首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.

Background

Systemic infusion of mesenchymal stromal cells (MSCs) has been shown to induce acute acceleration of growth velocity in children with osteogenesis imperfecta (OI) despite minimal engraftment of infused MSCs in bones. Using an animal model of OI we have previously shown that MSC infusion stimulates chondrocyte proliferation in the growth plate and that this enhanced proliferation is also observed with infusion of MSC conditioned medium in lieu of MSCs, suggesting that bone growth is due to trophic effects of MSCs. Here we sought to identify the trophic factor secreted by MSCs that mediates this therapeutic activity.

Methods

To examine whether extracellular vesicles (EVs) released from MSCs have therapeutic activity, EVs were isolated from MSC conditioned medium by ultracentrifugation. To further characterize the trophic factor, RNA or microRNA (miRNA) within EVs was depleted by either ribonuclease (RNase) treatment or suppressing miRNA biogenesis in MSCs. The functional activity of these modified EVs was evaluated using an in vitro chondrocyte proliferation assay. Finally, bone growth was evaluated in an animal model of OI treated with EVs.

Results

We found that infusion of MSC-derived EVs stimulated chondrocyte proliferation in the growth plate, resulting in improved bone growth in a mouse model of OI. However, infusion of neither RNase-treated EVs nor miRNA-depleted EVs enhanced chondrocyte proliferation.

Conclusion

MSCs exert therapeutic effects in OI by secreting EVs containing miRNA, and EV therapy has the potential to become a novel cell-free therapy for OI that will overcome some of the current limitations in MSC therapy.  相似文献   

2.
Osteogenic cells differentiated from bone marrow-derived mesenchymal stromal cells (MSC) hold much promise in bone tissue engineering and reconstructive surgery. There is a dire need for well-defined and efficient protocols to promote the osteogenesis of ex vivo cultured MSC. Hence, this study investigated whether a combination of chemical stimuli (ascorbic acid, beta-glycerophosphate and dexamethasone) and culture media conditioned by a human foetal osteoblast cell line (hFOB) had any synergistic effect on the osteogenesis of MSC. Conditioned media with or without prior heat shock treatment (42 degrees C for 1 h) of the hFOB cell line, were collected and tested on rabbit MSC cultures, in the presence and absence of chemical stimuli. Osteogenic differentiation of MSC was assessed on both day 14 and 21 of ex vivo culture. The results showed conclusively that conditioned media promoted osteogenesis of MSC, which was further enhanced by prior heat shock-treatment of the hFOB cells, as well as by the presence of chemical stimuli. Among all experimental groups, the combination of culture medium conditioned by heat shocked hFOB cells together with chemical stimuli, exhibited the highest level of calcium mineralization, as assessed by Von Kossa staining. This provides clear evidence of a synergistic effect of conditioned media, heat shock and chemical stimuli. It is hoped that the data may contribute to the development of a more well-defined and efficient in vitro culture protocol to promote the osteogenesis of MSC for both clinical and non-clinical applications.  相似文献   

3.
Background aimsDistraction osteogenesis (DO) is a surgical technique to promote bone regeneration that requires a long time for bone healing. Bone marrow-derived mesenchymal stromal cells (MSCs) have been applied to accelerate bone formation in DO. Allogeneic MSCs are attractive, as they could be ready to use in clinics. Whether allogeneic MSCs would have an effect similar to autologous MSCs with regard to promoting bone formation in DO is still unknown. This study compares the effect of autologous MSCs versus allogeneic MSCs on bone formation in a rat DO model.MethodsRat bone marrow-derived MSCs were isolated, characterized and expanded in vitro. Adult rats were subjected to right tibia transverse osteotomy. On the third day of distraction, each rat received one injection of phosphate-buffered saline (PBS), autologous MSCs or allogeneic MSCs at the distraction site. Tibiae were harvested after 28 days of consolidation for micro-computed tomography examination, mechanical test and histological analysis.ResultsResults showed that treatment with both allogeneic and autologous MSCs promoted bone formation, with significantly higher bone mass, mechanical properties and mineral apposition rate as well as expression of angiogenic and bone formation markers at the regeneration sites compared with the PBS-treated group. No statistical difference in bone formation was found between the allogeneic and autologous MSC treatment groups.ConclusionsThis study indicates that allogeneic and autologous MSCs have a similar effect on promoting bone consolidation in DO. MSCs from an allogeneic source could be used off-the-shelf with DO to achieve early bone healing.  相似文献   

