首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Transition from fossil energy sources to biogas production has resulted in a strong increase of leakage accidents from fermenters, but knowledge on the effects of fermentation product runoff into freshwater systems is currently restricted to direct toxicity due to oxygen depletion. This study provides first information about the influence of digestate runoff on the physicochemical habitat properties and the bacterial community composition of the hyporheic interstitial which is important in determining ecosystem functioning. We exposed natural stream beds to different concentrations of two different digestates from fermenters (corn and manure feedstock), hypothesizing that the digestate addition causes acute changes of the physicochemical parameters and has distinct effects on microbial community composition of the hyporheic interstitial depending on concentration and type of digestate. In line with the hypotheses, pH value, conductivity, redox potential and ammonium differed significantly from controls and among treatments after digestate addition, but only for a maximum of two days. pH values (controls: 7.8; corn: 7.9; manure: 7.9) and conductivity (controls: 813 μS/cm; corn: 969 μS/cm; manure: 1097 μS/cm) increased, the redox potential (controls: 153 mV; corn: 145 mV; manure: 144 mV) decreased the first two days. A high peak of ammonium-N was detected in the corn and manure treatments (controls: 5 mg/l, corn: 80 mg/l; manure: 60 mg/l) at day 1. In contrast, changes in bacterial community composition were detectable for longer periods of time (>5 days). Seventeen unique T-RF fingerprints of bacterial community response to each of the different digestate treatments (11 unique T-RFs in manure and 6 unique T-RFs in corn treatments) were found, suggesting that this approach provides a suitable ecological indicator for source tracking, e.g. in case of a biogas power plant leakage accident.  相似文献   

2.
With the expansion of urbanization in China, the integrated biogas-utilization system has gained its popularity for both renewable energy production and multi-level utilization of organic waste. To appraise the ecological performance of the integrated biogas system, systematic accounting is undertaken for an integrated “pig–biogas–fish” system in Hubei province, China. Based on Odum's concept of embodied solar energy as a unified measure for environmental resources, human labors and purchased goods, a set of emergetic indicators are employed to quantify the system sustainability. The results reveal that in a 20-year designed lifetime scenario, 94.69% of the total emergy inputs for the “pig–biogas–fish” system are attributed to purchased social resources. Three kinds of products, namely pig, biogas, fish are taken into consideration, and transformity of the “pig–biogas–fish” system is calculated as 1.26E + 05 seJ/J. Compared with the Chinese conventional agriculture system, the integrated biogas system shows a higher sustainability. Given that most biogas systems have a lifespan less than 20 years, for the “pig–biogas–fish” system, six other scenarios with different lifespans are studied to investigate the impact of the lifespan on sustainability. The findings suggest that the “pig–biogas–fish” system should be well operated for at least 8 years to prove its advantage in ecological economy over the conventional agriculture system. This has essential policy implications that local government should strengthen subsequent management on biogas production to extend the practical service life of the biogas system.  相似文献   

3.
Guinea pig is one of the most common livestock in rural communities of the Andes. The aim of this research was to study the anaerobic digestion of guinea pig manure in low-cost unheated tubular digesters at high altitude. To this end, the performance of two pilot digesters was monitored during 7 months; and two greenhouse designs were compared. In the dome roof digester the temperature and biogas production were significantly higher than in the shed roof digester. However, the biogas production rate was low (0.04 m(biogas)(3)m(digester)(-3) d(-1)), which is attributed to the low organic loading rate (0.6 kg(VS)m(digester)(-3)d(-1)) and temperature (23°C) of the system, among other factors. In a preliminary fertilization study, the potato yield per hectare was increased by 100% using the effluent as biofertilizer. Improving manure management techniques, increasing the organic loading rate and co digesting other substrates may be considered to enhance the process.  相似文献   

