首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
《Cytotherapy》2022,24(8):774-788
The ISCT Scientific Signature Series Symposium “Advances in Cell and Gene Therapies for Lung Diseases and Critical Illnesses” was held as an independent symposium in conjunction with the biennial meeting, “Stem Cells, Cell Therapies, and Bioengineering in Lung Biology and Diseases,” which took place July 12–15, 2021, at the University of Vermont. This is the third Respiratory System–based Signature Series event; the first 2, “Tracheal Bioengineering, the Next Steps” and “Cellular Therapies for Pulmonary Diseases and Critical Illnesses: State of the Art of European Science,” took place in 2014 and 2015, respectively. Cell- and gene-based therapies for respiratory diseases and critical illnesses continue to be a source of great promise and opportunity. This reflects ongoing advancements in understanding of the mechanisms by which cell-based therapies, particularly those using mesenchymal stromal cells (MSCs), can mitigate different lung injuries and the increasing sophistication with which preclinical data is translated into clinical investigations. This also reflects continuing evolution in gene transfer vectors, including those designed for in situ gene editing in parallel with those targeting gene or cell replacement. Therefore, this symposium convened global thought leaders in a forum designed to catalyze communication and collaboration to bring the greatest possible innovation and value of cell- and gene-based therapies for patients with respiratory diseases and critical illnesses.  相似文献   

3.
Treatment outcomes of acute leukemia(AL) have not improved over the past several decades and relapse rates remain high despite the availability of aggressive therapies. Conventional relapsed leukemia treatment includes second allogeneic hematopoietic stem cell transplantation(allo-HSCT) and donor lymphocyte infusion(DLI), which in most cases mediate, at best, a modest graft-versus-leukemia effect, although their clinical efficacy is still limited. Although allo-HSCT following myeloablative conditioning is a curative treatment option for younger patients with acute myeloid leukemia(AML) in a first complete remission(CR), allo-HSCT as a clinical treatment is usually limited because of treatment-related toxicity. The overall DLI remission rate is only 15%–42% and 2-year overall survival(OS) is approximately 15%–20%, with a high(40%–60%) incidence of DLI-related graft-versus-host disease(GVHD). Therefore, development of new, targeted treatment strategies for relapsed and refractory AL patients is ongoing. Adoptive transfer of T cells with genetically engineered chimeric antigen receptors(CARs) is an encouraging approach for treating hematological malignancies. These T cells are capable of selectively recognizing tumor-associated antigens and may overcome many limitations of conventional therapies, inducing remission in patients with chemotherapy-refractory or relapsed AL. In this review, we aimed to highlight the current understanding of this promising treatment modality, discussing its adverse effects and efficacy.  相似文献   

4.
Background aimsTo reduce the risk of graft-versus-host disease (GVHD) after allogeneic stem cell transplantation (alloSCT), T-cell depletion (TCD) of grafts can be performed by the addition of alemtuzumab (ALT) “to the bag” (in vitro) before transplantation. In this prospective study, the authors analyzed the effect of in vitro incubation with 20 mg ALT on the composition of grafts prior to graft infusion. Furthermore, the authors assessed whether graft composition at the moment of infusion was predictive for T-cell reconstitution and development of GVHD early after TCD alloSCT.MethodsSixty granulocyte colony-stimulating factor-mobilized stem cell grafts were obtained from ≥9/10 HLA-matched related and unrelated donors. The composition of the grafts was analyzed by flow cytometry before and after in vitro incubation with ALT. T-cell reconstitution and incidence of severe GVHD were monitored until 12 weeks after transplantation.ResultsIn vitro incubation of grafts with 20 mg ALT resulted in an initial median depletion efficiency of T-cell receptor (TCR) α/β T cells of 96.7% (range, 63.5–99.8%), followed by subsequent depletion in vivo. Graft volumes and absolute leukocyte counts of grafts before the addition of ALT were not predictive for the efficiency of TCR α/β T-cell depletion. CD4pos T cells were depleted more efficiently than CD8pos T cells, and naive and regulatory T cells were depleted more efficiently than memory and effector T cells. This differential depletion of T-cell subsets was in line with their reported differential CD52 expression. In vitro depletion efficiencies and absolute numbers of (naive) TCR α/β T cells in the grafts after ALT incubation were not predictive for T-cell reconstitution or development of GVHD post- alloSCT.ConclusionsThe addition of ALT to the bag is an easy, fast and generally applicable strategy to prevent GVHD in patients receiving alloSCT after myeloablative or non-myeloablative conditioning because of the efficient differential depletion of donor-derived lymphocytes and T cells.  相似文献   

