首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
《Cytotherapy》2019,21(5):566-578
BackgroundChimeric antigen receptor engineered T (CAR-T) cell therapy is a promising approach currently revolutionizing the field of cancer immunotherapy. However, data concerning clinical-grade CAR-T cell stability and functionality after months of cryopreservation have not been released by companies so far. To investigate the effect of cryopreservation on CAR-T cells and to further optimize the potency assays, we performed this study.MethodsA third generation of CD19 CAR-T cells was manufactured according to Good Manufacturing Practice (GMP) requirements, which is applied to patients in an ongoing clinical phase 1 study. Quality control tests for sterility, endotoxin and mycoplasma were performed for each batch. Stability in terms of viability, recovery, transduction efficiency and functional capacity was determined using microscopy, multiparametric flow cytometry as well as chromium-51 release tests.ResultsUp to 90days of cryopreservation had no influence on viability, recovery and transduction efficiency of CAR-T cells. However, higher cell concentration for cryopreservation could alter the cell viability and recovery but not the transduction efficiency. Moreover, directly after thawing, both the quantity and quality of the functionality of CAR-T cells were transiently hampered by the negative effects of cryopreservation. Notably, the impaired functionality could be fully restored and even strengthened after an overnight resting process.DiscussionCryopreservation is a challenge for the functional activity of CAR-T cells. However, CAR-T cells regain their potency by overnight incubation at 37°C, which mimics the clinical application setting. Therefore, an overnight resting step should be included in in vitro potency assays.  相似文献   

2.
《Cytotherapy》2023,25(6):598-604
Background aimsReference genes are an essential part of clinical assays such as droplet digital polymerase chain reaction (ddPCR), which measure the number of copies of vector integrated into genetically engineered cells and the loss of plasmids in reprogrammed cells used in clinical cell therapies. Care should be taken to select reference genes, because it has been discovered that there may be thousands of variations in copy number from genomic segments among different individuals. In addition, within the same person in the context of cancer and other proliferative disorders, substantial parts of the genome also can differ in copy number between cells from diseased and healthy people. The purpose of this study was to identify reference genes that could be used for copy number variation analysis of transduced chimeric antigen receptor T cells and for plasmid loss analysis in induced pluripotent stem cells using ddPCR.MethodsWe used The Cancer Genome Atlas (TCGA) to evaluate candidate reference genes. If TCGA found a candidate gene to have low copy number variance in cancer, ddPCR was used to measure the copy numbers of the potential reference gene in cells from healthy subjects, cancer cell lines and patients with acute lymphocytic leukemia, lymphoma, multiple myeloma and human papillomavirus–associated cancers.ResultsIn addition to the rPP30 gene, which we have has been using in our copy number assays, three other candidate reference genes were evaluated using TCGA, and this analysis found that none of the four gene regions (AGO1, AP3B1, MKL2 and rPP30) were amplified or deleted in all of the cancer cell types that are currently being treated with cellular therapies by our facility. The number of copies of the genes AP3B1, AGO1, rPP30 and MKL2 measured by ddPCR was similar among cells from healthy subjects. We found that AGO1 had copy number alteration in some of the clinical samples, and the number of copies of the genes AP3B1, MKL2 and rPP30 measured by ddPCR was similar among cells from patients with the cancer cell types that are currently being treated with genetically engineered T-cell therapies by our facility.ConclusionsBased on our current results, the three genes, AP3B1, MKL2 and rPP30, are suitable for use as reference genes for assays measuring vector copy number in chimeric antigen receptor T cells produced from patients with acute leukemia, lymphoma, multiple myeloma and human papillomavirus–associated cancers. We will continue to evaluate AGO1 on our future samples.  相似文献   

