首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Ecological Engineering》2005,24(1-2):121-133
In different habitat types of the former coal mining area of Lower Lusatia, distribution and abundance of species of various arthropod groups was studied as to the colonization dynamics and the formation of community patterns. Heteroptera, Auchenorrhyncha, different groups of Coleoptera, Araneida, and Orthoptera were included in the study. In total, about 850 species were captured by pitfall trapping and sweepnet sampling. A detailed analysis of species–environment-relations was performed by means of gradient and eigenvector analysis (DCA, CCA). It is shown that colonization of bare sand habitats, pioneer vegetation with ruderal herbs, short grass prairie with Corynephorus and xerophytic herbs, tall grass prairie with Calamagrostis, and shrubs takes place rather quickly. In all the analysed habitats an adequate degree of the colonization was attained by the studied groups. Both the formation of patterns of species assemblages and population dynamics in upper layers of vegetation mainly depend on the patterns of plant communities and vegetation architecture. In lower layers micro-climatic conditions as well as abiotic soil parameters were shown to be of special importance. Differences of community patterns between predators and mainly phytophagous arthropod groups were discussed.  相似文献   

2.
Abstract: The community structure and population dynamics of Heteroptera was studied in an apple orchard in the Czech Republic, between 1992 and 1995. The study investigated the changes which occurred after introduction of integrated pest management (IPM) practices into an intensive apple orchard. The IPM consisted of establishing grass ground cover or planting six selected herb species in two wide belts along the rows of trees. The IPM areas were compared with areas where chemical control was continued. Seventy Heteroptera species were captured (22 predatory and 48 phytophagous). The diversity of heteropteran communities was always higher on IPM plots and six predatory species and 24 phytophagous species were only captured on the IPM plots. Annual variation of abundance of predatory species on IPM plots was smaller than in phytophagous species. Orius spp. were abundant on the chemical control areas due to abundant Tetranychus urticae C.L. Koch populations, which were probably a consequence of the application of pyrethroid insecticides. Other predatory species were more abundant in IPM areas due to higher prey availability. The abundance of phytophagous species was favoured by the herbaceous undergrowth of the IPM plots. The number of predatory Heteroptera species increased after the introduction of IPM practices. Vegetation cover diversity is enhanced due to cultivation of the plots with IPM regime and has not resulted in any additional increase in the abundance of predatory Heteroptera species.  相似文献   

3.
Heteroptera species were collected from 48 sites distributed throughout the mainland and island complexes of Greece during 1999–2004. The aims of this study were to investigate Heteroptera distribution and abundance in Greek streams, identify the environmental factors that are linked to variation in their assemblages and to partition the influence of environmental and spatial components, alone and in combination, on Heteroptera community composition. Canonical ordination techniques (CCA) were used to determine the relationship between environmental variables and species abundance, while variation partitioning was performed using partial CCA to understand the importance of different explanatory variables in Heteroptera variation. Heteroptera variation was decomposed into independent and joint effects of local (physicochemical variables, microhabitat composition, stream width and depth), regional (land use/cover) and geographic variables (longitude, latitude, altitude and distance to source). Land use/cover, aquatic and riparian vegetation, stream size and water chemistry were the most important factors structuring Heteroptera assemblages. At regional scale, bug assemblages were mainly divided into those found in forested and agricultural landscapes, following water quality and microhabitat composition at local scale. Local variables accounted for 48% of the total explained variation, regional variables for 20% whereas geographical position appeared to be the least influencing factor (8.5%). The results of partial constraint analyses suggested that local variables play a major role in Heteroptera variation followed by regional variables. Electronic supplementary material Electronic supplementary material is available for this article at and accessible for authorised users.  相似文献   

4.
Because of the economic and environmental importance of stabilizing fragile sand dune habitats, restoration of dunes has become a common practice. Restoration efforts in the Great Lakes and East Coast regions of North America often consist of planting monocultures of the dominant native grass species, Ammophila breviligulata. We evaluated 18 dune restoration projects in the Great Lakes region conducted over the past 25 years. We characterized attributes of diversity (plants and insects), vegetation structure (plant biomass and cover), and ecological processes (soil nutrients and mycorrhizal fungi abundance) in each restoration, and we compared these measures to geographically paired natural dune communities. Restoration sites were similar to reference sites in most measured variables. Differences between restorations and reference sites were mostly explained by differences in ages, with the younger sites supporting slightly lower plant diversity and mycorrhizal spore abundance than older sites. Plant community composition varied little between restored and reference sites, with only one native forb species, Artemisia campestris, occurring significantly more often in reference sites than restored sites. Although it remains unclear whether more diverse restoration plantings could accelerate convergence on the ecological conditions of reference dunes, in general, traditional restoration efforts involving monoculture plantings of A. breviligulata in Great Lakes sand dunes appear to achieve ecological conditions found in reference dunes.  相似文献   