5.
Background aimsDouble cord blood transplantation (DCBT) may shorten neutrophil and platelet recovery times compared with standard umbilical cord blood transplantation. However, DCBT may be associated with a higher incidence of graft versus host disease (GVHD). In this study, we explored the effect of ex vivo expansion of a single cord blood unit (CBU) in a DCBT setting on GVHD and engraftment.MethodsPost-thaw cryopreserved CBUs from cord blood banks, hereinafter termed “banked” CBUs, were co-cultured with confluent bone marrow mesenchymal stromal cells (MSCs) supplemented with a cytokine cocktail comprising 100 ng/mL stem cell factor, 50 ng/mL flt3-ligand, 100 ng/mL thrombopoietin and 20 ng/mL insulin-like growth factor binding protein 2 for 12 days.ResultsWhen DCBT of one unexpanded and one expanded CBU was performed in non-obese diabetic/severe combined immunodeficient-IL2Rgammanull (NOD/SCID-IL2γ?/?, NSG) mice, the expanded CBU significantly boosted in vivo hematopoiesis of the unexpanded CBU. The median survival of NSG mice was significantly improved from 63.4% (range, 60.0–66.7%) for mice receiving only unexpanded units to 86.5% (range, 80.0–92.9%) for mice receiving an expanded unit (P < 0.001). The difference in survival appeared to be due to a lower incidence of GVHD in the mice receiving expanded cells. This effect on GVHD was mediated by a significant increase in regulatory T cells seen in the presence of MSC co-culture.ConclusionsMSC-supported ex vivo expansion of “banked” CBU boosted unexpanded CBU hematopoiesis in vivo, increased regulatory T cell content and decreased the incidence of GVHD.  相似文献   

6.
BackgroundZika virus (ZIKV) infection can cause severe birth defects in newborns with no effective currently available treatment. Adoptive transfer of virus-specific T cells has proven to be safe and effective for the prevention or treatment of many viral infections, and could represent a novel treatment approach for patients with ZIKV infection. However, extending this strategy to the ZIKV setting has been hampered by limited data on immunogenic T-cell antigens within ZIKV. Hence, we have generated ZIKV-specific T cells and characterized the cellular immune responses against ZIKV antigens.MethodsT-cell products were generated from peripheral blood of ZIKV-exposed donors, ZIKV-naive adult donors and umbilical cord blood by stimulation with pentadecamer (15mer) overlapping peptide libraries spanning four ZIKV polyproteins (C, M, E and NS1) using a Good Manufacturing Practice–compliant protocol.ResultsWe successfully generated T cells targeting ZIKV antigens with clinically relevant numbers. The ex vivo–expanded T cells comprised both CD4+ and CD8+ T cells that were able to produce Th1-polarized effector cytokines and kill ZIKV-infected HLA-matched monocytes, confirming functionality of this unique T-cell product as a potential “off-the-shelf” therapeutic. Epitope mapping using peptide arrays identified several novel HLA class I and class II–restricted epitopes within NS1 antigen, which is essential for viral replication and immune evasion.DiscussionOur findings demonstrate that it is feasible to generate potent ZIKV-specific T cells from a variety of cell sources including virus naïve donors for future clinical use in an “off-the-shelf” setting.  相似文献   

7.
《遗传学报》2022,49(7):599-611
The CD4+FOXP3+ regulatory T (Treg) cells are essential for maintaining immune homeostasis in healthy individuals. Results from clinical trials of Treg cell-based therapies in patients with graft versus host disease (GVHD), type 1 diabetes (T1D), liver transplantation, and kidney transplantation have demonstrated that adoptive transfer of Treg cells is emerging as a promising strategy to promote immune tolerance. Here we provide an overview of recent progresses and current challenges of Treg cell-based therapies. We summarize the completed and ongoing clinical trials with human Treg cells. Notably, a few of the chimeric antigen receptor (CAR)-Treg cell therapies are currently undergoing clinical trials. Meanwhile, we describe the new strategies for engineering Treg cells used in preclinical studies. Finally, we envision that the use of novel synthetic receptors, metabolic regulators, combined therapies, and in vivo generated antigen-specific or engineered Treg cells through the delivery of modified mRNA and CRISPR-based gene editing will further promote the advances of next-generation Treg cell therapies.  相似文献   