4.
Different mixtures were digested in a single-stage, batch, mixed, laboratory scale mesophilic anaerobic digester at the Biomass Research Centre Laboratory (University of Perugia). The yield and the composition of biogas from the different substrates were evaluated and the cumulative curves were estimated. Two experimental campaigns were carried out, the first on three mixtures (chicken, pig and bovine manures), the second on animal and vegetal biomasses (chicken and cow manure, olive husk) with different inocula (rumen fluid and digested sludge). In the first campaign pig manure mixture showed the maximum biogas production (0.35 Nm3/kg) and energy content (1.35 kWh/kg VS); in the second one the differences in produced biogas from the different inocula were analyzed: olive husk with piggery manure anaerobically digested as inoculum showed the higher biogas (0.28 Nm3/kg VS) and methane yield (0.11 Nm3/kg VS), corresponding to an energetic content of 1.07 kWh/kg VS. All data obtained from the laboratory scale anaerobic digester are comparable to the values in literature for several biomass and in particular for olive husk, dairy manure and chicken manure.  相似文献   

5.
An investigation of hydrodynamic conditions and their impacts on sludge digestion in internal circulation anaerobic digester (ICAD) was conducted. This novel sludge digester employing upflow reactor concept was composed of reaction zone, riser and downcomer, etc. Part of the generated biogas was injected to the reaction zone to intensify the circulation in ICAD in order to enhance the mass transfer. The advanced particle image velocimetry was used to explore the hydrodynamic conditions at micro scale. The results revealed that the average shear rate in the reaction zone and downcomer was linearly correlated with the Reynolds number; the shear rates in ICAD revealed an order as riser > downcomer > reaction zone. Thermophilic digestion of waste activated sludge in a pilot ICAD for 5.25 d combined with thermal pretreatment at 60 °C for 1 d was conducted under various hydrodynamic conditions. The survey at global level demonstrated that both the longer sludge retention time than the hydraulic retention time and the satisfactory mass transfer could be realized and as consequences, the maximal biogas production rate and VSS removal were obtained when the Reynolds number of the reaction zone was approximately 0.53. This digester under the optimal hydrodynamic conditions demonstrated good degradation capacity and buffer capability to resist various shock loadings.  相似文献   

6.
Surveying terrestrial invertebrates often requires lethal techniques that can also kill non-target vertebrates. Removing the desirable components of biodiversity is at odds with the philosophy of ecological restoration and biodiversity conservation more generally. Moreover, commonly used metrics generated by such survey approaches (e.g. abundance and species richness) are only indirectly related to the ecosystem services (e.g. pollination) that are often of primary interest. We examined the relationship between rates of dung removal (a direct measure of an ecosystem service) and dung beetle abundance and species richness in a temperate region of New South Wales, Australia, and examined if dung removal in revegetated riparian areas of different ages were trending monotonically toward rates in areas with mature native vegetation. Pellets of pig manure and conventional traps were left at study sites for 48 h to examine the relationships between rates of dung removal and dung beetle abundance and richness. Regressions of abundance and richness with average percent dung removal were positive and significant, demonstrating the potential of the method as a non-lethal proxy. While the dung removal method cannot determine the species responsible, percentage dung removal was more time-efficient, costing 4 min per sample, while abundance and richness cost 13 and 17 min, respectively. Despite variability among replicates of the same habitat type, the trajectory across the restoration gradient showed an increase from sites recently revegetated toward those with mature woody vegetation. We interpreted these results as a positive response of dung beetle activity and an indication of recovery of this ecosystem service. We argue that responses that can be collected efficiently such as dung removal should be used if restorationists have limited resources for data collection and analysis; non-specialists are involved; knowledge of ecosystem function is required, and animal ethics constrain options.  相似文献   