5.
Cover and richness of a 5‐year revegetation effort were studied with ,respect to small‐scale disturbance and nutrient manipulations. The site, originally a relict tallgrass prairie mined for gravel, was replanted to native grasses using a seed mixture of tall‐, mixed‐, and short‐grass species. Following one wet and three relatively dry years, a community emerged, dominated by species common in saline soils not found along the Colorado Front Range. A single species, Alkali sacaton (Sporobolus airoides), composed nearly 50% of relative vegetation cover in control plots exhibiting a negative relationship between cover and richness. Seeded species composed approximately 92% of vegetation cover. The remaining 8% was composed of weeds from nearby areas, seed bank survivors, or mix contaminants. Three years of soil nutrient amendments, which lowered plant‐available nitrogen and phosphorus, significantly increased relative cover of seeded species to 97.5%. Fertilizer additions of phosphate enhanced abundance of introduced annual grasses (Bromus spp.) but did not significantly alter cover in control plots. Unmanipulated 4‐m2 plots contained an average of 4.7 planted species and 3.9 nonplanted species during the 5‐year period, whereas plots that received grass herbicide averaged 5.4 nonplanted species. Species richness ranged from an average 6.9 species in low‐nutrient, undisturbed plots to 10.9 species in the relatively high‐nutrient, disturbed plots. The use of stockpiled soils, applied sparingly, in conjunction with a native seed mix containing species uncommon to the preexisting community generated a species‐depauperate, novel plant community that appears resistant to invasion by ruderal species.  相似文献   

6.
环境因子对上海城市园林春季鸟类群落结构特征的影响   总被引:7,自引:0,他引:7  
2004年3—5月,对上海8个园林绿地的春季鸟类做了研究。在调查中共观察到55种鸟类,其中留鸟31种,候鸟24种。运用回归与相关统计分析方法分析了鸟类群落结构和分布特征与8个园林绿地的公园面积、水体比例、植被种数、乔木层盖度、灌木层盖度、草本层盖度、地形坡度异质性、临主干道状况、人流量、行道宽度10项环境指标的关系。结果表明:(1)公园面积、植被种数、灌木层盖度、草本层盖度、地形坡度异质性、临主干道状况、行道宽度等7个因子在影响园林鸟类群落结构和分布中起关键性作用;(2)上海城市鸟类数量、多样性呈单一化趋势,而且公园绿地内大面积水体等建设方案并不利于鸟类的栖息。  相似文献   

7.
Unsanctioned travel routes through alpine ecosystems can influence water drainage patterns, cause sedimentation of streams, and erode soils. These disturbed areas can take decades to revegetate. In 2012, a volunteer‐driven project restored a 854‐m section of unsanctioned road along the Continental Divide in Colorado, United States. The restored area was seeded with three native grass species and then treated by installing erosion matting or adding supplemental rock cover. Four years later, results suggest that the seeding along with the use of erosion matting or supplemental rock can enhance revegetation. Matting appeared to accumulate litter, and this effect might have contributed to enhanced moisture retention. Treated areas contained 40% of the vegetation cover found on adjacent controls, which averaged 69% vascular plant absolute cover. Recovery on both treatments was markedly higher than published estimates of passive revegetation of disturbed areas measured elsewhere suggesting seeding with added cover or protection led to substantial vegetative cover after 4 years. Two of the 3 seeded grass species, Trisetum spicatum and Poa alpina, dominated the restored plots, composing 81.7% of relative vegetation cover on matting sites and 73.4% of relative cover on rock‐supplemented areas. Presumably due to its preference for moister sites, Deschampsia cespitosa had low establishment rates. Volunteer species, that is species that appeared on their own, contributed 6.3% to the absolute vegetation cover of matting and rock sites, and species such as Minuartia biflora, Minuartia obtusiloba, Poa glauca, and Festuca brachyphylla should be considered for use in future restorations.  相似文献   

