首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chronic kidney disease (CKD) affects millions of persons worldwide and constitutes a major public health problem. Therefore, understanding the molecular basis of CKD is a key challenge for the development of preventive and therapeutic strategies. A major contributor to chronic histological damage associated with CKD is acute kidney injury (AKI). At the cellular level, kidney injuries are associated with microenvironmental alterations, forcing cells to activate adaptive biological processes that eliminate the stressor and generate alarm signals. These signalling pathways actively participate in tissue remodelling by promoting inflammation and fibrogenesis, ultimately leading to CKD. Many stresses that are encountered upon kidney injury are prone to trigger endoplasmic reticulum (ER) stress. In the kidney, ER stress both participates in acute and chronic histological damages, but also promotes cellular adaptation and nephroprotection. In this review, we will discuss the implication of ER stress in the pathophysiology of AKI and CKD progression, and we will give a critical analysis of the current experimental and clinical evidence that support ER stress as a mediator of kidney damage.  相似文献   

2.
Endoplasmic reticulum (ER) stress activates an adaptive unfolded protein response (UPR) that facilitates cellular repair, however, under prolonged ER stress, the UPR can ultimately trigger apoptosis thereby terminating damaged cells. The molecular mechanisms responsible for execution of the cell death program are relatively well characterized, but the metabolic events taking place during the adaptive phase of ER stress remain largely undefined. Here we discuss emerging evidence regarding the metabolic changes that occur during the onset of ER stress and how ER influences mitochondrial function through mechanisms involving calcium transfer, thereby facilitating cellular adaptation. Finally, we highlight how dysregulation of ER-mitochondrial calcium homeostasis during prolonged ER stress is emerging as a novel mechanism implicated in the onset of metabolic disorders.  相似文献   

3.
Aging impairs the mitochondrial electron transport chain (ETC), especially in interfibrillar mitochondria (IFM). Mitochondria are in close contact with the endoplasmic reticulum (ER). Induction of ER stress leads to ETC injury in adult heart mitochondria. We asked if ER stress contributes to the mitochondrial dysfunction during aging. Subsarcolemmal mitochondria (SSM) and IFM were isolated from 3, 18, and 24 mo. C57Bl/6 mouse hearts. ER stress progressively increased with age, especially in 24 mo. mice that manifest mitochondrial dysfunction. OXPHOS was decreased in 24 mo. IFM oxidizing complex I and complex IV substrates. Proteomic analysis showed that the content of multiple complex I subunits was decreased in IFM from 24 mo. hearts, but remained unchanged in in 18 mo. IFM without a decrease in OXPHOS. Feeding 24 mo. old mice with 4-phenylbutyrate (4-PBA) for two weeks attenuated the ER stress and improved mitochondrial function. These results indicate that ER stress contributes to the mitochondrial dysfunction in aged hearts. Attenuation of ER stress is a potential approach to improve mitochondrial function in aged hearts.  相似文献   

4.

In the present study we have shown that treatment of SH-SY5Y cells with either thapsigargin or tunicamycin is associated with a significant decrease in ROUTINE and ATP-coupled mitochondrial respiration as well as a decrease in spare and maximal respiratory capacity. We have also shown that treating cells with either thapsigargin or tunicamycin is associated with significant changes in mitochondrial membrane potential (ΔΨm) generation, which is mainly associated with the reversal of the succinyl-CoA ligase reaction and a decreased activity of complex II. Despite the induction of endoplasmic reticulum (ER) specific unfolded protein response (UPR), as documented by increased expression of HRD1, ER stress did not induce mitochondrial UPR since the expression of both mitochondrial protease LONP1 and mitochondrial chaperone HSP60 was not significantly altered. Inhibition of IRE1α ribonuclease with STF-083010 did not protect the SH-SY5Y cells from ER stress-induced mitochondrial dysfunction. STF-083010 itself had significant impact on both mitochondrial respiration and generation of ΔΨm, which has mainly been associated with the uncoupling of respiratory chain from ATP synthesis.

