVC to the TGN; rather, a significant proportion was transported to the LV; VSR1 overexpression rescued this defect. Moreover, endogenous VSRs were expressed at higher levels in mag1-1 plants. Based on these results, we propose that VPS29 plays a crucial role in recycling VSRs from the PVC to the TGN during the trafficking of soluble proteins to the LV.  相似文献   

15.
16.
17.
18.
Photosystem II (PSII) requires constant disassembly and reassembly to accommodate replacement of the D1 protein. Here, we characterize Arabidopsis thaliana MET1, a PSII assembly factor with PDZ and TPR domains. The maize (Zea mays) MET1 homolog is enriched in mesophyll chloroplasts compared with bundle sheath chloroplasts, and MET1 mRNA and protein levels increase during leaf development concomitant with the thylakoid machinery. MET1 is conserved in C3 and C4 plants and green algae but is not found in prokaryotes. Arabidopsis MET1 is a peripheral thylakoid protein enriched in stroma lamellae and is also present in grana. Split-ubiquitin assays and coimmunoprecipitations showed interaction of MET1 with stromal loops of PSII core components CP43 and CP47. From native gels, we inferred that MET1 associates with PSII subcomplexes formed during the PSII repair cycle. When grown under fluctuating light intensities, the Arabidopsis MET1 null mutant (met1) showed conditional reduced growth, near complete blockage in PSII supercomplex formation, and concomitant increase of unassembled CP43. Growth of met1 in high light resulted in loss of PSII supercomplexes and accelerated D1 degradation. We propose that MET1 functions as a CP43/CP47 chaperone on the stromal side of the membrane during PSII assembly and repair. This function is consistent with the observed differential MET1 accumulation across dimorphic maize chloroplasts.  相似文献   

19.
20.
In Arabidopsis thaliana, responses to pathogen-associated molecular patterns (PAMPs) are mediated by cell surface pattern recognition receptors (PRRs) and include the accumulation of reactive oxygen species, callose deposition in the cell wall, and the generation of the signal molecule salicylic acid (SA). SA acts in a positive feedback loop with ACCELERATED CELL DEATH6 (ACD6), a membrane protein that contributes to immunity. This work shows that PRRs associate with and are part of the ACD6/SA feedback loop. ACD6 positively regulates the abundance of several PRRs and affects the responsiveness of plants to two PAMPs. SA accumulation also causes increased levels of PRRs and potentiates the responsiveness of plants to PAMPs. Finally, SA induces PRR- and ACD6-dependent signaling to induce callose deposition independent of the presence of PAMPs. This PAMP-independent effect of SA causes a transient reduction of PRRs and ACD6-dependent reduced responsiveness to PAMPs. Thus, SA has a dynamic effect on the regulation and function of PRRs. Within a few hours, SA signaling promotes defenses and downregulates PRRs, whereas later (within 24 to 48 h) SA signaling upregulates PRRs, and plants are rendered more responsive to PAMPs. These results implicate multiple modes of signaling for PRRs in response to PAMPs and SA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号