首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Cytotherapy》2021,23(9):820-832
Background aimsT cells engineered with synthetic receptors have delivered powerful therapeutic results for patients with relapsed/refractory hematologic malignancies. The authors have recently described the T-cell antigen coupler (TAC) receptor, which co-opts the endogenous T-cell receptor (TCR) and activates engineered T cells in an HLA-independent manner. Here the authors describe the evolution of a next-generation TAC receptor with a focus on developing a TAC-engineered T cell for multiple myeloma.MethodsTo optimize the TAC scaffold, the authors employed a bona fide antigen-binding domain derived from the B-cell maturation antigen-specific monoclonal antibody C11D5.3, which has been used successfully in the clinic. The authors first tested humanized versions of the UCHT1 domain, which is used by the TAC to co-opt the TCR. The authors further discovered that the signal peptide affected surface expression of the TAC receptor. Higher density of the TAC receptor enhanced target binding in vitro, which translated into higher levels of Lck at the immunological synapse and stronger proliferation when only receptor–ligand interactions were present.ResultsThe authors observed that the humanized UCHT1 improved surface expression and in vivo efficacy. Using TAC T cells derived from both healthy donors and multiple myeloma patients, the authors determined that despite the influence of receptor density on early activation events and effector function, receptor density did not impact late effector functions in vitro, nor did the receptor density affect in vivo efficacy.ConclusionsThe modifications to the TAC scaffold described herein represent an important step in the evolution of this technology, which tolerates a range of expression levels without impacting therapeutic efficacy.  相似文献   

2.
A proliferation-inducing ligand (APRIL), a member of the TNF ligand superfamily with an important role in humoral immunity, is also implicated in several cancers as a prosurvival factor. APRIL binds two different TNF receptors, B cell maturation antigen (BCMA) and transmembrane activator and cylclophilin ligand interactor (TACI), and also interacts independently with heparan sulfate proteoglycans. Because APRIL shares binding of the TNF receptors with B cell activation factor, separating the precise signaling pathways activated by either ligand in a given context has proven quite difficult. In this study, we have used the protein design algorithm FoldX to successfully generate a BCMA-specific variant of APRIL, APRIL-R206E, and two TACI-selective variants, D132F and D132Y. These APRIL variants show selective activity toward their receptors in several in vitro assays. Moreover, we have used these ligands to show that BCMA and TACI have a distinct role in APRIL-induced B cell stimulation. We conclude that these ligands are useful tools for studying APRIL biology in the context of individual receptor activation.  相似文献   

3.
《Cytotherapy》2023,25(9):913-919
Immunomodulatory cytokines can alter the tumor microenvironment and promote tumor eradication. Interleukin (IL)-27 is a pleiotropic cytokine that has potential to augment anti-tumor immunity while also facilitating anti-myeloma activity. We engineered human T cells to express a recombinant single-chain (sc)IL-27 and a synthetic antigen receptor targeting the myeloma antigen, B-cell maturation antigen, and evaluated the anti-tumor function of T cells bearing scIL-27 in vitro and in vivo. We discovered that T cells bearing scIL-27 sustained anti-tumor immunity and cytotoxicity yet manifested a profound reduction in pro-inflammatory cytokines granulocyte-macrophage colony-stimulating factor and tumor necrosis factor alpha. IL-27–expressing T cells therefore present a potential avenue to avert treatment-related toxicities commonly associated with engineered T-cell therapy due to the reduced pro-inflammatory cytokine profile.  相似文献   

4.
We have previously characterized the activities, in vitro, of two different helper T-cell subpopulations, primed with human γ-globulin (HGG). One T-cell subpopulation helps the response of B cells to determinants (e.g., haptens) bound to the same antigen to which the T cells are primed (specific help); the other helper T-cell subpopulation responds to the same priming antigen by secreting a nonspecific molecule which helps B-cell responses to erythrocyte antigens co-cultured with the priming antigen (nonspecific help). These subpopulations also differ in their frequency and dose response to antigen, both in vivo and in vitro. They are similarly susceptible to the induction of unresponsiveness to HGG. In order to determine whether these T-cell subpopulations share or differ in their ranges of antigen recognition, we have compared the reaction of these two HGG-primed helper T-cell subpopulations to a number of γ-globulins (γG's) from other species. Plaque-forming cells generated in response to HGG shared little or no cross-reactivity with any of the heterologous (γG's) tested. In contrast, HGG-primed nonspecific helper T cells responded with significant cross-reactivity when challenged in vitro with dog γG, but HGG-primed specific helper T cells did not respond with any such cross-reactivity. No other heterologous γG tested stimulated any significant cross-reactivity from either HGG-primed T-cell subpopulation. Thus, these two T-cell subpopulations differ in their antigenic recognition. Possible explanations of these data include: (i) a difference in receptor specificity; (ii) a difference in the receptor affinity; (iii) a difference in Ia determinants of the two subpopulations.  相似文献   