  相似文献   

5.
Naidoo N  Zhu J  Zhu Y  Fenik P  Lian J  Galante R  Veasey S 《Aging cell》2011,10(4):640-649
Fragmentation of wakefulness and sleep are expected outcomes of advanced aging. We hypothesize that wake neurons develop endoplasmic reticulum dyshomeostasis with aging, in parallel with impaired wakefulness. In this series of experiments, we sought to more fully characterize age-related changes in wakefulness and then, in relevant wake neuronal populations, explore functionality and endoplasmic reticulum homeostasis. We report that old mice show greater sleep/wake transitions in the active period with markedly shortened wake periods, shortened latencies to sleep, and less wake time in the subjective day in response to a novel social encounter. Consistent with sleep/wake instability and reduced social encounter wakefulness, orexinergic and noradrenergic wake neurons in aged mice show reduced c-fos response to wakefulness and endoplasmic reticulum dyshomeostasis with increased nuclear translocation of CHOP and GADD34. We have identified an age-related unfolded protein response injury to and dysfunction of wake neurons. It is anticipated that these changes contribute to sleep/wake fragmentation and cognitive impairment in aging.  相似文献   

6.
内质网应激   总被引:9,自引:0,他引:9  
Lin L  Tang CS  Yuan WJ 《生理科学进展》2003,34(4):333-335
内质网应激表现为内质网腔内错误折叠与未折叠蛋白聚集以及Ca^2 平衡紊乱,可激活未折叠蛋白反应、内质网超负荷反应和caspase-12介导的凋亡通路等信号途径,既能诱导糖调节蛋白(glucose-regulated protein 78kD,GRP78)、GRP94等内质网分子伴侣表达而产生保护效应,亦能独立地诱导细胞凋亡。内质网应激直接影响应激细胞的转归,如适应、损伤或凋亡。  相似文献   

7.
Endoplasmic reticulum stress and apoptosis   总被引:3,自引:0,他引:3  
Cell death is an essential event in normal life and development, as well as in the pathophysiological processes that lead to disease. It has become clear that each of the main cellular organelles can participate in cell death signalling pathways, and recent advances have highlighted the importance of the endoplasmic reticulum (ER) in cell death processes. In cells, the ER functions as the organelle where proteins mature, and as such, is very responsive to extracellular-intracellular changes of environment. This short overview focuses on the known pathways of programmed cell death triggering from or involving the ER.  相似文献   

8.
Perturbed neuronal proteostasis is a salient feature shared by both aging and protein misfolding disorders. The proteostasis network controls the health of the proteome by integrating pathways involved in protein synthesis, folding, trafficking, secretion, and their degradation. A reduction in the buffering capacity of the proteostasis network during aging may increase the risk to undergo neurodegeneration by enhancing the accumulation of misfolded proteins. As almost one‐third of the proteome is synthetized at the endoplasmic reticulum (ER), maintenance of its proper function is fundamental to sustain neuronal function. In fact, ER stress is a common feature of most neurodegenerative diseases. The unfolded protein response (UPR) operates as central player to maintain ER homeostasis or the induction of cell death of chronically damaged cells. Here, we discuss recent evidence placing ER stress as a driver of brain aging, and the emerging impact of neuronal UPR in controlling global proteostasis at the whole organismal level. Finally, we discuss possible therapeutic interventions to improve proteostasis and prevent pathological brain aging.  相似文献   

9.
Endoplasmic reticulum stress response and neurodegeneration   总被引:9,自引:0,他引:9  
Paschen W  Mengesdorf T 《Cell calcium》2005,38(3-4):409-415
  相似文献   

10.
Endoplasmic reticulum stress triggers autophagy   总被引:1,自引:0,他引:1  
Eukaryotic cells have evolved strategies to respond to stress conditions. For example, autophagy in yeast is primarily a response to the stress of nutrient limitation. Autophagy is a catabolic process for the degradation and recycling of cytosolic, long lived, or aggregated proteins and excess or defective organelles. In this study, we demonstrate a new pathway for the induction of autophagy. In the endoplasmic reticulum (ER), accumulation of misfolded proteins causes stress and activates the unfolded protein response to induce the expression of chaperones and proteins involved in the recovery process. ER stress stimulated the assembly of the pre-autophagosomal structure. In addition, autophagosome formation and transport to the vacuole were stimulated in an Atg protein-dependent manner. Finally, Atg1 kinase activity reflects both the nutritional status and autophagic state of the cell; starvation-induced autophagy results in increased Atg1 kinase activity. We found that Atg1 had high kinase activity during ER stress-induced autophagy. Together, these results indicate that ER stress can induce an autophagic response.  相似文献   