7.
《Process Biochemistry》2007,42(3):466-471
The present study is an attempt to investigate if a long-term acclimation of digester contents to low-temperatures would improve wastewater treatment at low-temperatures similar to mesophilic ranges. The feasibility of low-temperature (15 °C) anaerobic treatment of synthetic wastewater in an upflow anaerobic sludge blanket reactor was studied using inoculum from a cattle manure digester adapted to 15 °C. The effect of varying hydraulic retention time was studied by decreasing the retention time from 7 days to 1 day. Under a constant temperature of 15 °C with a hydraulic retention time of 1 day and a corresponding loading rate of 7.2 g-chemical oxygen demand (COD)/l/day, 90–95% removal efficiency was achieved. The methane production of 250 l/kg-COD removed at standard temperature pressure (STP) is a major highlight of the study complementing the high treatment efficiency achieved. Loading rates >5 g-COD/l/day was accompanied by increase in effluent volatile fatty acids (VFA) concentrations. Due to the presence of a high concentration of active granular sludge in the lower compartment of the reactor, 80% reduction of COD occurred within the granular bed of the reactor. Treatment of low strength wastewater for a short period showed 70–75% removal efficiencies with methane yield of 300 l/kg-COD removed. Specific methanogenic activity profiles of the anaerobic biomass revealed low-temperature (15 °C) optima, indicating selection of cold-active microorganisms during the acclimation process. The SMA assays also indicate the development of a putatively psychrophilic acetoclastic methanogenic community and biogas analysis showed 75% efficiency in energy recovery as methane.  相似文献   

8.
《Process Biochemistry》2007,42(4):662-668
Phosphorus limitation was found in the fermentation production of lincomycin based on the phosphorus elemental analysis. Phosphorus was thus fed into the fermentation system to improve the lincomycin production, and 16 kg fed-phosphorus increased the lincomycin yield by 14.4% compared to that without the phosphorus feeding. As low concentration of dissolved oxygen limited the growth of mycelia, the phosphorus in the base medium and fed-batch were adjusted to give a more reasonable phosphorus distribution. When the phosphorus in the base medium was decreased to 29.4 kg from 33.4 kg and the fed phosphorus was increased from 16.0 kg to 20.0 kg in a 100 m3 fermenter, the final lincomycin titer increased by 21.6% compared to that the un-fed process. The mycelia growth and lincomycin production rates were also increased at the production stage. The phosphorus feeding and adjustment distribution strategy might be applied to other industrial fermentation processes to improve the process efficiency and productivity.  相似文献   

9.
Mycophenolic acid (MPA) was produced from Penicillium brevicompactum by solid-state fermentation (SSF) using pearl barley, and submerged fermentation (SmF) using mannitol. It was found that SSF was superior to SmF in terms of MPA concentration (1219 mg/L vs. 60 mg/L after 144 h fermentation), and the product yields were 6.1 mg/g pearl barley for SSF and 1.2 mg/g mannitol for SmF. The volumetric productivities were 8.5 and 0.42 mg/L h for SSF and SmF, respectively.The optimum solid substrate of SSF for MPA production was pearl barley, producing 5470 mg/kg compared with wheat bran (1601 mg/kg), oat (3717 mg/kg) and rice (2597 mg/kg). The optimum moisture content, incubation time and inoculum concentrations were 70%, 144 h and 6%, respectively. Neither the addition of mannitol or (NH4)2HPO4 nor adjustment of media pH within the range of 3–7 significantly enhanced MPA production.MPA production by SSF using a packed-bed bioreactor was performed and an increased maximum production of MPA 6.9 mg/g was achieved at 168 h incubation time. The higher volumetric productivity and concentrations makes SSF an attractive alternative to SmF for MPA production.  相似文献   

10.
《Process Biochemistry》2007,42(1):57-64
Crop residues can be used for biogas production in farm scale reactors. Use of a process temperature below mesophilic conditions reduces the need for heating as well as investment and operating costs, although it may also reduce the methane yield. In the present study the effect of temperature on net energy output was studied using sugar beet tops and straw as substrates for two pilot-scale reactors. Digestion was found to be stable down to 11 °C and optimal methane yield was obtained at 30 °C. The methane yield and process performance was studied at 15 °C and 30 °C as organic loading rates were increased. It was found that the highest net energy production would be achieved at 30 °C with a loading rate of 3.3 kg VS m−3 day−1. Running a low-cost process at ambient temperatures would give a net energy output of 60% of that obtained at 30 °C.  相似文献   