8.
Dual‐scale analyses assessing farm‐scale patterns of ecological change and landscape‐scale patterns of change in vegetation cover and animal distribution are presented from ecological transect studies away from waterpoints, regional remotely sensed analysis of vegetation cover and animal numbers across the southern Kalahari, Botswana. Bush encroachment is prevalent in semi‐arid sites where Acacia mellifera Benth. is widespread in communal areas and private ranches, showing that land tenure changes over the last 40 years have not avoided rangeland degradation. Herbaceous cover is dominated in intensively grazed areas by the annual grass Schmidtia kalahariensis Stent and in moderately grazed areas by the perennial grass Eragrostis lehmanniana Nees. Nutritious perennial grass species including Eragrostis pallens Hack. Ex Schinz remain prevalent in Wildlife Management Areas. Other ecological changes include the invasion of the exotic Prosopis glandulosa Torr. and dense stands of Rhigozum trichotomum Kuntze. in the arid southwest. Regional patterns of wildlife species show that the expansion of cattleposts and fenced ranches has led to large areas of low wildlife conservation value even in areas where cattle production is not practiced. Findings show the need for integrated landscape‐scale planning of land use if the ecological value and biodiversity of the southern Kalahari is to be retained.  相似文献   

9.
Reestablishment of perennial vegetation is often needed after wildfires to limit exotic species and restore ecosystem services. However, there is a growing body of evidence that questions if seeding after wildfires increases perennial vegetation and reduces exotic plants. The concern that seeding may not meet restoration goals is even more prevalent when native perennial vegetation is seeded after fire. We evaluated vegetation cover and density responses to broadcast seeding native perennial grasses and mountain big sagebrush (Artemisia tridentata Nutt. spp. vaseyana [Rydb.] Beetle) after wildfires in the western United States in six juniper (Juniperus occidentalis ssp. occidentalis Hook)‐dominated mountain big sagebrush communities for 3 years postfire. Seeding native perennial species compared to not seeding increased perennial grass and sagebrush cover and density. Perennial grass cover was 4.3 times greater in seeded compared to nonseeded areas. Sagebrush cover averaged 24 and less than 0.1% in seeded and nonseeded areas at the conclusion of the study, respectively. Seeding perennial species reduced exotic annual grass and annual forb cover and density. Exotic annual grass cover was 8.6 times greater in nonseeded compared to seeded areas 3 years postfire. Exotic annual grass cover increased over time in nonseeded areas but decreased in seeded areas by the third‐year postfire. Seeded areas were perennial‐dominated and nonseeded areas were annual‐dominated at the end of the study. Establishing perennial vegetation may be critical after wildfires in juniper‐dominated sagebrush steppe to prevent the development of annual‐dominated communities. Postwildfire seeding increased perennial vegetation and reduced exotic plants and justifies its use.  相似文献   

10.
Community assembly rules were formulated to evaluate the restoration of wet prairie along the periphery of the floodplain of the Kissimmee River in central Florida. Restoration of this plant community is expected to be driven by the reestablishment of flood pulse hydrology following the ongoing dechannelization of the river. Assembly rules were assessed with plant species composition and cover data from 15 permanent plots on the restored floodplain and 6 control plots on the channelized floodplain. These sites were sampled biannually from 1998 to 2010. Mean annual hydroperiods and depths confirmed that the frequency, duration and amplitude of post-restoration flood pulses at study sites were similar to historic reference locations. Elimination of pasture grasses (primarily Paspalum notatum Flüggé) following restoration of the flood pulse validated the hypothesized deletion rule for initial transformation of the wet prairie zone. Predicted increased dominance of obligate and facultative wetland species, a “community addition rule”, also was confirmed. An index of weighted averages of wetland indicator taxa showed significant short-term responses to antecedent hydroperiods and depths, and a restoration trajectory for wetland plant species. As predicted, recruitment of wet prairie indicator species from the extant seed bank correlated with reestablishment of the flood pulse, but was greatest when inundation extended from the wet season into the dry season. Restoration of a wetland plant community did not result in the predicted increase in species richness and diversity. Colonization and expansion of the exotic grass, Hemarthria altissima (Poir.) Stapf & C.E. Hubb., disrupted community reassembly processes. By summer 2007, mean cover of this species and several other exotic grasses increased to 24%, and necessitated herbicide treatments. Assembly rules provided useful predictions for the initial restoration of wet prairie vegetation, but were eventually confounded by the spread of an exotic species that was new to the regional flora.  相似文献   