8.
Despite the presence of toll like receptor (TLR) expression in conventional TCRαβ T cells, the direct role of TLR signaling via myeloid differentiation factor 88 (MyD88) within T lymphocytes on graft-versus-host disease (GVHD) and graft-versus-leukemia (GVL) effect after allogeneic stem cell transplantation (allo-SCT) remains unknown. In the allo-SCT model of C57BL/6 (H-2b) → B6D2F1 (H-2b/d), recipients received transplants of wild type (WT) T-cell-depleted (TCD) bone marrow (BM) and splenic T cells from either WT or MyD88 deficient (MyD88KO) donors. Host-type (H-2d) P815 mastocytoma or L1210 leukemia cells were injected either subcutaneously or intravenously to generate a GVHD/GVL model. Allogeneic recipients of MyD88KO T cells demonstrated a greater tumor growth without attenuation of GVHD severity. Moreover, GVHD-induced GVL effect, caused by increasing the conditioning intensity was also not observed in the recipients of MyD88KO T cells. In vitro, the absence of MyD88 in T cells resulted in defective cytolytic activity to tumor targets with reduced ability to produce IFN-γ or granzyme B, which are known to critical for the GVL effect. However, donor T cell expansion with effector and memory T-cell differentiation were more enhanced in GVHD hosts of MyD88KO T cells. Recipients of MyD88KO T cells experienced greater expansion of Foxp3- and IL4-expressing T cells with reduced INF-γ producing T cells in the spleen and tumor-draining lymph nodes early after transplantation. Taken together, these results highlight a differential role for MyD88 deficiency on donor T-cells, with decreased GVL effect without attenuation of the GVHD severity after experimental allo-SCT.  相似文献   

9.
《Cytotherapy》2014,16(11):1528-1536
BackgroundUmbilical cord blood (UCB) is an alternative graft source for hematopoietic stem cell transplantation and has been shown to give results comparable to transplantation with other stem cell sources. Donor lymphocyte infusion (DLI) is an effective treatment for relapsed malignancies after hematopoietic stem cell transplantation. However, DLI is not available after UCB transplantation.MethodsIn this study, in vitro–cultured T cells from the UCB graft were explored as an alternative to conventional DLI. The main aim was to study the safety of the cultured UCB T cells used as DLI because such cell preparations have not been used in this context previously. We also assessed potential benefits of the treatment.ResultsThe cultured UCB T cells (UCB DLI) were given to 4 patients with mixed chimerism (n = 2), minimal residual disease (n = 1) and graft failure (n = 1). No adverse reactions were seen at transfusion. Three of the patients did not show any signs of graft-versus-host disease (GVHD) after UCB DLI, but GVHD could not be excluded in the last patient. In the patient with minimal residual disease treated with UCB DLI, the malignant cell clone was detectable shortly before infusion but undetectable at treatment and for 3 months after infusion. In 1 patient with mixed chimerism, the percentage of recipient cells decreased in temporal association with UCB DLI treatment.ConclusionsWe saw no certain adverse effects of treatment with UCB DLI. Events that could indicate possible benefits were seen but with no certain causal association with the treatment.  相似文献   

10.
《Cytotherapy》2022,24(8):802-817
T cell-based therapies like genetically modified immune cells expressing chimeric antigen receptors have shown robust anti-cancer activity in vivo, especially in patients with blood cancers. However, extending this approach to an “off-the-shelf” setting can be challenging, as allogeneic T cells carry a significant risk of graft-versus-host disease (GVHD). By contrast, allogeneic natural killer (NK) cells recognize malignant cells without the need for prior antigen exposure and have been used safely in multiple cancer settings without the risk of GVHD. However, similar to T cells, NK cell function is negatively impacted by tumor-induced transforming growth factor beta (TGF-β) secretion, which is a ubiquitous and potent immunosuppressive mechanism employed by most malignancies. Allogeneic NK cells for adoptive immunotherapy can be sourced from peripheral blood (PB) or cord blood (CB), and the authors’ group and others have previously shown that ex vivo expansion and gene engineering can overcome CB-derived NK cells’ functional immaturity and poor cytolytic activity, including in the presence of exogenous TGF-β.  However, a direct comparison of the effects of TGF-β-mediated immune suppression on ex vivo-expanded CB- versus PB-derived NK cell therapy products has not previously been performed. Here the authors show that PB- and CB-derived NK cells have distinctive gene signatures that can be overcome by ex vivo expansion. Additionally, exposure to exogenous TGF-β results in an upregulation of inhibitory receptors on NK cells, a novel immunosuppressive mechanism not previously described. Finally, the authors provide functional and genetic evidence that both PB- and CB-derived NK cells are equivalently susceptible to TGF-β-mediated immune suppression. The authors believe these results provide important mechanistic insights to consider when using ex vivo-expanded, TGF-β-resistant PB- or CB-derived NK cells as novel immunotherapy agents for cancer.  相似文献   