3.
《Cytotherapy》2022,24(8):767-773
Background aimsSelective immune pressure contributes to relapse due to target antigen downregulation in patients treated with anti-CD19 chimeric antigen receptor (CAR) T cells. Bispecific lentiviral anti-CD20/anti-CD19 (LV20.19) CAR T cells may prevent progression/relapse due to antigen escape. Highly polyfunctional T cells within a CAR T-cell product have been associated with response in single-antigen-targeted anti-CD19 CAR T cells.MethodsThe authors performed a single-cell proteomic analysis to assess polyfunctional cells in our LV20.19 CAR T-cell product. Analysis was limited to those treated at a fixed dose of 2.5 × 106 cells/kg (n = 16). Unused pre-infusion CAR T cells were thawed, sorted into CD4/CD8 subsets and stimulated with K562 cells transduced to express CD19 or CD20. Single-cell production of 32 individual analytes was measured and polyfunctionality and polyfunctional strength index (PSI) were calculated.ResultsFifteen patients had adequate leftover cells for analysis upon stimulation with CD19, and nine patients had adequate leftover cells for analysis upon stimulation with CD20. For LV20.19 CAR T cells, PSI was 866–1109 and polyfunctionality was 40–45%, which were higher than previously reported values for other CAR T-cell products.ConclusionsStimulation with either CD19 or CD20 antigens resulted in similar levels of analyte activation, suggesting that this product may have efficacy in CD19– patient populations.  相似文献   

4.
《Cytotherapy》2023,25(1):94-102
Background aimsVector copy number (VCN), an average quantification of transgene copies unique to a chimeric antigen receptor (CAR) T-cell product, is a characteristic that must be reported prior to patient administration, as high VCN increases the risk of insertional mutagenesis. Historically, VCN assessment in CAR T-cell products has been performed via quantitative polymerase chain reaction (qPCR). qPCR is reliable along a broad range of concentrations, but quantification requires use of a standard curve and precision is limited. Digital PCR (dPCR) methods were developed for absolute quantification of target sequences by counting nucleic acid molecules encapsulated in discrete, volumetrically defined partitions. Advantages of dPCR compared with qPCR include simplicity, reproducibility, sensitivity and lack of dependency on a standard curve for definitive quantification. In the present study, the authors describe a dPCR assay developed for analysis of the novel bicistronic CD19 × CD22 CAR T-cell construct.MethodsThe authors compared the performance of the dPCR assay with qPCR on both the QX200 droplet dPCR (ddPCR) system (Bio-Rad Laboratories, Inc, Hercules, CA, USA) and the QIAcuity nanoplate-based dPCR (ndPCR) system (QIAGEN Sciences, Inc, Germantown, MD, USA). The primer–probe assay was validated with qPCR, ndPCR and ddPCR using patient samples from pre-clinical CAR T-cell manufacturing production runs as well as Jurkat cell subclones, which stably express this bicistronic CAR construct.ResultsddPCR confirmed the specificity of this assay to detect only the bicistronic CAR product. Additionally, the authors’ assay gave accurate, precise and reproducible CAR T-cell VCN measurements across qPCR, ndPCR and ddPCR modalities.ConclusionsThe authors demonstrate that dPCR strategies can be utilized for absolute quantification of CAR transgenes and VCN measurements, with improved test–retest reliability, and that specific assays can be developed for detection of unique constructs.  相似文献   

5.
《Cytotherapy》2023,25(3):323-329
Background aimsThe most widely accepted starting materials for chimeric antigen receptor T-cell manufacture are autologous CD3+ T cells obtained via the process of leukapheresis, also known as T-cell harvest. As this treatment modality gains momentum and apheresis units struggle to meet demand for harvest slots, strategies to streamline this critical step are warranted.MethodsThis retrospective review of 262 T-cell harvests, with a control cohort of healthy donors, analyzed the parameters impacting CD3+ T-cell yield in adults with B-cell malignancies. The overall aim was to design a novel predictive algorithm to guide the required processed blood volume (PBV) (L) on the apheresis machine to achieve a specific CD3+ target yield.ResultsFactors associated with CD3+ T-cell yield on multivariate analysis included peripheral blood CD3+ count (natural log, ×109/L), hematocrit (HCT) and PBV with coefficients of 0.86 (95% confidence interval [CI], 0.80–0.92, P < 0.001), 1.30 (95% CI, 0.51–2.08, P = 0.001) and 0.09 (95% CI, 0.07–0.11, P < 0.001), respectively. The authors’ model, incorporating CD3+ cell count, HCT and PBV (L), with an adjusted R2 of 0.87 and root-mean-square error of 0.26 in the training dataset, was highly predictive of CD3+ cell yield in the testing dataset. An online application to estimate PBV using this algorithm can be accessed at https://cd3yield.shinyapps.io/cd3yield/.ConclusionsThe authors propose a transferrable model that incorporates clinical and laboratory variables accessible pre-harvest for use across the field of T-cell therapy. Pending further validation, such a model may be used to generate an individual leukapheresis plan and streamline the process of cell harvest, a well-recognized bottleneck in the industry.  相似文献   

