首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. Niche traits (those that describe a species' niche) are not constant within a species, and the importance of intraspecific variation is increasingly appreciated. However, little is known about the extent of niche variability across species. This study investigated variation in dietary and temporal niches of ant species in two tropical rainforests. 2. Ants were collected from baits reflecting seven different natural resources and from pitfalls at 128 grid points. Sampling was done separately for day and night. Co-occurrence analyses were used to estimate the monopolisation capacity of each species. 3. It was expected that species would show similar dietary and temporal preferences across sites. Therefore, species with high or low niche variability between grid points (within a site) should show similar tendencies when comparing sites. It was predicted that between sites, intraspecific variability should be lower than interspecific variability, and that numerically dominant species should have higher monopolisation rates and lower intraspecific niche variability than less common ones. 4. These results showed that niche traits such as temporal activity and realised food niche shifted drastically between conspecifics of different sites. Even the most common species showed different food or temporal preferences between sites. In general, species with the highest monopolisation rates displayed lower niche variability. 5. This study also demonstrates that niche characterisation via combined continuous rather than categorical values permits a quantification of a species' niche variability. Categorising niche traits without considering context dependency may be misleading if one tries to assess niche width and a species' ability to cope with environmental change.  相似文献   

2.
Evolution of Rotifer Life Histories   总被引:1,自引:0,他引:1  
When compared to most other multicellular animals, rotifers are all relatively small, short-lived and fast-reproducing organisms. However among and within different rotifer species there is a large variation in life history patterns. This review accounts for such variation in rotifers, with a strong focus on monogonont rotifers. As the life cycle of monogonont rotifers involves both asexual and sexual reproduction, life history patterns can be examined on the level of the genetic individual, which includes all asexual females, sexual females and males that originated from one resting egg. This concept has been applied successfully in many areas, for example in predicting optimal levels of mictic reproduction or sex allocation theory. The benefits and implications of the view of the genetic individual are discussed in detail. Rotifer life histories can also be viewed on the level of physiological individuals. A large part of this review deals with the life histories of individual amictic females and addresses life history traits like body size, egg size and resource allocation patterns. It asks which trade-offs exist among those traits, how these traits change under the influence of environmental factors like food availability or temperature, and whether these changes can be interpreted as adaptive.  相似文献   

3.
Urban development is increasing across the globe. This poses a major threat to biodiversity, which is often relatively poor in towns and cities. Despite much interest in identifying species' traits that can predict their responses to environmental degradation this approach has seldom been used to assess which species are particularly vulnerable to urban development. Here we explore this issue, exploiting one of the best available datasets on species' responses to towns and cities in a highly urbanized region, comprising avian densities across approximately 3000 British urban and rural 1 km × 1 km grid cells. We find that the manner in which species' responses to urbanization is measured has a marked influence on the nature of associations between these responses and species' ecological and life history traits. We advocate that future studies should use continuous indices of responses that take relative urban and rural densities into account, rather than using urban densities in isolation, or a binary response recording the presence/absence of a species in towns and cities. Contrary to previous studies we find that urban development does not select against avian long‐distance migrants and insectivores, or species with limited annual fecundity and dispersal capacity. There was no evidence that behavioural flexibility, as measured by relative brain size, influenced species' responses to urban environments. In Britain, generalist species, as measured by niche position rather than breadth, are favoured by urban development as are, albeit to a lesser extent, those that feed on plant material and nest above the ground. Our results suggest that avian biodiversity in towns and cities in urbanizing regions will be promoted by providing additional resources that are currently scarce in urban areas, and developing suitable environments for ground‐nesting species.  相似文献   

4.
High-quality developmental environments often improve individual performance into adulthood, but allocating toward early life traits, such as growth, development rate and reproduction, may lead to trade-offs with late-life performance. It is, therefore, uncertain how a rich developmental environment will affect the ageing process (senescence), particularly in wild insects. To investigate the effects of early life environmental quality on insect life-history traits, including senescence, we reared larval antler flies (Protopiophila litigata) on four diets of varying nutrient concentration, then recorded survival and mating success of adult males released in the wild. Declining diet quality was associated with slower development, but had no effect on other life-history traits once development time was accounted for. Fast-developing males were larger and lived longer, but experienced more rapid senescence in survival and lower average mating rate compared to slow developers. Ultimately, larval diet, development time and body size did not predict lifetime mating success. Thus, a rich environment led to a mixture of apparent benefits and costs, mediated by development time. Our results indicate that ‘silver spoon'' effects can be complex and that development time mediates the response of adult life-history traits to early life environmental quality.  相似文献   