5.
《Cytotherapy》2023,25(6):615-624
Background aimsMost current chimeric antigen receptor (CAR) T cells are generated by viral transduction, which induces persistent expression of CARs and may cause serious undesirable effects. Messenger RNA (mRNA)-based approaches in manufacturing CAR T cells are being developed to overcome these challenges. However, the most common method of delivering mRNA to T cells is electroporation, which can be toxic to cells.MethodsThe authors designed and engineered an exosome delivery platform using the bacteriophage MS2 system in combination with the highly expressed protein lysosome-associated membrane protein 2 isoform B on exosomes.ResultsThe authors’ delivery platform achieved specific loading and delivery of mRNA into target cells and achieved expression of specific proteins, and anti-CD3/CD28 single-chain variable fragments (scFvs) expressed outside the exosomal membrane effectively activated primary T cells in a similar way to commercial magnetic beads.ConclusionsThe delivery of CAR mRNA and anti-CD3/CD28 scFvs via designed exosomes can be used for ex vivo production of CAR T cells with cancer cell killing capacity. The authors’ results indicate the potential applications of the engineered exosome delivery platform for direct conversion of primary T cells to CAR T cells while providing a novel strategy for producing CAR T cells in vivo.  相似文献   

6.
Cancer can be effectively targeted using a patient's own T cells equipped with synthetic receptors, including chimeric antigen receptors (CARs) that redirect and reprogram these lymphocytes to mediate tumor rejection. Over the past two decades, several strategies to manufacture genetically engineered T cells have been proposed, with the goal of generating optimally functional cellular products for adoptive transfer. Based on this work, protocols for manufacturing clinical-grade CAR T cells have been established, but these complex methods have been used to treat only a few hundred individuals. As CAR T-cell therapy progresses into later-phase clinical trials and becomes an option for more patients, a major consideration for academic institutions and industry is developing robust manufacturing processes that will permit scaling-out production of immunogene T-cell therapies in a reproducible and efficient manner. In this review, we will discuss the steps involved in cell processing, the major obstacles surrounding T-cell manufacturing platforms and the approaches for improving cellular product potency. Finally, we will address the challenges of expanding CAR T-cell therapy to a global patient population.  相似文献   

7.
Lymph node cells from BALB/c mice immunized with ovalbumin or human γ-globulin were restimulated in vitro with these antigens and assayed for antigen-induced proliferation. The proliferative response was shown to be antigen specific and T cell dependent. A rabbit antiserum to envelope and core proteins of AKR murine leukemia virus was found to inhibit antigen-induced T-cell proliferation. The IgG fraction and F(ab′)2 fragments of the antiserum were also inhibitory. The inhibition occurred after the initial step of antigen-T cell interaction and viral absorption studies showed the inhibition to be specific for anti-AKR virus antibodies. A hypothesis for the mechanism of inhibition is discussed in relation to a functional role for endogenous murine leukemia virus.  相似文献   

8.
Monovalent major histocompatibility complex-peptide complexes dissociate within seconds from the T-cell receptor (TCR), indicating that dimerization/multimerization may be important during early stages of T-cell activation. Soluble bivalent HLA-DR2.myelin basic protein (MBP) peptide complexes were expressed by replacing the F(ab) arms of an IgG2a antibody with HLA-DR2.MBP peptide complexes. The binding of bivalent HLA-DR2.peptide complexes to recombinant TCR was examined by surface plasmon resonance. The bivalent nature greatly enhanced TCR binding and slowed dissociation from the TCR, with a t((1)/(2)) of 2.1 to 4.6 min. Soluble bivalent HLA-DR2.MBP peptide complexes activated antigen-specific T-cells in the absence of antigen presenting cells. In contrast, soluble antibodies to the TCR.CD3 complex were ineffective, indicating that they failed to induce an active TCR dimer. TCR/CD3 antibodies induced T-cell proliferation when bound by antigen presenting cells that expressed Fc receptors. In the presence of dendritic cells, bivalent HLA-DR2. MBP peptide complexes induced T-cell activation at >100-fold lower concentrations than TCR/CD3 antibodies and were also superior to peptide or antigen. These results demonstrate that bivalent HLA-DR. peptide complexes represent effective ligands for activation of the TCR. The data support a role for TCR dimerization in early TCR signaling and kinetic proofreading.  相似文献   