6.
7.
《Cytotherapy》2022,24(9):869-878
Chimeric antigen receptor (CAR) T-cell therapy is an individualized immunotherapy that genetically reprograms a patient's T cells to target and eliminate cancer cells. Tisagenlecleucel is a US Food and Drug Administration-approved CD19-directed CAR T-cell therapy for patients with relapsed/refractory (r/r) B-cell acute lymphoblastic leukemia and r/r diffuse large B-cell lymphoma. Manufacturing CAR T cells is an intricate process that begins with leukapheresis to obtain T cells from the patient's peripheral blood. An optimal leukapheresis product is essential to the success of CAR T-cell therapy; therefore, understanding factors that may affect the quality or T-cell content is imperative. CAR T-cell therapy requires detailed organization throughout the entire multistep process, including appropriate training of a multidisciplinary team in leukapheresis collection, cell processing, timing and coordination with manufacturing and administration to achieve suitable patient care. Consideration of logistical parameters, including leukapheresis timing, location and patient availability, when clinically evaluating the patient and the trajectory of their disease progression must be reflected in the overall collection strategy. Challenges of obtaining optimal leukapheresis product for CAR T-cell manufacturing include vascular access for smaller patients, achieving sufficient T-cell yield, eliminating contaminating cell types in the leukapheresis product, determining appropriate washout periods for medication and managing adverse events at collection. In this review, the authors provide recommendations on navigating CAR T-cell therapy and leukapheresis based on experience and data from tisagenlecleucel manufacturing in clinical trials and the real-world setting.  相似文献   

8.
Background AimsViral vectors are commonly used to introduce chimeric antigen receptor (CAR) constructs into cell therapy products for the treatment of human disease. They are efficient at gene delivery and integrate into the host genome for subsequent replication but also carry risks if replication-competent lentivirus (RCL) remains in the final product. An optimal CAR T-cell product should contain sufficient integrated viral material and no RCL. Current product testing methods include cell-based assays with slow turnaround times and rapid quantitative polymerase chain reaction (PCR)-based assays that suffer from high result variability. The authors describe the development of a droplet digital PCR (ddPCR) method for detection of the vesicular stomatitis virus G glycoprotein envelope sequence, required for viral assembly, and the replication response element to measure integration of the CAR construct.MethodsAssay validation included precision, linearity, sensitivity, specificity and reproducibility over a range of low to high concentrations.ResultsThe limit of detection was 10 copies/μL, whereas negative samples showed <1.3 copies/μL. Within and between assay imprecision coefficients of variation across the reportable range (10–10 000 copies/μL) were <25%. Accuracy and linearity were verified by comparing known copy numbers with measured copy numbers (R2 >0.9985, slope ~0.9). Finally, serial measurements demonstrated very good long-term reproducibility (>95% of replicate results within the originally established ± two standard deviations).ConclusionsDDPCR has excellent reproducibility, linearity, specificity and sensitivity for detecting RCL and assuring the safety of patient products in a rapid manner. The technique can also likely be adapted for the rapid detection of other targets during cell product manufacturing, including purity, potency and sterility assays.  相似文献   

9.
The adoptive transfer of genetically engineered T cells modified to express a chimeric antigen receptor (CAR) has shown remarkable activity and induces long-term remissions in patients with advanced hematologic malignancies. To date, little is known about predictive indicators of therapeutic efficacy or serious toxicity after CAR T-cell therapy in clinical practice. Biomarkers are not only potentially able to inform physicians and researchers of immunotherapy targets in particular but could also be used to monitor the effectiveness of treatments and to predict incidence of side effects in some circumstances. Identification of new biomarkers can therefore not only contribute to the development of new therapeutic and prognostic strategies for CAR T-cell therapy for cancer but also help to generate improved clinical practices for early recognition and minimization of adverse effects while preserving the antitumor activity of the CAR T cells. Herein, we will consider a variety of predictive and therapeutic biomarkers in CAR T-cell therapy and the state of current understanding of their clinical utility. The incorporation of biomarker studies in CAR T-cell clinical trials and practice will help to realize the potential clinical benefit of biomarker-guided therapy.  相似文献   