5.
A central assumption of life history theory is that the evolution of the component traits is determined in part by trade-offs between these traits. Whereas the existence of such trade-offs has been well demonstrated, the relative importance of these remains unclear. In this paper we use optimality theory to test the hypothesis that the trade-off between present and future fecundity induced by the costs of continued growth is a sufficient explanation for the optimal age at first reproduction, alpha, and the optimal allocation to reproduction, G, in 38 populations of perch and Arctic char. This hypothesis is rejected for both traits and we conclude that this trade-off, by itself, is an insufficient explanation for the observed values of alpha and G. Similarly, a fitness function that assumes a mortality cost to reproduction but no growth cost cannot account for the observed values of alpha. In contrast, under the assumption that fitness is maximized, the observed life histories can be accounted for by the joint action of trade-offs between growth and reproductive allocation and between mortality and reproductive allocation (Individual Juvenile Mortality model). Although the ability of the growth/mortality model to fit the data does not prove that this is the mechanism driving the evolution of the optimal age at first reproduction and allocation to reproduction, the fit does demonstrate that the hypothesis is consistent with the data and hence cannot at this time be rejected. We also examine two simpler versions of this model, one in which adult mortality is a constant proportion of juvenile mortality [Proportional Juvenile Mortality (PJM) model] and one in which the proportionality is constant within but not necessarily between species [Specific Juvenile Mortality (SSJM) model]. We find that the PJM model is unacceptable but that the SSJM model produces fits suggesting that, within the two species studied, juvenile mortality is proportional to adult mortality but the value differs between the two species.  相似文献   

6.
Shifts in species'' traits across contrasting environments have the potential to influence ecosystem functioning. Plant communities on unusually harsh soils may have unique responses to environmental change, through the mediating role of functional plant traits. We conducted a field study comparing eight functional leaf traits of seventeen common species located on both serpentine and non-serpentine environments on Lesbos Island, in the eastern Mediterranean. We focused on species'' adaptive strategies across the two contrasting environments and investigated the effect of trait variation on the robustness of core ‘leaf economic’ relationships across local environmental variability. Our results showed that the same species followed a conservative strategy on serpentine substrates and an exploitative strategy on non-serpentine ones, consistent with the leaf economic spectrum predictions. Although considerable species-specific trait variability emerged, the single-trait responses across contrasting environments were generally consistent. However, multivariate-trait responses were diverse. Finally, we found that the strength of relationships between core ‘leaf economic’ traits altered across local environmental variability. Our results highlight the divergent trait evolution on serpentine and non-serpentine communities and reinforce other findings presenting species-specific responses to environmental variation.  相似文献   

7.
Geographic range size is a key ecological and evolutionary characteristic of a species, yet the causal basis of variation in range size among species remains largely unresolved. One major reason for this is that several ecological and evolutionary traits may jointly shape species' differences in range size. We here present an integrated study of the contribution of ecological (dispersal capacity, body size and latitudinal position) and macroevolutionary (species' age) traits in shaping variation in species' range size in Coenagrion damselflies. We reconstructed the phylogenetic tree of this genus to account for evolutionary history when assessing the contribution of the ecological traits and to evaluate the role of the macroevolutionary trait (species' age). The genus invaded the Nearctic twice independently from the Palearctic, yet this was not associated with the evolution of larger range sizes or dispersal capacity. Body size and species' age did not explain variation in range size. There is higher flight ability (as measured by wing aspect ratio) at higher latitudes. Species with a larger wing aspect ratio had a larger range size, also after correcting for phylogeny, suggesting a role for dispersal capacity in shaping the species' ranges. More northern species had a larger species' range, consistent with Rapoport's rule, possibly related to niche width. Our results underscore the importance of integrating macroecology and macroevolution when explaining range size variation among species.  相似文献   

8.
There is increasing evidence that the environment experienced early in life can strongly influence adult life histories. It is largely unknown, however, how past and present conditions influence suites of life-history traits regarding major life-history trade-offs. Especially in animals with indeterminate growth, we may expect that environmental conditions of juveniles and adults independently or interactively influence the life-history trade-off between growth and reproduction after maturation. Juvenile growth conditions may initiate a feedback loop determining adult allocation patterns, triggered by size-dependent mortality risk. I tested this possibility in a long-term growth experiment with mouthbrooding cichlids. Females were raised either on a high-food or low-food diet. After maturation half of them were switched to the opposite treatment, while the other half remained unchanged. Adult growth was determined by current resource availability, but key reproductive traits like reproductive rate and offspring size were only influenced by juvenile growth conditions, irrespective of the ration received as adults. Moreover, the allocation of resources to growth versus reproduction and to offspring number versus size were shaped by juvenile rather than adult ecology. These results indicate that early individual history must be considered when analysing causes of life-history variation in natural populations.  相似文献   