9.
《Cytotherapy》2023,25(3):323-329
Background aimsThe most widely accepted starting materials for chimeric antigen receptor T-cell manufacture are autologous CD3+ T cells obtained via the process of leukapheresis, also known as T-cell harvest. As this treatment modality gains momentum and apheresis units struggle to meet demand for harvest slots, strategies to streamline this critical step are warranted.MethodsThis retrospective review of 262 T-cell harvests, with a control cohort of healthy donors, analyzed the parameters impacting CD3+ T-cell yield in adults with B-cell malignancies. The overall aim was to design a novel predictive algorithm to guide the required processed blood volume (PBV) (L) on the apheresis machine to achieve a specific CD3+ target yield.ResultsFactors associated with CD3+ T-cell yield on multivariate analysis included peripheral blood CD3+ count (natural log, ×109/L), hematocrit (HCT) and PBV with coefficients of 0.86 (95% confidence interval [CI], 0.80–0.92, P < 0.001), 1.30 (95% CI, 0.51–2.08, P = 0.001) and 0.09 (95% CI, 0.07–0.11, P < 0.001), respectively. The authors’ model, incorporating CD3+ cell count, HCT and PBV (L), with an adjusted R2 of 0.87 and root-mean-square error of 0.26 in the training dataset, was highly predictive of CD3+ cell yield in the testing dataset. An online application to estimate PBV using this algorithm can be accessed at https://cd3yield.shinyapps.io/cd3yield/.ConclusionsThe authors propose a transferrable model that incorporates clinical and laboratory variables accessible pre-harvest for use across the field of T-cell therapy. Pending further validation, such a model may be used to generate an individual leukapheresis plan and streamline the process of cell harvest, a well-recognized bottleneck in the industry.  相似文献   

10.
《Cytotherapy》2023,25(7):739-749
Background aimsCombination therapy is being actively explored to improve the efficacy and safety of anti-CD19 chimeric antigen receptor T-cell (CART19) therapy, among which Bruton tyrosine kinase inhibitors (BTKIs) are highly expected. BTKIs may modulate T-cell function and remodel the tumor micro-environment (TME), but the exact mechanisms involved and the steps required to transform different BTKIs into clinical applications need further investigation.MethodsWe examined the impacts of BTKIs on T-cell and CART19 phenotype and functionality in vitro and further explored the mechanisms. We evaluated the efficacy and safety of CART19 concurrent with BTKIs in vitro and in vivo. Moreover, we investigated the effects of BTKIs on TME in a syngeneic lymphoma model.ResultsHere we identified that the three BTKIs, ibrutinib, zanubrutinib and orelabrutinib, attenuated CART19 exhaustion mediated by tonic signaling, T-cell receptor (TCR) activation and antigen stimulation. Mechanistically, BTKIs markedly suppressed CD3-ζ phosphorylation of both chimeric antigen receptor and TCR and downregulated the expression of genes associated with T-cell activation signaling pathways. Moreover, BTKIs decreased interleukin 6 and tumor necrosis factor alpha release in vitro and in vivo. In a syngeneic lymphoma model, BTKIs reprogrammed macrophages to the M1 subtype and polarized T helper (Th) cells toward the Th1 subtype.ConclusionsOur data revealed that BTKIs preserved T-cell and CART19 functionality under persistent antigen exposure and further demonstrated that BTKI administration was a potential strategy for mitigating cytokine release syndrome after CART19 treatment. Our study lays the experimental foundation for the rational application of BTKIs combined with CART19 in clinical practice.  相似文献   