11.
Soil microbial community structure was investigated by PLFA-analysis in four spruce forests in Norway. The maximum latitudinal distance between the sites was approximately 350 km. Bilberry Vaccinium myrtillus dominated the forest floor vegetation in the study sites, which were selected because of the vegetation type. Soil samples were taken from all four sites under close to 100% homogeneous ground cover of each of two feathermoss species, i.e. Hylocomium splendens or Pleurozium schreberi, respectively. These mosses are ubiquitous in the boreal forest and constitute an abundant component of the forest floor vegetation over vast areas. Since there are no studies on how these mosses affect soil microbial community structure, our first aim was to investigate the effect of moss species on soil microbial communities. Our second aim was to investigate whether microbial communities differ among geographically separated forest sites with similar vegetation across vegetation zones. Soil microbial community structure differed between the study sites, although they appeared similar in terms of vegetation and abiotic soil conditions. Study site was the most important predictor of the variation in the PLFAs, more important than moss species, although there was a tendency for separation of microbial community structure between the two moss species.  相似文献   

12.
Aim This study investigates changes in bird communities between 1998 and 2008 in four savanna sites in Swaziland and the extent to which shrub encroachment is responsible for these changes. Location Swaziland, southern Africa. Methods Generalized estimated equations were used to estimate changes in bird species occurrence between 1998 and 2008. Remote sensing of aerial photographs/satellite images was used to assess vegetation changes during the same period. We assessed the role of shrub encroachment for bird communities by testing the relationship between change in species occurrence and species habitat using a general linear model. We also estimated species richness, colonization and extinction and used general linear models to test the effects of vegetation changes on these parameters. Results More than half of the bird species showed a significant change in occurrence between 1998 and 2008: 32 species increased and 29 decreased. Change in species occurrence was significantly explained by species habitat. Species significantly increasing were mainly associated with wooded savanna, whereas species significantly decreasing were mainly associated with open savanna. Species richness decreased significantly, and this decrease was significantly explained by shrub cover increase at the plot scale (from 24% to 44% on average). Extinction at the plot scale was significantly influenced by the loss of grass cover, while colonization at the plot scale was influenced by tree cover increase. Main conclusions This study represents the first evidence of temporal changes in bird communities owing to shrub encroachment in southern Africa. Despite its short time frame (10 years), this study shows dramatic changes in both vegetation structure and bird community composition. This confirms the general concern for southern African bird species associated with open savanna if current trends continue.  相似文献   

13.
ABSTRACT Loss of nesting habitat is believed to be a factor in the decline of greater sage-grouse (Centrocercus urophasianus) throughout its range. Few data are available for sage-grouse in Mono County, California, USA, in the most southwestern portion of the species’ range. We studied habitat selection of nesting sage-grouse in Mono County, California, from 2003 to 2005 by capturing and radiotracking females to identify nesting locations. We sampled vegetation at nest sites and randomly selected sites within 200 m of nests and within each of 5 subareas within Mono County. Nest sites were characterized by 42.4 ± 1.3% ( ± SE) shrub canopy cover, 10.5 ± 1.0 cm residual grass height, and 2.7 ± 1.0% residual grass cover. Shrub cover was the only variable found to differentiate nest sites from randomly selected sites. Unlike some other studies, we did not find understory vegetation to be important for selecting nest sites. Mean shrub cover was 38.7 ± 1.5% at random sites within 200 m of nests and 33.6 ± 1.6% at random sites at the approximate scale of home ranges, indicating that nesting females selected nesting areas that contained denser shrubs than their home range, and nest sites that contained greater shrub cover than the vicinity immediately surrounding nests. Our results suggest that managers should consider managing for greater shrub cover in Mono County than what is currently called for in other parts of sage-grouse range and that management for sage-grouse habitat may need to be tied more closely to local conditions.  相似文献   

14.
This study evaluates the effects of oil palm plantations on environmental heterogeneity and diversity (α and β) of aquatic Heteroptera (semi-aquatic and aquatic species) in Amazon streams. We assessed eight streams located in forested areas and 12 in oil palm plantations. As expected, oil palm areas had lower environmental heterogeneity, despite the presence of riparian vegetation. Heteropteran communities differed in forest and oil palm areas, however, only semi-aquatic bugs were affected by environmental variables. Streams in oil palm plantations had lower α-diversity and distinct community structures when compared to forest sites. Oil palm plantation did not affect the β-diversity of semi-aquatic bugs, however, there was increased β-diversity of aquatic bugs in these areas. These results reflect the impacts of environmental heterogeneity generated by plantations next to riparian vegetation, inducing local diversity loss. Effects on β-diversity differed among groups of Heteroptera, mainly due to the differences in the life histories of each group. Semi-aquatic bugs seem to undergo environmental filtering, while aquatic bugs can be structured by limiting similarity. Thus, the management and land conservation strategies adopted to preserve ecosystems within oil palm plantations were insufficient for the protection of aquatic heteropteran communities. In summary, such conservation policies should account for the particularities of different groups of the aquatic ecosystem; especially for aquatic fauna, which are usually overlooked in conservation policies for the Brazilian Amazon.  相似文献   