11.
《Endocrine practice》2014,20(9):933-944
ObjectiveHyperglycemia is common in hospitalized patients with and without prior history of diabetes and is an independent marker of morbidity and mortality in critically and noncritically ill patients. Tight glycemic control using insulin has been shown to reduce cardiac morbidity and mortality in hospitalized patients, but it also results in hypoglycemic episodes, which have been linked to poor outcomes. Thus, alternative treatment options that can normalize blood glucose levels without undue hypoglycemia are being sought. Incretin-based therapies, such as glucagon-like peptide (GLP)-1 receptor agonists (RAs) and dipeptidyl peptidase (DPP)-4 inhibitors, may have this potential.MethodsA PubMed database was searched to find literature describing the use of incretins in hospital settings. Title searches included the terms “diabetes” (care, management, treatment), “hospital,” “inpatient,” “hypoglycemia,” “hyperglycemia,” “glycemic,” “incretin,” “dipeptidyl peptidase-4 inhibitor,” “glucagon-like peptide-1,” and “glucagon-like peptide-1 receptor agonist.”ResultsThe preliminary research experience with native GLP-1 therapy has shown promise, achieving improved glycemic control with a low risk of hypoglycemia, counteracting the hyperglycemic effects of stress hormones, and improving cardiac function in patients with heart failure and acute ischemia. Large, randomized controlled clinical trials are necessary to determine whether these favorable results will extend to the use of GLP-1 RAs and DPP-4 inhibitors.ConclusionsThis review offers hospitalist physicians and healthcare providers involved in inpatient diabetes care a pathophysiologic-based approach for the use of incretin agents in patients with hyperglycemia and diabetes, as well as a summary of benefits and concerns of insulin and incretin-based therapy in the hospital setting. (Endocr Pract. 2014;20:933-944)  相似文献   

12.
13.
CD73 functions as an ecto-5′-nucleotidase to produce extracellular adenosine that has anti-inflammatory and immunosuppressive activity. We here demonstrate that CD73 helps control graft-versus-host disease (GVHD) in mouse models. Survival of wild-type (WT) recipients of either allogeneic donor naïve CD73 knock-out (KO) or WT T cells was similar suggesting that donor naïve T cell CD73 did not contribute to GVHD. By contrast, donor CD73 KO CD4+CD25+ regulatory T cells (Treg) had significantly impaired ability to mitigate GVHD mortality compared to WT Treg, suggesting that CD73 on Treg is critical for GVHD protection. However, compared to donor CD73, recipient CD73 is more effective in limiting GVHD. Pharmacological blockade of A2A receptor exacerbated GVHD in WT recipients, but not in CD73 KO recipients, suggesting that A2 receptor signaling is primarily implicated in CD73-mediated GVHD protection. Moreover, pharmacological blockade of CD73 enzymatic activity induced stronger alloreactive T cell activity, worsened GVHD and enhanced the graft-versus-leukemia (GVL) effect. These findings suggest that both donor and recipient CD73 protects against GVHD but also limits GVL effects. Thus, either enhancing or blocking CD73 activity has great potential clinical application in allogeneic bone marrow transplants.  相似文献   

