共查询到20条相似文献,搜索用时 15 毫秒
1.
Immune memory has traditionally been the domain of the adaptive immune system, present only in antigen‐specific T and B cells. The purpose of this review is to summarize the evidence for immunological memory in lower organisms (which are not thought to possess adaptive immunity) and within specific cell subsets of the innate immune system. A special focus will be given to recent findings in both mouse and humans for specificity and memory in natural killer (NK) cells, which have resided under the umbrella of innate immunity for decades. The surprising longevity and enhanced responses of previously primed NK cells will be discussed in the context of several immunization settings. 相似文献
2.
Inflammatory bowel disease requires the interplay between innate and adaptive immune signals 总被引:5,自引:0,他引:5
Inflammatory bowl disease (IBD) is a type 1 T helper cell (Th1)-mediated autoimmune disease. Various studies have revealed that environmental pathogens also play a significant role in the initiation and progression of this disease. Interestingly, the pathogenesis of IBD has been shown to be related to nitric oxide (NO) released from innate immune cells. Although NO is known to be highly toxic to the gut epithelia, there is very little information about the regulation of NO production, One major question in the etiology of IBD is how Thl cells and pathogens interact in the induction of IBD. In present study, we focused on the regulation of NO. We show that macrophages require both interferon-γ, (IFN-γ)-mediated and TLR4-mediated signals for the production of NO, which causes inflammation in the intestine and subsequently IBD. Thus, IBD is the result of concerted actions of innate immune signals, such as the binding of LPS to TLR-4, and adaptive immune signals, such as IFN-γ produced by Thl cells. 相似文献
3.
Runlin Han 《Microbiology and immunology》2010,54(4):246-253
Plasma lipoproteins (VLDL, LDL, Lp[a] and HDL) function primarily in lipid transport among tissues and organs. However, cumulative evidence suggests that lipoproteins may also prevent bacterial, viral and parasitic infections and are therefore a component of innate immunity. Lipoproteins can also detoxify lipopolysaccharide and lipoteichoic acid. Infections can induce oxidation of LDL, and oxLDL in turn plays important anti‐infective roles and protects against endotoxin‐induced tissue damage. There is also evidence that apo(a) is protective against pathogens. Taken together, the evidence suggests that it might be valuable to introduce the concept that plasma lipoproteins belong in the realm of host immune response. 相似文献
4.
5.
6.
Insect immune resistance to parasitoids 总被引:3,自引:0,他引:3
Insect host-parasitoid interactions involve complex physiological, biochemical and genetic interactions. Against endoparasitoids, immune-competent hosts initiate a blood cell-mediated response that quickly destroys the intruders and envelops them in a multilayered melanotic capsule. During the past decade, considerable progress has been made in identifying some of the critical components of the host response, mainly because of the use of efficient molecular tools. This review examines some of the components of the innate immune response of Drosophila, an insect that has served as an exceptionally good experimental model for studying non-self recognition processes and immune cell signaling mechanisms. Topics considered in this review include hematopoiesis, proliferation and adhesion of hemocytes, melanogenesis and associated cytotoxic molecules, and the genetic aspects of the host-parasitoid interaction. 相似文献
7.
Sergey N. Rumyantsev 《Acta biotheoretica》1997,45(1):65-80
The belief in the Darwinian theory of evolution appeared to be shaken when one tried to interpret statements of molecular biology in it. As a consequence there arose a theory of non-Darwinian neutral evolution. The supporters of this theory believe that under natural conditions no factors exist which can distinguish and select organisms on their internal (molecular) structure. In the opinion of these neutralists natural selection cannot in principle control the molecular constitution of organisms. Contrary to the viewpoint of the critics of neutralism it is impossible to admit that nucleic acids, proteins and other biomolecules can evolve without the participation of natural selection. This controversy in contemporary theoretical biology can be solved by integrating the conceptions of molecular ecology with Darwinian theory. Molecular ecology acknowledges the interactions of organisms by means of chemical substances synthesized by them. Such chemical ecological factors play a leading part in the selective stages of biomolecular evolution. These diverse chemical ecological interrelations take place intensively when living beings interact with parasitic microbes. 相似文献
8.