9.
In temperate areas, dormancy (diapause and/or quiescence) enables herbivorous insect species to persist and thrive by synchronizing growth and reproduction with the seasonal phenology of their host plants. Within-population variability in dormancy increases survival chances under unpredictable environmental changes. However, prolonged dormancy may be costly, incurring trade-offs in important adult fitness traits such as life span and reproduction. We used the European cherry fruit fly, Rhagoletis cerasi, a stenophagous, univoltine species that overwinters in the pupal stage for usually one or more years to test the hypotheses that prolonged dormancy of pupae has trade-offs with body size, survival and reproduction of the resulting adults. We used two geographically isolated populations of R. cerasi to compare the demographic traits of adults obtained from pupae subjected to one or two cycles of warm-cold periods (annual and prolonged dormancy respectively). Regardless of population, adults from pupae that experienced prolonged dormancy were larger than counterparts emerging within 1year. Prolonged dormancy did not affect adult longevity but both lifetime fecundity and oviposition were significantly decreased. Extension of the life cycle of some individuals in R. cerasi populations in association with prolonged dormancy is likely a bet-hedging strategy.  相似文献   

10.
  • Under exploitation and environmental change, it is essential to assess the sensitivity and vulnerability of marine ecosystems to such stress. A species' response to stress depends on its life history. Sensitivity to harvesting is related to the life history “fast–slow” continuum, where “slow” species (i.e., large, long lived, and late maturing) are expected to be more sensitive to fishing than “fast” ones. We analyze life history traits variation for all common fish species in the Barents Sea and rank fishes along fast–slow gradients obtained by ordination analyses. In addition, we integrate species' fast–slow ranks with ecosystem survey data for the period 2004–2009, to assess life history variation at the community level in space and time. Arctic fishes were smaller, had shorter life spans, earlier maturation, larger offspring, and lower fecundity than boreal ones. Arctic fishes could thus be considered faster than the boreal species, even when body size was corrected for. Phylogenetically related species possessed similar life histories. Early in the study period, we found a strong spatial gradient, where members of fish assemblages in the southwestern Barents Sea displayed slower life histories than in the northeast. However, in later, warmer years, the gradient weakened caused by a northward movement of boreal species. As a consequence, the northeast experienced increasing proportions of slower fish species. This study is a step toward integrating life history traits in ecosystem‐based areal management. On the basis of life history traits, we assess the fish sensitivity to fishing, at the species and community level. We show that climate warming promotes a borealization of fish assemblages in the northeast, associated with slower life histories in that area. The biology of Arctic species is still poorly known, and boreal species that now establish in the Arctic are fishery sensitive, which calls for cautious ecosystem management of these areas.
  相似文献   

11.
Jones JH 《Current biology : CB》2011,21(18):R708-R717
Primates are characterized by relatively late ages at first reproduction, long lives and low fertility. Together, these traits define a life-history of reduced reproductive effort. Understanding the optimal allocation of reproductive effort, and specifically reduced reproductive effort, has been one of the key problems motivating the development of life-history theory. Because of their unusual constellation of life-history traits, primates play an important role in the continued development of life-history theory. In this review, I present the evidence for the reduced reproductive effort life histories of primates and discuss the ways that such life-history tactics are understood in contemporary theory. Such tactics are particularly consistent with the predictions of stochastic demographic models, suggesting a key role for environmental variability in the evolution of primate life histories. The tendency for?primates to specialize in high-quality, high-variability food items may make them particularly susceptible to environmental variability and explains their?low reproductive-effort tactics. I discuss recent applications of life-history theory to human evolution and emphasize the continuity between models used to explain peculiarities of human reproduction and senescence with the long, slow life histories of primates more generally.  相似文献   

12.
Theoretical models indicate that trade-offs between growth and survival strategies of tree species can lead to coexistence across life history stages (ontogeny) and physical conditions experienced by individuals. There exist predicted physiological mechanisms regulating these trade-offs, such as an investment in leaf characters that may increase survival in stressful environments at the expense of investment in bole or root growth. Confirming these mechanisms, however, requires that potential environmental, ontogenetic, and trait influences are analyzed together. Here, we infer growth and mortality of tree species given size, site, and light characteristics from forest inventory data from Wisconsin to test hypotheses about growth-survival trade-offs given species functional trait values under different ontogenetic and environmental states. A series of regression analyses including traits and rates their interactions with environmental and ontogenetic stages supported the relationships between traits and vital rates expected from the expectations from tree physiology. A combined model including interactions between all variables indicated that relationships between demographic rates and functional traits supports growth-survival trade-offs and their differences across species in high-dimensional niche space. The combined model explained 65% of the variation in tree growth and supports a concept of community coexistence similar to Hutchinson's n-dimensional hypervolume and not a low-dimensional niche model or neutral model.  相似文献   