11.
Background aimsThe generation of gene-modified T cells for clinical adoptive T-cell therapy is challenged by the potential instability and concomitant high financial costs of critical T-cell activation and transduction components. As part of a clinical trial to treat patients with metastatic renal cell cancer with autologous T cells engineered with a chimeric antigen receptor (CAR) recognizing carboxy-anhydrase-IX (CAIX), we evaluated functional stability of the retroviral vector, T-cell activation agent Orthoclone OKT3 (Janssen-Cilag, Beerse, Belgium) monoclonal antibody (mAb) and the transduction promoting agent RetroNectin (Takara, Otsu, Japan).MethodsCarboxy-anhydrase-IX chimeric antigen receptor retrovirus-containing culture supernatants (RTVsups) were generated from two packaging cell lines, Phoenix-Ampho (BioReliance, Sterling, UK) and PG13, and stored at ?80°C over 10 years and 14 years. For Orthoclone OKT3 and RetroNectin, aliquots for single use were prepared and stored at ?80°C. Transduction efficiencies of both batches of RTVsups were analyzed using the same lots of cryopreserved donor peripheral blood mononuclear cells, Orthoclone OKT3 and RetroNectin over time.ResultsWe revisit here an earlier report on the long-term functional stability of the RTVsup, observed to be 9 years, and demonstrate that this stability is at least 14 years. Also, we now demonstrate that Orthoclone OKT3 and RetroNectin are functionally stable for periods of at least 6 years and 10 years.ConclusionsHigh-cost critical components for adoptive T-cell therapy can be preserved for ≥10 years when prepared in aliquots for single use and stored at ?80°C. These findings may significantly facilitate, and decrease the financial risks of, clinical application of gene-modified T cells in multicenter studies.  相似文献   

12.
《Cytotherapy》2021,23(8):694-703
Background aimsPreferentially expressed antigen in melanoma (PRAME) is a cancer/testis antigen that is overexpressed in many human malignancies and poorly expressed or absent in healthy tissues, making it a good target for anti-cancer immunotherapy. Development of an effective off-the-shelf adoptive T-cell therapy for patients with relapsed or refractory solid tumors and hematological malignancies expressing PRAME antigen requires the identification of major histocompatibility complex (MHC) class I and II PRAME antigens recognized by the tumor-associated antigen (TAA) T-cell product. The authors therefore set out to extend the repertoire of HLA-restricted PRAME peptide epitopes beyond the few already characterized.MethodsPeptide libraries of 125 overlapping 15-mer peptides spanning the entire PRAME protein sequence were used to identify HLA class I- and II-restricted epitopes. The authors also determined the HLA restriction of the identified epitopes.ResultsPRAME-specific T-cell products were successfully generated from peripheral blood mononuclear cells of 12 healthy donors. Ex vivo-expanded T cells were polyclonal, consisting of both CD4+ and CD8+ T cells, which elicited anti-tumor activity in vitro. Nine MHC class I-restricted PRAME epitopes were identified (seven novel and two previously described). The authors also characterized 16 individual 15-mer peptide sequences confirmed as CD4-restricted epitopes.ConclusionsTAA T cells derived from healthy donors recognize a broad range of CD4+ and CD8+ HLA-restricted PRAME epitopes, which could be used to select suitable donors for generating off-the-shelf TAA-specific T cells.  相似文献   

13.
We report the presence of a CD4-mediated T-cell activation pathway on an autoreactive CD3+WT31+CD4+CD8- T-cell clone, designated 2F9, isolated from the peripheral blood of a patient with ovarian adenocarcinoma. The OKT4 mab modulated the CD4 antigen independently of the CD3 antigen or the alpha beta T-cell receptor. OKT4 mab immobilized on plastic or soluble OKT4 mab in the presence of feeder PBMC induced proliferation and IL-2 production by cells of the 2F9 clone. Mixtures of the OKT4 mab and the OKT3 or anti-WT31 mabs induced additive proliferative responses and IL-2 production. The OKT4 mab synergized with recombinant IL-2 in inducing proliferative responses. These results suggest the presence of activation pathway on 2F9 cells.  相似文献   