10.
《Cytotherapy》2022,24(1):45-48
>himeric antigen receptor (CAR) T-cell therapy is a novel approved cancer treatment that has shown remarkable efficacy in the treatment of patients with relapsed leukemia and lymphoma. Implementation of CAR T-cell therapy in a hospital setting requires careful and detailed planning because of the complexities in delivering this specialist service. A multi-disciplinary approach with dedicated funding is required to meet clinical, scientific, logistic and regulatory requirements. Tisagenlecleucel was the first approved CAR T-cell therapy in Australia. The treatment has been made available to Australian patients in specialist public hospitals through federal and state funding. Royal Prince Alfred Hospital (RPAH) is one of Australia's oldest tertiary referral public health care institutions and was approved for the provision of CAR T-cell therapy service in 2019. A multi-disciplinary clinical program has been established for the collection and cryopreservation of donor cells shipped for manufacturing as well as for the receipt, storage and administration of CAR T-cell therapy and patient management. The program encompasses a Therapeutic Goods Administration-accredited apheresis unit and a state-of-the-art facility for cell processing, cryopreservation and storage. The program's clinical expertise extends to hematology, oncology, intensive care, pharmacy, neurology and radiology services with direct experience in managing patients receiving CAR T-cell therapies. The introduction of CAR T-cell therapies at RPAH was a complex undertaking facilitated by the existing infrastructure and clinical expertise.  相似文献   

11.
Multimolecular associations of the T-cell antigen receptor   总被引:4,自引:0,他引:4  
T cells are activated when the T-cell receptor for antigen (TCR) interacts with an antigenic peptide bound to a major histocompatibility complex (MHC) molecule on the surface of another cell. It is often assumed that T-cell activation is induced by the crosslinking of TCRs. In this article, Albertus Beyers, Louise Spruyt and Alan Williams argue that this mechanism is not generally applicable. They hypothesize that the key event in T-cell activation is the formation of multimolecular complexes consisting of the TCR and several other polypeptides, including CD4 or CD8, CD2, CD5 and the associated tyrosine kinases p59(fyn) and p56(lck).  相似文献   

12.
《Cytotherapy》2023,25(6):615-624
Background aimsMost current chimeric antigen receptor (CAR) T cells are generated by viral transduction, which induces persistent expression of CARs and may cause serious undesirable effects. Messenger RNA (mRNA)-based approaches in manufacturing CAR T cells are being developed to overcome these challenges. However, the most common method of delivering mRNA to T cells is electroporation, which can be toxic to cells.MethodsThe authors designed and engineered an exosome delivery platform using the bacteriophage MS2 system in combination with the highly expressed protein lysosome-associated membrane protein 2 isoform B on exosomes.ResultsThe authors’ delivery platform achieved specific loading and delivery of mRNA into target cells and achieved expression of specific proteins, and anti-CD3/CD28 single-chain variable fragments (scFvs) expressed outside the exosomal membrane effectively activated primary T cells in a similar way to commercial magnetic beads.ConclusionsThe delivery of CAR mRNA and anti-CD3/CD28 scFvs via designed exosomes can be used for ex vivo production of CAR T cells with cancer cell killing capacity. The authors’ results indicate the potential applications of the engineered exosome delivery platform for direct conversion of primary T cells to CAR T cells while providing a novel strategy for producing CAR T cells in vivo.  相似文献   