13.
Heterogeneity in rates of trait evolution is widespread, but it remains unclear which processes drive fast and slow character divergence across global radiations. Here, we test multiple hypotheses for explaining rate variation in an ecomorphological trait (beak shape) across a globally distributed group (birds). We find low support that variation in evolutionary rates of species is correlated with life history, environmental mutagenic factors, range size, number of competitors, or living on islands. Indeed, after controlling for the negative effect of species' age, 80% of variation in species‐specific evolutionary rates remains unexplained. At the clade level, high evolutionary rates are associated with unusual phenotypes or high species richness. Taken together, these results imply that macroevolutionary rates of ecomorphological traits are governed by both ecological opportunity in distinct adaptive zones and niche differentiation among closely related species.  相似文献   

14.
Species distribution models (SDM) have been broadly used in ecology to address theoretical and practical problems. Currently, there are two main approaches to generate SDMs: (i) correlative, which is based on species occurrences and environmental predictor layers and (ii) process-based models, which are constructed based on species' functional traits and physiological tolerances. The distributions estimated by each approach are based on different components of species niche. Predictions of correlative models approach species realized niches, while predictions of process-based are more akin to species fundamental niche. Here, we integrated the predictions of fundamental and realized distributions of the freshwater turtle Trachemys dorbigni. Fundamental distribution was estimated using data of T. dorbigni's egg incubation temperature, and realized distribution was estimated using species occurrence records. Both types of distributions were estimated using the same regression approaches (logistic regression and support vector machines), both considering macroclimatic and microclimatic temperatures. The realized distribution of T. dorbigni was generally nested in its fundamental distribution reinforcing theoretical assumptions that the species' realized niche is a subset of its fundamental niche. Both modelling algorithms produced similar results but microtemperature generated better results than macrotemperature for the incubation model. Finally, our results reinforce the conclusion that species realized distributions are constrained by other factors other than just thermal tolerances.  相似文献   

15.
16.
Morphological changes following changes in species' distribution and phenology have been suggested to be the third universal response to global environmental change. Although structural size and body mass result from different genetic, physiological, and ecological mechanisms, they are used interchangeably in studies evaluating population responses to environmental change. Using a 22‐year (1991–2013) dataset including 1768 individuals, we investigated the coupled dynamics of size and mass in a hibernating mammal, the Alpine marmot (Marmota marmota), in response to local environmental conditions. We (i) quantified temporal trends in both traits, (ii) determined the environmental drivers of trait dynamics, and (iii) identified the life‐history processes underlying the observed changes. Both phenotypic traits were followed through life: we focused on the initial trait value (juvenile size and mass) and later‐life development (annual change in size [Δsize] and mass [Δmass]). First, we demonstrated contrasting dynamics between size and mass over the study period. Juvenile size and subsequent Δsize showed significant declines, whereas juvenile mass and subsequent Δmass remained constant. As a consequence of smaller size associated with a similar mass, individuals were in better condition in recent years. Second, size and mass showed different sensitivities to environmental variables. Both traits benefited from early access to resources in spring, whereas Δmass, particularly in early life, also responded to summer and winter conditions. Third, the interannual variation in both traits was caused by changes in early life development. Our study supports the importance of considering the differences between size and mass responses to the environment when evaluating the mechanisms underlying population dynamics. The current practice of focusing on only one trait in population modeling can lead to misleading conclusions when evaluating species' resilience to contemporary climate change.  相似文献   