14.
T-cell receptor (TCR) engagement initiates intracellular signalling cascades that lead to T-cell proliferation, cytokine production and differentiation into effector cells. These cascades comprise an array of protein-tyrosine kinases, phosphatases, GTP-binding proteins and adaptor proteins that regulate generic and specialised functions. The integration of these signals is essential for the normal development, homeostasis and function of T cells. Defects in a single mediator can produce T cells that are unable to participate fully in an immune response and/or that mount an inappropriate response, which leads to immunodeficiency, autoimmunity or leukaemia/lymphomas. This review highlights some of the key players in T-cell signalling and their involvement in the development of various clinical disease states. Some of these immune-specific signalling proteins are attractive potential targets in the development of therapies to augment T-cell responses to antigen or tumours, and to treat immune cell disorders.  相似文献   

15.
Chimeric antigen receptor (CAR) T-cell therapy is potentially an effective targeted immunotherapy for glioblastoma, yet there is presently little known about the efficacy of CAR T-cell treatment when combined with the widely used anti-inflammatory and immunosuppressant glucocorticoid, dexamethasone. Here we present a mathematical model-based analysis of three patient-derived glioblastoma cell lines treated in vitro with CAR T-cells and dexamethasone. Advanced in vitro experimental cell killing assay technologies allow for highly resolved temporal dynamics of tumor cells treated with CAR T-cells and dexamethasone, making this a valuable model system for studying the rich dynamics of nonlinear biological processes with translational applications. We model the system as a nonautonomous, two-species predator-prey interaction of tumor cells and CAR T-cells, with explicit time-dependence in the clearance rate of dexamethasone. Using time as a bifurcation parameter, we show that (1) dexamethasone destabilizes coexistence equilibria between CAR T-cells and tumor cells in a dose-dependent manner and (2) as dexamethasone is cleared from the system, a stable coexistence equilibrium returns in the form of a Hopf bifurcation. With the model fit to experimental data, we demonstrate that high concentrations of dexamethasone antagonizes CAR T-cell efficacy by exhausting, or reducing the activity of CAR T-cells, and by promoting tumor cell growth. Finally, we identify a critical threshold in the ratio of CAR T-cell death to CAR T-cell proliferation rates that predicts eventual treatment success or failure that may be used to guide the dose and timing of CAR T-cell therapy in the presence of dexamethasone in patients.  相似文献   

16.
To understand the mechanism(s) by which p56lck participates in T-cell receptor (TCR) signalling, we have examined the effects of mutations in known regulatory domains of p56lck on the ability of F505 p56lck to enhance the responsiveness of an antigen-specific murine T-cell hybridoma. A mutation of the amino-terminal site of myristylation (glycine 2), which prevents stable association of p56lck with the plasma membrane, completely abolished the ability of F505 p56lck to enhance TCR-induced tyrosine protein phosphorylation. Alteration of the major site of in vitro autophosphorylation, tyrosine 394, to phenylalanine diminished the enhancement of TCR-induced tyrosine protein phosphorylation by F505 p56lck. Such a finding is consistent with the previous demonstration that this site is required for full activation of p56lck by mutation of tyrosine 505. Strikingly, deletion of the noncatalytic Src homology domain 2, but not of the Src homology domain 3, markedly reduced the improvement of TCR-induced tyrosine protein phosphorylation by F505 Lck. Additional studies revealed that all the mutations tested, including deletion of the Src homology 3 region, abrogated the enhancement of antigen-triggered interleukin-2 production by F505 p56lck, thus implying more stringent requirements for augmentation of antigen responsiveness by F505 Lck. Finally, it was also observed that expression of F505 p56lck greatly increased TCR-induced tyrosine phosphorylation of phospholipase C-gamma 1, raising the possibility that phospholipase C-gamma 1 may be a substrate for p56lck in T lymphocytes. Our results indicate that p56lck regulates T-cell antigen receptor signalling through a complex process requiring multiple distinct structural domains of the protein.  相似文献   

17.
Current models for T-cell recognition of foreign antigen depict the T-cell receptor as having a single antibody-like combining site which binds a complex of MHC and antigen. An alternative hypothesis is presented here; it is proposed that the first domains of the MHC function as inverted V-like regions to complement the TcR V-regions in creating antigen binding sites.  相似文献   