15.
群落生物量和物种多样性是表征草地生态系统数量特征的重要指标。该研究以新疆阿尔泰山南麓两河源放牧区草地为研究对象,利用样方法对两河源不同放牧区的草地植被进行调查,分析研究区生物量和物种多样性变化,探讨二者与环境因子之间的关联性,为草地群落物种保护以及草地可持续利用提供理论依据。结果表明:(1) 两河源不同牧区间群落盖度、高度、植株密度、地上生物量和单位盖度生物量存在差异。(2) 两河源牧区草地群落地上生物量与群落盖度、植株密度呈显著正相关关系(P<0.05),且地上生物量主要受草地群落盖度的影响;不同牧区的物种多样性指数有一定差异,但物种分布相对均匀。(3)两河源牧区草地群落生物量及物种多样性主要受气温和降水的影响。  相似文献   

16.
《Ecological Engineering》2005,24(1-2):149-156
The presence and relative abundance of shrews and rodents have been studied in four different former brown coal mining areas in Lower Lusatia between 1995 and 1997 as well as 2001 and 2002. Several sites of undisturbed, i.e. non-mined, areas were included for comparison. Four species of shrews and four species of rodents have been found. Generally only few shrews were recorded in the Lower Lusatian area. Sorex araneus and S. minutus are the most abundant species, while Crocidura leucodon and C. suaveolens are rare. In the brown coal mining area shrews mainly occur in older sites with higher vegetation. The analysis of the distribution of rodent species revealed that Microtus arvalis having a comparably small spread potential, colonizes sites preferably with dense vegetation, while Apodemus sylvaticus was also found in sites with sparse vegetation. The relative abundance of all species is significantly higher in undisturbed sites. The colonization of the dumped openland areas is difficult for small mammals.  相似文献   

17.
We analyzed the dynamics of freshwater marsh vegetation of Taylor Slough in eastern Everglades National Park for the 1979 to 2003 period, focusing on cover of individual plant species and on cover and composition of marsh communities in areas potentially influenced by a canal pump station (“S332”) and its successor station (“S332D”). Vegetation change analysis incorporated the hydrologic record at these sites for three intervals: pre-S332 (1961–1980), S332 (1980–1999), post-S332 (1999–2002). During S332 and post-S332 intervals, water level in Taylor Slough was affected by operations of S332 and S332D. To relate vegetation change to plot-level hydrological conditions in Taylor Slough, we developed a weighted averaging regression and calibration model (WA) using data from the marl prairies of Everglades National Park and Big Cypress National Preserve. We examined vegetation pattern along five transects. Transects 1–3 were established in 1979 south of the water delivery structures, and were influenced by their operations. Transects 4 and 5 were established in 1997, the latter west of these structures and possibly under their influence. Transect 4 was established in the northern drainage basin of Taylor Slough, beyond the likely zones of influence of S332 and S332D. The composition of all three southern transects changed similarly after 1979. Where muhly grass (Muhlenbergia capillaris var. filipes) was once dominant, sawgrass (Cladium jamaicense), replaced it, while where sawgrass initially predominated, hydric species such as spikerush (Eleocharis cellulosa Torr.) overtook it. Most of the changes in species dominance in Transects 1–3 occurred after 1992, were mostly in place by 1995–1996, and continued through 1999, indicating how rapidly vegetation in seasonal Everglades marshes can respond to hydrological modifications. During the post-S332 period, these long-term trends began reversing. In the two northern transects, total cover and dominance of both muhly grass and sawgrass increased from 1997 to 2003. Thus, during the 1990’s, vegetation composition south of S332 became more like that of long hydroperiod marshes, but afterward it partially returned to its 1979 condition, i.e., a community characteristic of less prolonged flooding. In contrast, the vegetation change along the two northern transects since 1997 showed little relationship to hydrologic status.  相似文献   