11.
To clarify how dung patches from grazing yaks affect soil and pasture in the alpine meadow of Qinghai-Tibetan Plateau, yak dung was collected, mixed and redistributed in a cold grazing season. The soil physical and chemical properties and forage growth were then monitored under the yak dung patch, and 10 cm and 50 cm from the edge of yak dung patches. The result has shown that yak dung significantly improved soil moisture, total organic matter, and soil available N and P under or close to the dung patches. The forage production at 10 cm from the dung patch (303 g/m2) was significantly higher than that at 50 cm from the dung patch (control) (284 g/m2) in the second year, while the production was similar to the control in the first and the third year. The process of yak dung decomposition was slow and yak dung remains were observed 3 years after the drop. The dung patches also formed a strong ‘shell’, very difficult for plant underneath to penetrate and grow. Therefore, almost all plants under yak dung patches died, leading to decline in forage yield in the first, second, and the third year. In practice in the Qinghai-Tibetan Plateau regions, yak dung is often collected as fuel by the local farmers. Removing yak dung from alpine meadow may on one hand lead to losses in soil nutrients, but on the other hand reduces some of the negative effects, e.g. the reduction of forage yield under yak dung patches.  相似文献   

12.
The production of bioethanol, biohydrogen and biogas from wheat straw was investigated within a biorefinery framework. Initially, wheat straw was hydrothermally liberated to a cellulose rich fiber fraction and a hemicellulose rich liquid fraction (hydrolysate). Enzymatic hydrolysis and subsequent fermentation of cellulose yielded 0.41 g-ethanol/g-glucose, while dark fermentation of hydrolysate produced 178.0 ml-H2/g-sugars. The effluents from both bioethanol and biohydrogen processes were further used to produce methane with the yields of 0.324 and 0.381 m3/kg volatile solids (VS)added, respectively. Additionally, evaluation of six different wheat straw-to-biofuel production scenaria showed that either use of wheat straw for biogas production or multi-fuel production were the energetically most efficient processes compared to production of mono-fuel such as bioethanol when fermenting C6 sugars alone. Thus, multiple biofuels production from wheat straw can increase the efficiency for material and energy and can presumably be more economical process for biomass utilization.  相似文献   

13.
Han  Rui  Liu  Li  Meng  Yan  Han  Hairong  Xiong  Rongbo  Li  Yi  Chen  Laisheng 《Biotechnology letters》2021,43(7):1337-1348

The present study aims to investigate microbial community structures household biogas digesters with different raw materials in Qinghai Plateau rural. High-throughput 16S rRNA gene sequencing analysis revealed that Firmicutes, Bacteroidetes, and Proteobacteria are the most abundant bacterial phyla (64.08%). Prevotella group 7 was the most abundant genus in digester YL9 and YL10 (69.72% and 26.96%, respectively) using vegetable waste raw materials. Trichococcus exhibited the highest abundance (14.55%) in YL1 digester using sheep and pig manure. Clostridium sensu stricto 1 (13.89%) and Synergistaceae_uncultured (15.52%) comprised the highest abundances in digester YL5 with mixed raw materials (i.e., dairy manure, sheep manure, and human feces). In addition, Proteiniphilum and Pseudomonas exhibited the highest abundances among bacterial genera in YL4 digester using pig manure. Methanomicrobiales was the most dominant archaeal communities, ranging from 13.35% to 81.34% in abundance. Methanocorpusculum exhibited dominant abundances in all digesters using various raw materials. Methanogenium was the most abundant archaeal genera in YL4 and YL6 digesters, which consume pig manure as primary raw material. In addition, Methanosarcina and Methanosaeta exhibited the highest abundances in digester YL1 (55.03%) and YL9 (51.40%), respectively. Moreover, fermentation temperatures and pH both contributed to the archaeal and bacterial community structures in all the investigated digesters. Specially, fermentation temperature showed positive correlation with the abundances of Synergistaceae_uncultured, Methanogenium, and Methanosaeta, and pH was positively correlated with the abundances of Prevotella group 7 and Methanosarcina abundances.