The host immune system generally serves as a barrier against tumor formation. Programmed death-ligand 1 (PD-L1) is a critical “don't find me” signal to the adaptive immune system, whereas CD47 transmits an anti-phagocytic signal, known as the “don't eat me” signal, to the innate immune system. These and similar immune checkpoints are often overexpressed on human tumors. Thus, dual targeting both innate and adaptive immune checkpoints would likely maximize anti-tumor therapeutic effect and elicit more durable responses. Herein, based on the variable region of atezolizumab and consensus variant 1 (CV1) monomer, we constructed a dual-targeting fusion protein targeting both CD47 and PD-L1 using “Knobs-into-holes” technology, denoted as IAB. It was effective in inducing phagocytosis of tumor cells, stimulating T-cell activation and mediating antibody-dependent cell-mediated cytotoxicity in vitro. No obvious sign of hematological toxicity was observed in mice administered IAB at a dose of 100 mg/kg, and IAB exhibited potent antitumor activity in an immune-competent mouse model of MC38. Additionally, the anti-tumor effect of IAB was impaired by anti-CD8 antibody or clodronate liposomes, which implied that both CD8+ T cells and macrophages were required for the anti-tumor efficacy of IAB and IAB plays an essential role in the engagement of innate and adaptive immune responses. Collectively, these results demonstrate the capacity of an elicited endogenous immune response against tumors and elucidate essential characteristics of synergistic innate and adaptive immune response, and indicate dual blockade of CD47 and PD-L1 by IAB may be a synergistic therapy that activates both innate and adaptive immune response against tumors. 相似文献
9.
Ubiquitination has emerged as a crucial mechanism that regulates signal transduction in diverse biological processes, including different aspects of immune functions. Ubiquitination regulates pattern-recognition receptor signaling that mediates both innate immune responses and dendritic cell maturation required for initiation of adaptive immune responses. Ubiquitination also regulates the development, activation, and differentiation of T cells, thereby maintaining efficient adaptive immune responses to pathogens and immunological tolerance to self-tissues. Like phosphorylation, ubiquitination is a reversible reaction tightly controlled by the opposing actions of ubiquitin ligases and deubiquitinases. Deregulated ubiquitination events are associated with immunological disorders, including autoimmune and inflammatory diseases. 相似文献
10.
The intestinal epithelium-which constitutes the interface between the enteric microbiota and host tissues-actively contributes to the maintenance of mucosal homeostasis and defends against pathogenic microbes. The recognition of conserved microbial products by cytosolic or transmembrane pattern recognition receptors in epithelial cells initiates signal transduction and influences effector cell function. However, the signalling pathways, effector molecules and regulatory mechanisms involved are not yet fully understood, and the functional outcome is poorly defined. This review analyses the complex and dynamic role of intestinal epithelial innate immune recognition and signalling, on the basis of results in intestinal epithelial cell-specific transgene or gene-deficient animals. This approach identifies specific epithelial cell functions within the diverse cellular composition of the mucosal tissue, in the presence of the complex and dynamic gut microbiota. These insights have thus provided a more comprehensive understanding of the role of the intestinal epithelium in innate immunity during homeostasis and disease. 相似文献
11.
12.