4.
Background aimsAdipose tissue-derived mesenchymal stromal cells (MSCs) have a higher capacity for proliferation and differentiation compared with other cell lineages. Although distraction osteogenesis is the most important therapy for treating bone defects, this treatment is restricted in many situations. The aim of this study was to examine the therapeutic potential of adipose tissue-derived MSCs and osteoblasts differentiated from adipose tissue-derived MSCs in the treatment of bone defects.MethodsBone defects were produced in the tibias of New Zealand rabbits that had previously undergone adipose tissue extraction. Tibial osteotomy was performed, and a distractor was placed on the right leg of the rabbits. The rabbits were placed in control (group I), stem cell (group II) and osteoblast-differentiated stem cell (group III) treatment groups. The rabbits were sacrificed, and the defect area was evaluated by radiologic, biomechanical and histopathologic tests to examine the therapeutic effects of adipose tissue-derived MSCs.ResultsRadiologic analyses revealed that callus density and the ossification rate increased in group III compared with group I and group II. In biomechanical tests, the highest ossification rate was observed in group III. Histopathologic studies showed that the quality of newly formed bone and the number of cells active in bone formation were significantly higher in group III rabbits compared with group I and group II rabbits.ConclusionsThese data reveal that osteoblasts differentiated from adipose tissue-derived MSCs shorten the consolidation period of distraction osteogenesis. Stem cells could be used as an effective treatment for bone defects.  相似文献   

5.

Background

Mesenchymal stromal cell (MSC)–based therapy has great potential to modulate chronic inflammation and enhance tissue regeneration. Crosstalk between MSC-lineage cells and polarized macrophages is critical for bone formation and remodeling in inflammatory bone diseases. However, the translational application of this interaction is limited by the short-term viability of MSCs after cell transplantation.

Methods

Three types of genetically modified (GM) MSCs were created: (1) luciferase-expressing reporter MSCs; (2) MSCs that secrete interleukin (IL)-4 either constitutively; and (3) MSCs that secrete IL-4 as a response to nuclear factor kappa-light-chain-enhancer of activated B cell (NFκB) activation. Cells were injected into the murine distal femoral bone marrow cavity. MSC viability and bone formation were examined in vivo. Cytokine secretion was determined in a femoral explant organ culture model.

Results

The reporter MSCs survived up to 4 weeks post-implantation. No difference in the number of viable cells was found between high (2.5?×?106) and low (0.5?×?106) cell-injected groups. Injection of 2.5?×?106 reporter MSCs increased local bone mineral density at 4 weeks post-implantation. Injection of 0.5?×?106 constitutive IL-4 or NFκB-sensing IL-4–secreting MSCs increased bone mineral density at 2 weeks post-implantation. In the femoral explant organ culture model, LPS treatment induced IL-4 secretion in the NFκB-sensing IL-4–secreting MSC group and IL-10 secretion in all the femur samples. No significant differences in tumor necrosis factor (TNF)α and IL-1β secretion were observed between the MSC-transplanted and control groups in the explant culture.

Discussion

Transplanted GM MSCs demonstrated prolonged cell viability when transplanted to a compatible niche within the bone marrow cavity. GM IL-4–secreting MSCs may have great potential to enhance bone regeneration in disorders associated with chronic inflammation.  相似文献   

6.
7.
Bone marrow-derived mesenchymal stem cells(BMSCs) play a critical role in the osseointegration of bone and orthopedic implant. However, osseointegration between the Ti-based implants and the surrounding bone tissue must be improved due to titanium's inherent defects. Surface modification stands out as a versatile technique to create instructive biomaterials that can actively direct stem cell fate. Here, we summarize the current approaches to promoting BMSC osteogenesis on the surface of titanium and its alloys. We will highlight the utilization of the unique properties of titanium and its alloys in promoting tissue regeneration, and discuss recent advances in understanding their role in regenerative medicine. We aim to provide a systematic and comprehensive review of approaches to promoting BMSC osteogenesis on the orthopedic implant surface.  相似文献   

8.
9.
In the past decades, concern on glucocorticoid-induced osteoporosis has increased with the widespread use of exogenous glucocorticoids (GC). Mature bone-forming cells (osteoblasts) are considered to be the principal site of action of GC in the skeleton. More likely, it is the entire cellular and molecular network surrounding these cells that is targeted by pharmacological doses of GC. Not only osteoblast and osteocyte metabolism, but the whole differentiation of mesenchymal stem cell toward the osteoblast lineage has been proven to be sensitive to GC. The effects of GC on this process are different according to the stage of differentiation of bone cell precursors. The presence of intact GC signalling is crucial for normal bone development and physiology, as opposed to the detrimental effect of high dose exposure. Both the physiological and pharmacological effects of GC are locally modulated by the activity of the 11β-hydroxysteroid dehydrogenase 1 (HSD1) that acts primarily as a glucocorticoid activator converting the inactive glucocorticoid (cortisone) into the active hormone (cortisol). We reviewed the metabolic and differentiation pathways controlled by GC signalling. These data have been merged with the recent evidences that 11β-HSD1 exert an important role by regulating the vulnerability of bone cells to GC. The different kinetics of 11β-HSD1 at various stage of differentiation and the GC-dependency of enzymatic activity have been presented.  相似文献   