18.
Question: Does the course of succession on a coal mine restored by hydroseeding converge with a reference community in terms of species composition and vegetation structure? What is the rate of succession on restored areas? How does the balance between local colonization and extinction rates change during succession? Which species group (native or hydroseeded) determines the successional process? Location: Large reclaimed coal mine in the north of Palencia province, northern Spain (42°50′N, 4°38′W). Methods: Between 2004 and 2009 we monitored annually vascular plant species cover in nine permanent plots (20 m2 each) at a restored mine; these plots were structured to account for site aspect (north, south and flat). Three identical permanent plots were established in the surrounding reference community and monitored in 2004 and 2009. We used detrended correspondence analysis to assess successional trends and rates of succession, generalized linear mixed models to derive patterns of vegetation structural changes and turnover through time, and Huisman–Olff–Fresco modelling to illustrate response of individual species through time. Results: The three restored mine areas exhibited a successional trend towards the reference community through time, although speed of convergence differed. However, after 6 years the restored sites had diverged considerably and this was greater than the dissimilarity reduction with respect to the reference community. Richness, diversity and native species cover increased linearly through time, whereas hydroseeded species cover decreased. Success of hydroseeded species initially differed in the three areas, and this was negatively related with native species colonization rates. Response patterns through time of ten hydroseeded and 20 most common native species are described. Conclusions: Vegetation structural parameters rapidly converged with the reference community, whereas compositional convergence needed much longer. At the same time, successional composition trajectories and rates were related to site properties (here aspect).  相似文献   

19.
Regeneration mechanisms of vegetation and the role of tree bark resistance to frequent fire were studied in savanna woodlands and grasslands in Gambella, Western Ethiopia. Data were collected from four sites, each with three replicate plots. The variation between sites in species composition and biomass correlated with the differences in fire intensity. Foliar cover was recorded for individual plant species regenerating by sprouting from older parts of plants that had survived fire or by seedlings; records were made during the dry season and at the beginning of the wet season. Data on bark thickness and tree diameters of 12 dominant tree species were also recorded. Both facultative and obligate sprouters significantly contributed to post‐fire recovery, comprising 98.5 % of total vegetation cover. The contribution of seedlings to cover and abundance immediately following fire was negligible, but seedling density increased in the beginning of the rainy season, 4 to 5 months after fire. The importance of the sprouting and seeding strategies varied between the different plant growth forms. The highest contribution to cover and frequency was made by the most abundant grass species, which reproduced in both ways. Facultative sprouters made up 67.3 % of the vegetation cover, out of which 54 % consisted of grasses. Broad‐leaved herbs and trees/shrubs regenerating mainly by sprouting made up 31.3 % of the vegetation cover. Adaptations to fire in tree species seemed to include the development of a thick bark, once the tree has passed seedling stages. Tree bark thickness and tree diameter at breast height were strongly correlated with the time taken for cambium to reach an assumed lethal temperature of 60°C when exposed to fire, which indicated that mature trees with thick barks might resist stronger fire better than, e.g., small or young trees and trees with thin bark. However, for a given bark thickness the cambium resistance to heat varied three‐fold among species. Hence, site differences in fire intensity seemed to influence the distribution of trees depending on their bark characteristics and resistance to fire.  相似文献   

20.
Land managers frequently apply vegetation removal and seeding treatments to restore ecosystem function following woody plant encroachment, invasive species spread, and wildfire. However, the long‐term outcome of these treatments is unclear due to a lack of widespread monitoring. We quantified how vegetation removal (via wildfire or management) with or without seeding and environmental conditions related to plant community composition change over time in 491 sites across the intermountain western United States. Most community metrics took over 10 years to reach baseline conditions posttreatment, with the slowest recovery observed for native perennial cover. Total cover was initially higher in sites with seeding after vegetation removal than sites with vegetation removal alone, but increased faster in sites with vegetation removal only. Seeding after vegetation removal was associated with rapidly increasing non‐native perennial cover and decreasing non‐native annual cover. Native perennial cover increased in vegetation removal sites irrespective of seeding and was suppressed by increasing non‐native perennial cover. Seeding was associated with higher non‐native richness across the monitoring period as well as initially higher, then declining, total and native species richness. Several cover and richness recovery metrics were positively associated with mean annual precipitation and negatively associated with mean annual temperature, whereas relationships with weather extremes depended on the lag time and season. Our results suggest that key plant groups, such as native perennials and non‐native annuals, respond to restoration treatments at divergent timescales and with different sensitivities to climate and weather variation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号