Dickeya dadantii pectic enzymes necessary for virulence are also responsible for activation of the Arabidopsis thaliana innate immune system
下载免费PDF全文

Dominique Expert Oriane Patrit Vladimir E. Shevchik Claude Perino Virginie Boucher Christophe Creze Estelle Wenes Mathilde Fagard 《Molecular Plant Pathology》2018,19(2):313-327
Soft‐rot diseases of plants attributed to Dickeya dadantii result from lysis of the plant cell wall caused by pectic enzymes released by the bacterial cell by a type II secretion system (T2SS). Arabidopsis thaliana can express several lines of defence against this bacterium. We employed bacterial mutants with defective envelope structures or secreted proteins to examine early plant defence reactions. We focused on the production of AtrbohD‐dependent reactive oxygen species (ROS), callose deposition and cell death as indicators of these reactions. We observed a significant reduction in ROS and callose formation with a bacterial mutant in which genes encoding five pectate lyases (Pels) were disrupted. Treatment of plant leaves with bacterial culture filtrates containing Pels resulted in ROS and callose production, and both reactions were dependent on a functional AtrbohD gene. ROS and callose were produced in response to treatment with a cellular fraction of a T2SS‐negative mutant grown in a Pels‐inducing medium. Finally, ROS and callose were produced in leaves treated with purified Pels that had also been shown to induce the expression of jasmonic acid‐dependent defence genes. Pel catalytic activity is required for the induction of ROS accumulation. In contrast, cell death observed in leaves infected with the wild‐type strain appeared to be independent of a functional AtrbohD gene. It was also independent of the bacterial production of pectic enzymes and the type III secretion system (T3SS). In conclusion, the work presented here shows that D. dadantii is recognized by the A. thaliana innate immune system through the action of pectic enzymes secreted by bacteria at the site of infection. This recognition leads to AtrbohD‐dependent ROS and callose accumulation, but not cell death. 相似文献
13.
14.
《Critical reviews in biotechnology》2013,33(2):143-171
Life-threatening infectious diseases are on their way to cause a worldwide crisis, as treating them effectively is becoming increasingly difficult due to the emergence of antibiotic resistant strains. Antimicrobial peptides (AMPs) form an ancient type of innate immunity found universally in all living organisms, providing a principal first-line of defense against the invading pathogens. The unique diverse function and architecture of AMPs has attracted considerable attention by scientists, both in terms of understanding the basic biology of the innate immune system, and as a tool in the design of molecular templates for new anti-infective drugs. AMPs are gene-encoded short (<100 amino acids), amphipathic molecules with hydrophobic and cationic amino acids arranged spatially, which exhibit broad spectrum antimicrobial activity. AMPs have been the subject of natural evolution, as have the microbes, for hundreds of millions of years. Despite this long history of co-evolution, AMPs have not lost their ability to kill or inhibit the microbes totally, nor have the microbes learnt to avoid the lethal punch of AMPs. AMPs therefore have potential to provide an important breakthrough and form the basis for a new class of antibiotics. In this review, we would like to give an overview of cationic antimicrobial peptides, origin, structure, functions, and mode of action of AMPs, which are highly expressed and found in humans, as well as a brief discussion about widely abundant, well characterized AMPs in mammals, in addition to pharmaceutical aspects and the additional functions of AMPs. 相似文献
15.
16.
The complement system in teleosts 总被引:14,自引:0,他引:14
Complement, an important component of the innate immune system, is comprised of about 35 individual proteins. In mammals, activation of complement results in the generation of activated protein fragments that play a role in microbial killing, phagocytosis, inflammatory reactions, immune complex clearance, and antibody production. Fish appear to possess activation pathways similar to those in mammals, and the fish complement proteins identified thus far show many homologies to their mammalian counterparts. Because information about complement proteins, regulatory proteins, and complement receptors in fish is far from complete, it is unclear whether all the complement functions that have been identified in mammals also occur in fish. However, it has been clearly demonstrated that fish complement can lyse foreign cells and opsonise foreign organisms for destruction by phagocytes. There are also indications that complement fragments participate in inflammatory reactions. Fish possess multiple isoforms of several complement proteins, such as C3 and factor B. It has been hypothesised that the function of this diversity in complement proteins serves to expand their innate immune recognition capacity and response. Understanding the functions of complement in fish and the roles the individual proteins, including the various isoforms, play in host defence, is important not only for understanding the evolution of this system but also for the development of new strategies in fish health management. 相似文献
17.