13.
《Cytotherapy》2023,25(9):986-992
Background aimsChimeric antigen receptor T-cell therapy (CART) prolongs survival for patients with refractory or relapsed lymphoma, yet its efficacy is affected by the tumor burden. The relevance of tumor kinetics before infusion is unknown. We aimed to study the prognostic value of the pre-infusion tumor growth rate (TGRpre-BL) for progression-free (PFS) and overall survival (OS).MethodsConsecutive patients with available pre-baseline (pre-BL) and baseline (BL) computed tomography or positron emission tomography/computed tomography scan before CART were included. TGR was determined as change of Lugano criteria-based tumor burden between pre-BL, BL and follow-up examinations (FU) in relation to days between imaging exams. Overall response rate (ORR), depth or response (DoR) and PFS were determined based on Lugano criteria. Multivariate regression analysis studied association of TGR with ORR and DoR. Proportional Cox regression analysis studied association of TGR with PFS and OS.ResultsIn total, 62 patients met the inclusion criteria. The median TGRpre-BL was 7.5 mm2/d (interquartile range –14.6 mm2/d to 48.7 mm2/d); TGRpre-BL was positive (TGRpre-BL POS) in 58% of patients and negative (TGRpre-BL NEG, indicating tumor shrinkage) in 42% of patients. Patients who were TGRpre-BL POS had a 90-day (FU2) ORR of 62%, a DoR of –86% and a median PFS of 124 days. Patients who were TGRpre-BL NEG had a 90-day ORR of 44%, DoR of –47% and a median PFS of 105 days. ORR and DoR were not associated with slower TGR (P = 0.751, P = 0.198). Patients with an increase of TGR from pre-BL over BL to 30-day FU (FU1) ≥100% (TGRpre-BL-to-FU1≥100%) showed a significant association with shorter median PFS (31 days versus 343 days, P = 0.002) and shorter median OS after CART (93 days versus not reached, P < 0.001), compared with patients with TGRpre-BL-to-FU1<100%.ConclusionsIn the context of CART, differences in pre-infusion tumor kinetics showed minor differences in ORR, DoR, PFS and OS, whereas the change of the TGR from pre-BL to 30-day FU significantly stratified PFS and OS. In this patient population of refractory or relapsed lymphomas, TGR is readily available based on pre-BL imaging, and its change throughout CART should be explored as a potential novel imaging biomarker of early response.  相似文献   

14.
《Cytotherapy》2021,23(12):1085-1096
Background aimsDespite the impressive efficacy of chimeric antigen receptor (CAR) T-cell therapy, adverse effects, including cytokine release syndrome and neurotoxicity, impede its therapeutic application, thus making the modulation of CAR T-cell activity a priority. The destabilizing domain mutated from Escherichia coli dihydrofolate reductase (DHFR) is inherently unstable and degraded by proteasomes unless it is stabilized by its chemical ligand trimethoprim (TMP), a Food and Drug Administration-approved drug. Here the authors reveal a strategy to modulate CAR T-cell activity at the protein level by employing DHFR and TMP as a chemical switch system.MethodsFirst, the system was demonstrated to work in human primary T cells. To introduce the system to CAR T cells, DHFR was genetically fused to the carboxyl terminal of a third-generation CAR molecule targeting CD19 (CD19-CAR), constructing the CD19-CAR-DHFR fusion.ResultsThe CD19-CAR-DHFR molecule level was shown to be modulated by TMP. Importantly, the incorporation of DHFR had no impact on the recognition specificity and normal function of the CAR molecule. Little adverse effect on cell proliferation and apoptosis was detected. It was proved that TMP could regulate cytokine secretion and the in vitro cytotoxicity of CD19-CAR-DHFR T cells. Furthermore, the in vivo anti-tumor efficacy was demonstrated to be controllable through the manipulation of TMP administration. The approach to control CD19-CAR also succeeded in 19-BBZ(71), another CD19-targeting CAR with a different structure.ConclusionsThe proposed approach based on DHFR and TMP provides a facile strategy to bring CAR T-cell therapy under conditional user control, and the strategy may have the potential to be transplantable.  相似文献   

15.
《Cytotherapy》2023,25(6):573-577
Background aimsChimeric antigen receptor (CAR) T-cell therapy is a breakthrough treatment for patients with relapsed or refractory diffuse large B-cell lymphoma. However, many patients do not achieve remission or relapse after remission. Previous studies have demonstrated that eosinophils have synergistic anti-tumor effects with CD8+T cells and pre-CAR T-eosinophil counts are associated with the efficacy of CAR T cells.MethodsWe retrospectively analyzed the eosinophil counts of patients with diffuse large B-cell lymphoma and found it changed remarkably pre- and post-CAR T-cell therapy.ResultsPatients who achieved complete remission after CAR T-cell infusion had greater post-CAR T-eosinophil counts than those who did not. Kaplan–Meier curves showed that patients with greater eosinophil counts during the second month after CAR T-cell infusion had superior progression-free survival and overall survival compared with those with lower eosinophil counts.ConclusionsFor patients who responded to CAR T-cell therapy, eosinophil counts also can be used to predict 6-month duration of response. In conclusion, the post-CAR T-eosinophil count is associated with the prognosis of patients treated with CAR T-cell therapy and can be used to clinically identify patients who can achieve longer remission after CAR T-cell infusion.  相似文献   