11.
动脉粥样硬化是糖尿病常见的并发症,80%的糖尿病患者死于动脉粥样硬化。近年来内质网应激在糖尿病动脉粥样硬化发生、发展过程中的作用受到了广泛关注。本文就内质网应激及其在糖尿病促发动脉粥样硬化中的作用机制作一概述。  相似文献   

12.
Telomerase contributes to cell proliferation and survival through both telomere‐dependent and telomere‐independent mechanisms. In this report, we discovered that endoplasmic reticulum (ER) stress transiently activates the catalytic components of telomerase (TERT) expression in human cancer cell lines and murine primary neural cells. Importantly, we show that depletion of hTERT sensitizes cells to undergo apoptosis under ER stress, whereas increased hTERT expression reduces ER stress‐induced cell death independent of catalytically active enzyme or DNA damage signaling. Our findings establish a functional link between ER stress and telomerase, both of which have important implications in the pathologies associated with aging and cancer.  相似文献   

13.
内质网应激与心肌肥大   总被引:2,自引:0,他引:2  
肌浆网是调控心肌细胞钙稳态、蛋白质合成和细胞凋亡的重要亚细胞器。内质网应激是指内质网理化环境改变和过负荷等因素导致未折叠/误折叠蛋白在内质网聚集和钙稳态失衡等内质网功能紊乱状态。适度的内质网应激有利于心肌细胞代偿,持续而严重的内质网应激则触发内质网应激相关细胞凋亡,造成肥大心肌由代偿转向衰竭,是影响心肌肥大发生、发展的重要因素。本文综述了内质网应激反应在心肌肥大发生、发展中的作用。  相似文献   

14.
《Fungal Biology Reviews》2014,28(2-3):29-35
The gateway to the secretory pathway is the endoplasmic reticulum (ER), an organelle that is responsible for the accurate folding, post-translational modification and final assembly of up to a third of the cellular proteome. When secretion levels are high, errors in protein biogenesis can lead to the accumulation of abnormally folded proteins, which threaten ER homeostasis. The unfolded protein response (UPR) is an adaptive signaling pathway that counters a buildup in misfolded and unfolded proteins by increasing the expression of genes that support ER protein folding capacity. Fungi, like other eukaryotic cells that are specialized for secretion, rely upon the UPR to buffer ER stress caused by fluctuations in secretory demand. However, emerging evidence is also implicating the UPR as a central regulator of fungal pathogenesis. In this review, we discuss how diverse fungal pathogens have adapted ER stress response pathways to support the expression of virulence-related traits that are necessary in the host environment.  相似文献   

15.
Endoplasmic reticulum stress in health and disease   总被引:28,自引:0,他引:28  
  相似文献   

16.
The endoplasmic reticulum (ER) stress response, also commonly known as the unfolded protein response (UPR), is an adaptive response used to align ER functional capacity with demand. It is activated in various tissues under conditions related to obesity and type 2 diabetes. Hypothalamic ER stress contributes to inflammation and leptin/insulin resistance. Hepatic ER stress contributes to the development of steatosis and insulin resistance, and components of the UPR regulate liver lipid metabolism. ER stress in enlarged fat tissues induces inflammation and modifies adipokine secretion, and saturated fats cause ER stress in muscle. Finally, prolonged ER stress impairs insulin synthesis and causes pancreatic β cell apoptosis. In this review, we discuss ways in which ER stress operates as a common molecular pathway in the pathogenesis of obesity and diabetes.  相似文献   