Central to the conceptual basis of ecological immunity is the notion that immune effector systems are costly to produce, run, and/or maintain. Using the mealworm beetle, Tenebrio molitor, as a model we investigated two aspects of the costs of innate immunity. We conducted an experiment designed to identify the cost of an induced immune response, and the cost of constitutive investment in immunity, as well as potential interactions. The immune traits under consideration were the encapsulation response and prophylactic cuticular melanization, which are mechanistically linked by the melanin-producing phenoloxidase cascade. If immunity is costly, we predicted reduced longevity and/or fecundity as a consequence of investment in either immune trait. We found a measurable longevity cost associated with producing an inducible immune response (encapsulation). In contrast to other studies, this cost was expressed under ad libitum feeding conditions. We found no measurable costs for constitutive investment in immunity (prophylactic investment in cuticular colour). 相似文献
18.
The complement system has been thought to originate exclusively in the deuterostomes. Here, we show that the central complement components already existed in the primitive protostome lineage. A functional homolog of vertebrate complement 3, CrC3, has been isolated from a 'living fossil', the horseshoe crab (Carcinoscorpius rotundicauda). CrC3 resembles human C3 and shows closest homology to C3 sequences of lower deuterostomes. CrC3 and plasma lectins bind a wide range of microbes, forming the frontline innate immune defense system. Additionally, we identified CrC2/Bf, a homolog of vertebrate C2 and Bf that participates in C3 activation, and a C3 receptor-like sequence. Furthermore, complement-mediated phagocytosis of bacteria by the hemocytes of horseshoe crab was also observed. Thus, a primitive yet complex opsonic complement defense system is revealed in the horseshoe crab, a protostome species. Our findings demonstrate an ancient origin of the critical complement components and the opsonic defense mechanism in the Precambrian ancestor of bilateral animals. 相似文献
19.
Algood HM Gallo-Romero J Wilson KT Peek RM Cover TL 《FEMS immunology and medical microbiology》2007,51(3):577-586
Helicobacter pylori persistently colonizes the human stomach. In this study, immune responses to H. pylori that occur in the early stages of infection were investigated. Within the first 2 days after orogastric infection of mice with H. pylori, there was a transient infiltration of macrophages and neutrophils into the glandular stomach. By day 10 postinfection, the numbers of macrophages and neutrophils decreased to baseline levels. By 3 weeks postinfection, an adaptive immune response was detected, marked by gastric infiltration of T lymphocytes, macrophages, and neutrophils, as well as increased numbers of H. pylori-specific T cells, macrophages, and dendritic cells in paragastric lymph nodes. Neutrophil-attracting and macrophage-attracting chemokines were expressed at higher levels in the stomachs of H. pylori-infected mice than in the stomachs of uninfected mice. Increased expression of TNFalpha and IFNgamma (Th1-type inflammatory cytokines) and IL-17 (a Th17-type cytokine) was detected in the stomachs of H. pylori-infected mice, but increased expression of IL-4 (a Th2-type cytokine) was not detected. These data indicate that a transient gastric inflammatory response to H. pylori occurs within the first few days after infection, before the priming of T cells and initiation of an adaptive immune response. It is speculated that inappropriate waning of the innate immune response during early stages of infection may be a factor that contributes to H. pylori persistence. 相似文献
20.
As environments and pathogen landscapes shift, host defenses must evolve to remain effective. Due to this selection pressure, among-species comparisons of genetic sequence data often find immune genes to be among the fastest evolving genes across the genome. The full extent and nature of these immune adaptations, however, remain largely unexplored. In a recent study, we analyzed patterns of selection within distinct components of the Drosophila melanogaster immune pathway. While we found evidence of positive selection within some immune processes, immune genes were not universally characterized by signatures of strong selection. On the contrary, we even found that some immune functions show greater than expected constraint. Overall these results highlight 2 major factors that appear to play an outsize role in determining a gene's evolutionary rate: the type of pathogen the gene targets and the gene's position within the immune network. These results join a growing body of literature that highlight the complexity of immune adaptation. Rather than there being uniformly strong selection across all immune genes, a combination of pathogen-specificity and host genetic constraints appear to play key roles in determining each immune gene's individual evolutionary trajectory. 相似文献