16.
Mutants in signal transduction through the T-cell antigen receptor   总被引:4,自引:0,他引:4  
Mutants of an untransformed helper T-cell clone have been derived by chemical mutagenesis followed by selection for cells incapable of proliferating in response to antigen or anti-CD3. The selection was designed to enrich cells bearing mutations distal to the T-cell antigen receptor. The mutants express normal levels of functional T-cell receptors but are uncoupled from cellular responses, including gene induction, lymphokine secretion, proliferation, and phosphatidylinositol turnover. Responses to phorbol ester plus calcium ionophore and to interleukin-2 are unimpaired. Responses to antigen were restored by fusion with a T-cell receptor-negative thymoma, making the mutants valuable for investigating the mechanisms that couple T-cell receptor stimulation to the induction of second messengers and subsequent physiologic responses.  相似文献   

17.
The mechanism by which ligand binding to the T-cell antigen receptor triggers the T-cell activation program has long been one of the most fascinating questions in lymphocyte biology. Here, we review recent insights into the transmembrane signaling functions of this multisubunit receptor complex.  相似文献   

18.
《Cytotherapy》2023,25(7):739-749
Background aimsCombination therapy is being actively explored to improve the efficacy and safety of anti-CD19 chimeric antigen receptor T-cell (CART19) therapy, among which Bruton tyrosine kinase inhibitors (BTKIs) are highly expected. BTKIs may modulate T-cell function and remodel the tumor micro-environment (TME), but the exact mechanisms involved and the steps required to transform different BTKIs into clinical applications need further investigation.MethodsWe examined the impacts of BTKIs on T-cell and CART19 phenotype and functionality in vitro and further explored the mechanisms. We evaluated the efficacy and safety of CART19 concurrent with BTKIs in vitro and in vivo. Moreover, we investigated the effects of BTKIs on TME in a syngeneic lymphoma model.ResultsHere we identified that the three BTKIs, ibrutinib, zanubrutinib and orelabrutinib, attenuated CART19 exhaustion mediated by tonic signaling, T-cell receptor (TCR) activation and antigen stimulation. Mechanistically, BTKIs markedly suppressed CD3-ζ phosphorylation of both chimeric antigen receptor and TCR and downregulated the expression of genes associated with T-cell activation signaling pathways. Moreover, BTKIs decreased interleukin 6 and tumor necrosis factor alpha release in vitro and in vivo. In a syngeneic lymphoma model, BTKIs reprogrammed macrophages to the M1 subtype and polarized T helper (Th) cells toward the Th1 subtype.ConclusionsOur data revealed that BTKIs preserved T-cell and CART19 functionality under persistent antigen exposure and further demonstrated that BTKI administration was a potential strategy for mitigating cytokine release syndrome after CART19 treatment. Our study lays the experimental foundation for the rational application of BTKIs combined with CART19 in clinical practice.  相似文献   

19.
Chimeric antigen receptor (CAR)-engineered T cells have a proven efficacy for the treatment of refractory hematological B cell malignancies. While often accompanied by side effects, CAR-T technology is getting more mature and will become an important treatment option for various tumor indications. In this review, we summarize emerging approaches that aim to further evolve CAR-T cell therapy based on combinations of so-called universal or modular CAR-(modCAR-)T cells, and their respective adaptor molecules (CAR-adaptors), which mediate the crosslinking between target and effector cells. The activity of such modCAR-T cells is entirely dependent on binding of the respective CAR-adaptor to both a tumor antigen and to the CAR-expressing T cell. Contrary to conventional CAR-T cells, where the immunological synapse is established by direct interaction of CAR and membrane-bound target, modCAR-T cells provide a highly flexible and customizable development of the CAR-T cell concept and offer an additional possibility to control T cell activity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号