17.
Silibinin is a flavonolignan extracted from milk thistle, which has been used for treating liver disorders, various cancers, and gynecological diseases. However, attempts for treating endometriosis with silibinin are lacking. In this study, we observed that silibinin exerts antiproliferative and apoptotic effects on human endometriotic cell lines VK2/E6E7 and End1/E6E7. We also identified that silibinin-induced oxidative stress and lipid peroxidation in human endometriotic cells. Moreover, we observed upregulation of calcium concentration in the cytosol and mitochondrial matrix, which resulted in mitochondrial dysfunction. Furthermore, induction of endoplasmic reticulum stress signals with rapid mitogen-activated protein kinase (MAPK) pathway signaling resulted in apoptosis of both cells. Using an animal model mimicking the retrograde menstruation hypothesis, we verified the effects of silibinin on reducing endometriotic lesions by inhibiting the expression of inflammatory cytokines in mice. Silibinin might be used as a novel therapeutic agent or supplement for inhibiting progression of endometriosis in vitro and in vivo.  相似文献   

18.
The endoplasmic reticulum (ER) can elicit proapoptotic signalling that results in transmission of Ca(2+) to the mitochondria, which in turn stimulates recruitment of the fission enzyme DRP1 to the surface of the organelle. Here, we show that BH3-only BIK activates this pathway at the ER in intact cells, resulting in mitochondrial fragmentation but little release of cytochrome c to the cytosol. The BIK-induced transformations in mitochondria are dynamic in nature and involve DRP1-dependent remodelling and opening of cristae, where the major stores of cytochrome c reside. This novel function for DRP1 is distinct from its recognized role in regulating mitochondrial fission. Selective permeabilization of the outer membrane with digitonin confirmed that BIK stimulation results in mobilization of intramitochondrial cytochrome c. Of note, BIK can cooperate with a weak BH3-only protein that targets mitochondria, such as NOXA, to activate BAX by a mechanism that is independent of DRP1 enzyme activity. When expressed together, BIK and NOXA cause rapid release of mobilized cytochrome c and activation of caspases.  相似文献   

19.
MAP kinase phosphatase 1 (MKP1) has been identified as an antiapoptotic protein via sustaining mitochondrial function. However, the role of MKP1 in neuroinflammation has not been fully understood. The aim of this study is to figure out the influence of MKP1 in lipopolysaccharide (LPS)-treated microglia BV-2 cells and investigate whether MKP1 reduces BV-2 cell death via modulating endoplasmic reticulum (ER) stress and mitochondrial dysfunction. The results of this study demonstrated that MKP1 was rapidly downregulated after exposure to LPS. However, the transfection of MKP1 adenovirus could reverse cell viability and attenuate LPS-mediated BV-2 cell apoptosis. Mechanistically, MKP1 overexpression alleviated ER stress and corrected LPS-induced calcium overloading. Besides, MKP1 adenovirus transfection also reversed mitochondrial bioenergetics, maintained mitochondrial membrane potential, and blocked mitochondria-initiated apoptosis signals. Furthermore, we found that MKP1 overexpression is associated with inactivation of mitogen-activated protein kinase–c-Jun N-terminal kinase (MAPK–JNK) pathway. Interestingly, the activation of MAPK–JNK pathway could abolish the protective effects of MKP1 on BV-2 cells survival and mitochondrial function in the presence of LPS. Altogether, our results identified MKP1 as a primary defender of neuroinflammation via modulating ER stress and mitochondrial function in a manner dependent on MAPK–JNK pathway. These findings may open a new window for the treatment of neuroinflammation in the clinical setting.  相似文献   

20.
血管内皮细胞内质网应激   总被引:2,自引:0,他引:2  
内质网是调控细胞内膜型/分泌型蛋白质合成、钙稳态和细胞凋亡的重要细胞器,多种因素影响内质网稳态、触发内质网应激。适当的内质网应激通过激活未折叠蛋白反应促进内质网紊乱的恢复,但过度内质网应激触发内质网相关凋亡途径,参与多种疾病的发生。血管内皮细胞具有高度发达的内质网,对内质网应激非常敏感,本文综述血管内皮细胞内质网应激反应及其在血管损伤相关疾病中的作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号