17.
Determinants of local abundance and range size in forest vascular plants   总被引:2,自引:0,他引:2  
Aim For a large set of forest herbs we tested: (1) whether there is a positive relationship between local abundance and geographical range size; (2) whether abundance or range size are affected by the niche breadths of species or niche availability; and (3) whether these are affected by the species life‐history traits. Location Northwestern Germany. Methods We measured abundance as mean density in 22 base‐rich deciduous forests and recorded range size as area of occupancy on four different spatial scales (local to national). Niche breadth was expressed in terms of habitat specificity (specialists, generalists) and of the ability to grow across a broad range of soil pH. The species’ pH niche position was used as a measure of the importance of habitat availability. As life‐history traits we used diaspore mass and number, plant height, seed longevity, lifespan/clonality, pollination mode, dispersal capability and flowering time. Results There were mainly no positive relationships between the abundance of species and their range size, as tested across species and across phylogenetically independent contrasts. Forest specialists were generally distributed less widely than generalists, but habitat specificity was not related to local abundance. Species with a broader pH niche breadth were more common, but the positive relationships between niche breadth and abundance or range size disappeared when accounting for sample size effects. Clonal species with few and heavy diaspores were most abundant, as well as early‐flowering species and those lacking dispersal structures. Local and regional range size were determined largely by habitat availability, while national range was positively affected by plant height and diaspore mass. Main conclusions Different processes determine the local density of species and their range size. Abundance within habitat patches appears to be related mainly to the species life histories, especially to their capacity for extensive clonal reproduction, whereas range size appears to be determined strongly by the availability of suitable habitat.  相似文献   

18.
Interest in incorporating life history research from evolutionary biology into the human sciences has grown rapidly in recent years. Two core features of this research have the potential to prove valuable in strengthening theoretical frameworks in the health and social sciences: the idea that there is a fundamental trade-off between reproduction and health; and that environmental influences are important in determining how life histories develop. However, the literature on human life histories has increasingly travelled away from its origins in biology, and become conceptually diverse. For example, there are differences of opinion between evolutionary researchers about the extent to which behavioural traits associate with life history traits to form ‘life history strategies’. Here, I review the different approaches to human life histories from evolutionary anthropologists, developmental psychologists and personality psychologists, in order to assess the evidence for human ‘life history strategies’. While there is precedent in biology for the argument that some behavioural traits, notably risk-taking behaviour, may be linked in predictable ways with life history traits, there is little theoretical or empirical justification for including a very wide range of behavioural traits in a ‘life history strategy’. Given the potential of life history approaches to provide a powerful theoretical framework for understanding human health and behaviour, I then recommend productive ways forward for the field: 1) greater focus on the life history trade-offs which underlie proposed strategies; 2) greater precision when using the language of life history theory and life history strategies; 3) collecting more empirical data, from a diverse range of populations, on linkages between life history traits, behavioural traits and the environment, including the underlying mechanisms which generate these linkages; and 4) greater integration with the social and health sciences.  相似文献   

19.
Life-history variation was investigated using crosses within and among the laboratory-bred descendants of six geographic samples of the large milkweed bug, Oncopeltus fasciatus. These samples spanned the species' range, from permanent (year-round) populations on tropical islands to seasonal middle-latitude populations found in temperate North America. The seasonal populations must be refounded each year by colonists from more southern populations. Marked differences in life-history traits (particularly in age at first reproduction, clutch size, and rate of egg production) were observed among the six population samples, with tropical-island and west-coast populations being the most distinct. In the eastern and central United States, there was a marked north-south difference in life history. Crossing experiments demonstrated a genetic basis for these differences. F1 and F2 hybrids from crosses between continental populations tended to have intermediate phenotypes. The similarity of the seasonal middle-latitude populations' life histories and the consistency of the distribution of life-history characteristics among populations (across years) may indicate that the north-south difference in life history is due to selection on these traits during the annual northward movement or that migrants represent a distinct genetic form of this species.  相似文献   

20.
One of the most intriguing questions in current ecology is the extent to which the ecological niches of species are conserved in space and time. Niche conservatism has mostly been studied using coarse‐scale data of species' distributions, although it is at the local habitat scales where species' responses to ecological variables primarily take place. We investigated the extent to which niches of aquatic macrophytes are conserved among four study regions (i.e. Finland, Sweden and the US states of Minnesota and Wisconsin) on two continents (i.e. Europe and North America) using data for 11 species common to all the four study areas. We studied how ecological variables (i.e. local, climate and spatial variables) explain variation in the distributions of these common species in the four areas using species distribution modelling. In addition, we examined whether species' niche parameters vary among the study regions. Our results revealed large variation in both species' responses to the studied ecological variables and in species' niche parameters among the areas. We found little evidence for niche conservatism in aquatic macrophytes, though local environmental conditions among the studied areas were largely similar. This suggests that niche shifts, rather than different environmental conditions, were responsible for variable responses of aquatic macrophytes to local ecological variables. Local habitat niches of aquatic macrophytes are mainly driven by variations in local environmental conditions, whereas their climate niches are more or less conserved among regions. This highlights the need to study niche conservatism using local‐scale data to better understand whether species' niches are conserved, because different niches (e.g. local versus climate) operating at various scales may show different degrees of conservatism. The extent to which species' niches are truly conserved has wide practical implications, including for instance, predicting changes in species' distributions in response to global change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号