  相似文献   

14.
Two experiments were undertaken to investigate the influence of (1) pig bodyweight and (2) dietary fibre content of the diet on the in vitro gas production of sugar beet pulp fibre using faecal inoculum.In the first experiment, inocula prepared from young pigs (Y; 16–50 kg), growing pigs (G; 62–93 kg) and sows (S; 216–240 kg) were compared. Sugar beet pulp, hydrolysed in vitro with pepsin and then pancreatin, was used as the fermentation substrate. The cumulated gas productions over 144 h were modelled and the kinetics parameters compared. Lag times (Y: 4.6 h; G: 6.4 h; S: 9.2 h) and half-times to asymptote (Y: 14.7 h; G: 15.9 h; S: 20.8 h) increased with pig bodyweight (P<0.001) and the fractional degradation rates of the substrate differed between the pig categories (Y: 0.110 h−1; G: 0.115 h−1; S: 0.100 h−1; P<0.001). The final gas production was not affected (P=0.10) by the inoculum source.In the second experiment hydrolysed sugar beet pulp was fermented with four inocula prepared from pigs fed diets differing in their total and soluble dietary fibre contents, i.e. low fibre diet rich in soluble fibre (LOW-S) or in insoluble fibre (LOW-I) or high fibre diet rich in soluble fibre (HIGH-S) or in insoluble fibre (HIGH-I). The total and the soluble dietary fibres influenced the kinetics of gas production. The presence of soluble fibres decreased the lag times, whatever the total dietary fibre content (2.7 h for LOW-S versus 3.5 h for LOW-I, 4.0 h for HIGH-S versus 4.4 h for HIGH-I; P<0.001). The half-times to asymptote were higher with the low fibre diets (P<0.001) and, for similar total dietary fibre contents, they were lower when the proportion of soluble fibres increased (LOW-S: 9.9 h; LOW-I: 11.4 h; HIGH-S: 8.9 h; HIGH-I: 10.1 h; P<0.001). The fractional degradation rates of the substrate were the highest with the fibre-rich diet containing a high proportion of soluble fibres (0.158 h−1; P<0.001).In conclusion, the bodyweight of the faeces donors and the dietary fibre composition of the pig diet influence the in vitro fermentation kinetics of hydrolysed sugar beet pulp, but not the final gas production.  相似文献   

15.
《Process Biochemistry》2014,49(12):2214-2219
We had proposed a novel method to reduce ammonia inhibition during thermophilic anaerobic digestion via recirculation of water-washed biogas into the headspace (R1 system) or liquid phase (R2 system) of reactors. The feasibility of reducing the ratio of recirculated biogas to biogas produced (called the biogas recirculation ratio) was investigated in the present study. Thermophilic anaerobic digestion at 53 °C and 60 °C with a biogas recirculation ratio of 150 facilitated stable digestion performance and biogas production at a higher organic loading rate of 7 g/L/d in the R1 system, while the ammonia removal efficiency increased 1.23-fold when the temperature increased from 53 °C to 60 °C. At 60 °C, the biogas recirculation ratios in the R1 and R2 systems decreased to 50 and 10, and the ammonia absorption rates were 6.1 and 8.3 mmol/L/d, respectively, without decreasing the anaerobic digestion performance. The ammonia absorption rate of 8.3 mmol/L/d in the R2 system was higher than the rate of 7.8 mmol/L/d at the biogas recirculation ratio of 150 in the R1 system. The hydrogen sulfide content in the biogas was reduced to less than 50 ppm by supplying air at 3% of the amount of biogas produced into the reactor.  相似文献   