18.
Summary A murine anti-idiotypic monoclonal antibody (mAb), F1, (IgG2a) was produced against the variable part of the T-cell receptor for antigen (Ti, /) on the tumor cells of a patient with T-cell chronic lymphatic leukemia (CD3+, 8+, 4). The molecular weight of the protein reactive with mAb F1, comodulation and coprecipitation with anti-CD3 antibody, and the restricted tumor-cell reactivity strongly support the anti-idiotypic nature of mAb F1. MAb F1 also stained 4% of peripheral blood lymphocytes of healthy donors. MAb F1 did not stimulate the tumor cells to DNA synthesis, but stimulated a fraction of the normal peripheral blood lymphocytes, mAb F1 did not mediate antibody-dependent cellular cytotoxicity or complement lysis to any significant degree in vitro. Three infusions of 1–10 mg anti-idiotypic mAb were given over a period of 4 weeks. The plasma half-life for mAb F1 was 3 h in the first 2 h after infusion and 44 h from 2 h to 120 h after infusion. After each treatment a rapid decrease of circulating tumor cells was seen. During the observation period an 80% reduction of the total circulating tumor cells was noted. After the second infusion, IgM and IgG antimouse antibodies were detected. Side-effects from therapy were fever, chills, nausea, vomiting, diarrhea, tachycardia, increase in systolic blood pressure and shortness of breath. Thus, in T-cell malignancies a major reduction of circulating tumor cells can be accomplished by low doses of anti-idiotypic mAb. Anti-idiotypic mAb might be a therapeutic agent of significant importance.  相似文献   

19.
Cell interactions between thymus-derived (T) and bone marrow-derived (B) lymphocytes in the antibody response appear to involve soluble T-cell mediators known as 'factors.' This paper describes the properties of a T-cell factor that has specificity for the inducing antigen, a synthetic polypeptide (T, G)-A--L, and is able to replace T cells in the thymus-dependent antibody response to (T, G)-A--L. Besides antigen specificity, the main features of the molecule are that it is nonimmunoglobulin; it has a molecular weight of about 50,000; and it is a product of the I-A subregion of the H-2 complex (the mouse major histocompatibility complex). These properties suggest that the factor is closely related to the T-cell receptor, which may, by inference, also be a product of the H-2 complex. The factor cooperates well with allogeneic B cells. It can also be absorbed by bone marrow cells and B cells. Studies on the genetic control of the immune response to (T, G)-A--L using the T-cell factor indicate that two immune response genes in the H-2 complex are involved in genetic control, one expressed in T cells and the other in B cells. This two gene hypothesis has been confirmed by showing that an F1 between two low responders to (T, G)-A--L can be a high responder.  相似文献   

20.
There is a critical need for adjuvants that can safely elicit potent and durable T cell-based immunity to intracellular pathogens. Here, we report that parenteral vaccination with a carbomer-based adjuvant, Adjuplex (ADJ), stimulated robust CD8 T-cell responses to subunit antigens and afforded effective immunity against respiratory challenge with a virus and a systemic intracellular bacterial infection. Studies to understand the metabolic and molecular basis for ADJ’s effect on antigen cross-presentation by dendritic cells (DCs) revealed several unique and distinctive mechanisms. ADJ-stimulated DCs produced IL-1β and IL-18, suggestive of inflammasome activation, but in vivo activation of CD8 T cells was unaffected in caspase 1-deficient mice. Cross-presentation induced by TLR agonists requires a critical switch to anabolic metabolism, but ADJ enhanced cross presentation without this metabolic switch in DCs. Instead, ADJ induced in DCs, an unique metabolic state, typified by dampened oxidative phosphorylation and basal levels of glycolysis. In the absence of increased glycolytic flux, ADJ modulated multiple steps in the cytosolic pathway of cross-presentation by enabling accumulation of degraded antigen, reducing endosomal acidity and promoting antigen localization to early endosomes. Further, by increasing ROS production and lipid peroxidation, ADJ promoted antigen escape from endosomes to the cytosol for degradation by proteasomes into peptides for MHC I loading by TAP-dependent pathways. Furthermore, we found that induction of lipid bodies (LBs) and alterations in LB composition mediated by ADJ were also critical for DC cross-presentation. Collectively, our model challenges the prevailing metabolic paradigm by suggesting that DCs can perform effective DC cross-presentation, independent of glycolysis to induce robust T cell-dependent protective immunity to intracellular pathogens. These findings have strong implications in the rational development of safe and effective immune adjuvants to potentiate robust T-cell based immunity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号