10.
11.
12.
In orthopedics, the regeneration and repair of cartilage or bone defects after trauma, cancer, or metabolic disorders is still a major clinical challenge. Through developmental plasticity, bone marrow mesenchymal stem cells (BMSSCs) are important seed cells for the musculoskeletal tissue engineering approach. The present study sought to determine the ectopic osteogenic and chondrogenic ability of BMSSCs in combination with a scaffolding material made from alginate gel. After isolation from the bone marrow of BALB/C mice, BMSSCs were expanded in vitro and induced to chondrogenesis or osteogenesis for 14 days, respectively. Subsequently, these induced cells were seeded into alginate gel, and the constructs implanted into BALB/C nude mice subcutaneously for up to 8 weeks. In the histological analysis, the transmission electron microscopy of the retrieved specimens at various intervals showed obvious trends of ectopic cartilage or bone formation along with the alteration of the cellular phenotype. Simultaneously, the results of the immunohistochemical staining and RT-PCR both confirmed the expression of specific extracellular matrix (ECM) markers for cartilaginous tissue, such as collagen type II (Col-II), SOX9, and aggrecan, or alternatively, markers for osteoid tissue, such as osteopontin (OPN), osteocalcin (OCN), and collagen type I (Col-I). During subcutaneous implantation, the elevating production of ECM and the initiation of the characteristic structure were closely correlated with the increase of time. In contrast, there was an apparent degradation and resorption of the scaffolding material in blank controls, but with no newly formed tissues. Finally, the constructs that were made of non-induced BMSSCs nearly disappeared during the 8 weeks after implantation. Therefore, it is suggested that alginate gel, which is combined with BMSSCs undergoing differentiation into skeletal lineages, may represent a useful strategy for the clinical reconstruction of bone and cartilage defects.  相似文献   

13.
Multiple myeloma is a hematological malignancy inwhich clonal plasma cells proliferate and accumulate within the bone marrow. The presence of osteolytic le-sions due to increased osteoclast(OC) activity and sup-pressed osteoblast(OB) function is characteristic of the disease. The bone marrow mesenchymal stromal cells(MSCs) play a critical role in multiple myeloma patho-physiology, greatly promoting the growth, survival, drug resistance and migration of myeloma cells. Here, we specifically discuss on the relative contribution of MSCs to the pathophysiology of osteolytic lesions in light of the current knowledge of the biology of my-eloma bone disease(MBD), together with the reported genomic, functional and gene expression differences between MSCs derived from myeloma patients(pMSCs) and their healthy counterparts(dMSCs). Being MSCs the progenitors of OBs, pMSCs primarily contribute to the pathogenesis of MBD because of their reduced osteogenic potential consequence of multiple OB inhibi-tory factors and direct interactions with myeloma cells in the bone marrow. Importantly, pMSCs also readily contribute to MBD by promoting OC formation and ac-tivity at various levels(i.e., increasing RANKL to OPG expression, augmenting secretion of activin A, uncou-pling ephrinB2-EphB4 signaling, and through augment-ed production of Wnt5a), thus further contributing to OB/OC uncoupling in osteolytic lesions. In this review, we also look over main signaling pathways involved in the osteogenic differentiation of MSCs and/or OB activity, highlighting amenable therapeutic targets; in parallel, the reported activity of bone-anabolic agents(at preclinical or clinical stage) targeting those signaling pathways is commented.  相似文献   

14.
15.
Restricted numbers and poor regenerative properties limit the use of adult stem cells. We tested the effect of hypoxic treatment as a method by which to increase cell migration. Bone marrow cells (BMCs) were cultured under oxygen saturations of 0.1, 3, and 20% for 24 h. After hypoxic treatment, BMCs of apoptotic fraction were decreased. The expression of CXCR4 was noticeably increased in the hypoxia-treated BMCs and their migration in response to SDF-1α was enhanced compared with cells cultured under normoxic condition. Hypoxic BMCs had a higher degree of engraftment to the CCl4-injured liver than the normoxic cells. Hypoxic treatment of BMCs may have merits in decreasing apoptosis of those cells as well as in enhancing cellular migration to SDF-1α, the chemokine which binds to BMCs expressed CXCR4 and to the injured tissue, such as CCl4 damaged liver.  相似文献   