16.
The aim of this study was to explore the potential of three aquatic weeds, water hyacinth, cabomba, and salvinia, as substrates for anaerobic digestion. A set of four pilot-scale, batch digestions were undertaken to assess the yield and quality (% methane) of biogas from each plant species, and the rate of degradation. A set of 56 small-scale (100 mL) biological methane potential (BMP) tests were designed to test the repeatability of the digestions, and the impact of drying and nutrient addition.The results of the pilot-scale digestions show that both water hyacinth and cabomba are readily degradable, yielding 267 L biogas kg?1 VS and 221 L biogas kg?1 VS, respectively, with methane content of approximately 50%. There is evidence that the cabomba fed reactor leaked midway through the digestion therefore the biogas yield is potentially higher than measured in this case. Salvinia proved to be less readily degradable with a yield of 155 L biogas kg?1 VS at a quality of 50% methane.The BMPs showed that the variability was low for water hyacinth and cabomba but high for salvinia. They also showed that the addition of nutrient solution and manure did not significantly increase the biogas yields and that drying was detrimental to the anaerobic degradability of all three substrates.Based on these results treatment of both water hyacinth and cabomba by anaerobic digestion can be recommended. Anaerobic digestion of Salvinia cannot be recommended due to the low biogas yields and high variability for this substrate.  相似文献   

17.
The anaerobic digestion technology is a biological treatment widely used to reduce the pollution load of wet waste biomass. In this work we present the results obtained by performing extensive experiments of anaerobic digestion of slaughterhouse waste, tomato industry waste and olive oil industry waste in continuous mode, which were designed to demonstrate that anaerobic digestion is an effective technology from an environmental and economic point of view.Biogas yields obtained are between 35.22 and 5.45 Nm3 biogas/m3 olive oil industry waste and tomato industry waste respectively and the slaughterhouse wastes achieve intermediate production, 30.86 Nm3 biogas/m3 municipal slaughterhouse waste and 22.53 Nm3 biogas/m3 Iberian pig slaughterhouse waste. Moreover, it possible to degrade between 63.46 and 75.3% of the initial organic matter.If these results are analyzed, the environmental, energetic economic benefits of anaerobic digestion can be quantified. Biomethanation of all these wastes generated annually in Extremadura could prevent the emission of 134,772 t of equivalent carbon dioxide, generate an energy similar to that provided by 2826 toe and reach payback times from 3.29 to 3.75 years for anaerobic digestion plant designed to treat the wastes generated by a medium-sized industry. So, we have fulfilled all the planned aims.  相似文献   