16.
Bone tissue engineering is a promising field of regenerative medicine in which cultured cells, scaffolds, and osteogenic inductive signals are used to regenerate bone. This technology has already been used in several clinical studies and its efficacy has been reported. In this review, we focus on bone marrow stromal cells, which are the most commonly used cell source for bone tissue engineering. The nature of the cells, suitable culture conditions for bone tissue engineering, and their potential therapeutic applications are reviewed with possible caveats. Furthermore, recent advances in bone marrow stromal cell biology are discussed with reference to clinical translation.  相似文献   

17.
Mesenchymal stromal cells (MSC) are an attractive cell-targeting vehicle for gene delivery. MIDGE (an acronym for Minimalistic, Immunologically Defined Gene Expression) construct is relatively safer than the viral or plasmid expression system as the detrimental eukaryotic and prokaryotic gene and sequences have been eliminated. The objective of this study was to test the ability of the human MSC (hMSC) to deliver the erythropoietin (EPO) gene in a nude mice model following nucleofection using a MIDGE construct. hMSC nucleofected with MIDGE encoding the EPO gene was injected subcutaneously in Matrigel at the dorsal flank of nude mice. Subcutaneous implantation of nucleofected hMSC resulted in increased hemoglobin level with presence of human EPO in the peripheral blood of the injected nude mice in the first two weeks post-implantation compared with the control groups. The basal layer of the hair shaft in the dermal layer was found to be significantly positive for immunohistochemical staining of a human EPO antibody. However, only a few basal layers of the hair shaft were found to be positively stained for CD105. In conclusion, hMSC harboring MIDGE-EPO could deliver and transiently express the EPO gene in the nude mice model. These cells could be localized to the hair follicle and secreted EPO protein might have possible role in hair regeneration.  相似文献   

18.
Dai ZQ  Wang R  Ling SK  Wan YM  Li YH 《Cell proliferation》2007,40(5):671-684
OBJECTIVES: Microgravity is known to affect the differentiation of bone marrow mesenchymal stem cells (BMSCs). However, a few controversial findings have recently been reported with respect to the effects of microgravity on BMSC proliferation. Thus, we investigated the effects of simulated microgravity on rat BMSC (rBMSC) proliferation and their osteogeneic potential. MATERIALS AND METHODS: rBMSCs isolated from marrow using our established effective method, based on erythrocyte lysis, were identified by their surface markers and their proliferation characteristics under normal conditions. Then, they were cultured in a clinostat to simulate microgravity, with or without growth factors, and in osteogenic medium. Subsequently, proliferation and cell cycle parameters were assessed using methylene blue staining and flow cytometry, respectively; gene expression was determined using Western blotting and microarray analysis. RESULTS: Simulated microgravity inhibited population growth of the rBMSCs, cells being arrested in the G(0)/G(1) phase of cell cycle. Growth factors, such as insulin-like growth factor-I, epidermal growth factor and basic fibroblastic growth factor, markedly stimulated rBMSC proliferation in normal gravity, but had only a slight effect in simulated microgravity. Akt and extracellular signal-related kinase 1/2 phosphorylation levels and the expression of core-binding factor alpha1 decreased after 3 days of clinorotation culture. Microarray and gene ontology analyses further confirmed that rBMSC proliferation and osteogenesis decreased under simulated microgravity. CONCLUSIONS: The above data suggest that simulated microgravity inhibits population growth of rBMSCs and their differentiation towards osteoblasts. These changes may be responsible for some of the physiological changes noted during spaceflight.  相似文献   

19.
20.
In principle, transplantation of mesenchymal progenitor cells would attenuate or possibly correct genetic disorders of bone, cartilage and muscle, but clinical support for this concept is lacking. Here we describe the initial results of allogeneic bone marrow transplantation in three children with osteogenesis imperfecta, a genetic disorder in which osteoblasts produce defective type I collagen, leading to osteopenia, multiple fractures, severe bony deformities and considerably shortened stature. Three months after osteoblast engraftment (1.5-2.0% donor cells), representative specimens of trabecular bone showed histologic changes indicative of new dense bone formation. All patients had increases in total body bone mineral content ranging from 21 to 29 grams (median, 28), compared with predicted values of 0 to 4 grams (median, 0) for healthy children with similar changes in weight. These improvements were associated with increases in growth velocity and reduced frequencies of bone fracture. Thus, allogeneic bone marrow transplantation can lead to engraftment of functional mesenchymal progenitor cells, indicating the feasibility of this strategy in the treatment of osteogenesis imperfecta and perhaps other mesenchymal stem cell disorders as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号