18.
An in vitro model was used to study the fermentation characteristics of carbohydrate fractions of hulless barley (hB), in comparison to hulled barley (HB), hulled oat and oat groats (OG) in the pig intestine. For this purpose, 6 hulless barley cultivars (hB), varying in β-glucan content (36–99 g/kg DM), were compared to 3 HB cultivars, 2 oat groat samples (OG), 3 oat varieties and a reference sample of wheat. The residue of a pepsin–pancreatin hydrolysis was incubated in a buffered mineral solution inoculated with pig faeces. Gas production, proportional to the amount of fermented carbohydrates, was measured for 48 h and kinetics modelled. The fermented solution was subsequently analyzed for microbial production of short-chain fatty acids (SCFA) and ammonia. In vitro dry matter degradability varied according to ingredient (P<0.001). Higher values were observed for OG, ranging from 0.88 to 0.99 as compared to oat, hB and HB, for which degradability ranged from 0.63 to 0.73, 0.68 to 0.80 and 0.69 to 0.71, respectively. A “cereal type” effect (P<0.05) was observed on fermentation kinetics parameters. Total gas production was higher (P<0.05) with hB (224 ml/g DM incubated) than with HB and oat (188 and 55 ml/g DM incubated, respectively). No difference was observed between hB cultivars (P>0.05) for total gas production but differences (P<0.001) were found for lag time and the fractional rate of degradation. Hulless barley cultivar CDC Fibar (waxy starch) and CDC McGwire (normal starch) started to ferment sooner (lag time of 0.7 and 0.9 h, respectively) than SH99250 (high amylose starch; 1.7 h). The fractional rate of degradation was similar in both hB and OG (0.15/h on average), which was higher than that of HB (0.12/h). The production of SCFA was also higher (P<0.05) with hB (6.1 mmol/g DM incubated, on average) than with HB and oat (4.9 and 2.9 mmol/g DM incubated, respectively). Similar trends were found for SCFA production expressed per g fermented carbohydrates, with higher butyrate and lower acetate ratio. In contrast, oat fermentation generated higher (P<0.05) ammonia concentration (1.4 mmol/g DM incubated, on average) than hB (1.0 mmol/g DM incubated). In summary, hulless barleys, irrespective of cultivar type had higher in vitro fermentability and produced more SCFA and less ammonia than hulled barley and oat. Thus, hulless barleys have a better potential to be used in pig nutrition to manipulate the fermentation activity in the intestine of pigs.  相似文献   

19.
Anaerobic digestion is widely used in bioenergy recovery from waste. In this study, a half-submerged, integrated, two-phase anaerobic reactor consisting of a top roller acting as an acidogenic unit and a recycling bottom reactor acting as a methanogenic unit was developed for the codigestion of wheat straw (WS) and fruit/vegetable waste (FVW). The reactor was operated for 21 batches (nearly 300 d). Anaerobic granular sludge was inoculated into the methanogenic unit. The residence time for the mixed waste was maintained as 10 d when the operation stabilized, and the temperature was kept at 35 °C. The highest organic loading rate was 1.37 kg VS/(m3 d), and the maximum daily biogas production was 328 L/d. Volatile solid removal efficiencies exceeded 85%. WS digestion could be confirmed, and efficiency was affected by both the ratio of WS to FVW and the loading rate. The dominant bacteria were Bacteroides-like species, which are involved in glycan and cellulose decomposition. Methanogenic community structures, pH levels, and volatile fatty acid concentrations in the acidogenic and methanogenic units differed, indicating successful phase separation. This novel reactor can improve the mass transfer and microbial cooperation between acidogenic and methanogenic units and can efficiently and steady codigest solid waste.  相似文献   

20.
In China, renewable resources have attracted rising concerns in the sustainable development of circular agricultural economy because renewable resources are considered as a clean energy source and substitutes for chemical fertilizer in rural areas. However, a comprehensive analysis on renewable resources' effect on agricultural ecosystem is still absent. To fill the blank, this paper chose two typical planting-soil ecosystems including greenhouse-soil ecosystem and orchard-soil ecosystem to evaluate the amount of nonrenewable energy (NE) saving, ecological benefits and economic benefits by utilizing biogas fertilizer, in comparison to those by using chemical fertilizer. The results show that compared with chemical fertilizer treatment, in the greenhouse-soil ecosystem, the biogas fertilizer treatment can save 82667.18 MJ NE per hectare, reduce 6554.12 kg carbon dioxide (CO2) emission per hectare, improve soil fertility (soil organic matter, ammonia nitrogen, available phosphorus and available potassium), enhance plant quality (dry matter, solid content, reduced sugar, VC and soluble protein content), increase plant yield and add to 59,232.5 Yuan net income per hectare. We also found out that the optimum ratio of irrigation water and biogas fertilizer is water irrigated with 50% biogas slurry, which can lead to best fruit yield and quality in the orchard-soil ecosystem. It is concluded that promotion of biogas fertilizer can help China to realize low-carbon circular development of agriculture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号