14.
Combinations of cellular immune-based therapies with chemotherapy and other antitumour agents may be of significant clinical benefit in the treatment of many forms of cancer. Gamma delta (γδ) T cells are of particular interest for use in such combined therapies due to their potent antitumour cytotoxicity and relative ease of generation in vitro. Here, we demonstrate high levels of cytotoxicity against solid tumour-derived cell lines with combination treatment utilizing Vγ9Vδ2 T cells, chemotherapeutic agents and the bisphosphonate, zoledronate. Pre-treatment with low concentrations of chemotherapeutic agents or zoledronate sensitized tumour cells to rapid killing by Vγ9Vδ2 T cells with levels of cytotoxicity approaching 90%. In addition, zoledronate enhanced the chemotherapy-induced sensitization of tumour cells to Vγ9Vδ2 T cell cytotoxicity resulting in almost 100% lysis of tumour targets in some cases. Vγ9Vδ2 T cell cytotoxicity was mediated by perforin following TCR-dependent and isoprenoid-mediated recognition of tumour cells. Production of IFN-γ by Vγ9Vδ2 T cells was also induced after exposure to sensitized targets. We conclude that administration of Vγ9Vδ2 T cells at suitable intervals after chemotherapy and zoledronate may substantially increase antitumour activities in a range of malignancies. Financial support and conflicts of interest: This study was supported by grants from Medinet (Japan), and Suncorp Metway and Gallipoli Research Foundation (Australia). No financial or commercial interests arise from this study. Informed consent: This study was approved by Human Research Ethics Committees of the University of Queensland and Greenslopes Private Hospital and informed consent was obtained from all subjects.  相似文献   

15.
《Cytotherapy》2021,23(8):662-671
Cellular therapies for malignant lymphoma include autologous or allogeneic hematopoietic stem cell transplantation (HSCT) and adaptive cellular therapy using EBV-specific T cells, cytokine-induced killer (CIK) cells, NKT cells, NK cells, chimeric antigen receptor T (CAR-T) cells and chimeric antigen receptor NK (CAR-NK) cells. In this review we discusses recent advances of these cellular therapies and consider ways to optimize these therapies. Not only a single strategy using one of these cellular therapies, but also multi-disciplinary treatment combines with antibodies, such as an anti-tumor antibody and an immune checkpoint antibody, may be more effective for relapsed and refractory lymphoma.  相似文献   

16.
Treatment of hematopoietic malignancies often requires allogeneic bone marrow transplantation, and the subsequent graft-versus-leukemia response is crucial for the elimination of malignant cells. Cytotoxic T lymphocytes and NK cells responsible for the immunoelimination express Fas ligand and strongly rely on the induction of Fas receptor-mediated apoptosis for their action. Although cancer cells are removed successfully by graft-versus-leukemia reactions in myeloid malignancies, their efficiency is low in T cell leukemias. This may be partially because of the ability of malignant T cells to escape apoptosis. Our work shows that Eph family receptor EphB3 is consistently expressed by malignant T lymphocytes, most frequently in combination with EphB6, and that stimulation with their common ligands, ephrin-B1 and ephrin-B2, strongly suppresses Fas-induced apoptosis in these cells. This effect is associated with Akt activation and with the inhibition of the Fas receptor-initiated caspase proteolytic cascade. Akt proved to be crucial for the prosurvival response, because inhibition of Akt, but not of other molecules central to T cell biology, including Src kinases, MEK1 and MEK2, blocked the antiapoptotic effect. Overall, this demonstrates a new role for EphB receptors in the protection of malignant T cells from Fas-induced apoptosis through Akt engagement and prevention of caspase activation. Because Fas-triggered apoptosis is actively involved in the graft-versus-leukemia response and cytotoxic T cells express ephrin-Bs, our observations suggest that EphB receptors are likely to support immunoevasivenes of T cell malignancies and may represent promising targets for therapies, aiming to enhance immunoelimination of cancerous T cells.  相似文献   

17.
《Cytotherapy》2014,16(6):835-844
Background aimsCytokine-induced killer (CIK) cells may offer a novel therapeutic approach for patients with malignancies relapsing after allogeneic stem cell transplantation. Although CIK cells display negligible alloreactivity and cause minimal graft versus-host-disease (GVHD), high CIK cell doses required during relapse may pose a risk for severe GVHD, specifically in the mismatched or haploidentical transplantation setting. Manipulation of CIK cells may reduce risk for GVHD without affecting the anti-tumor potential.MethodsIn this pre-clinical study, we provide a detailed functional comparison of conventional and irradiated, CD56-enriched or T-cell receptor α/β-depleted CIK cells.ResultsIn vitro analysis showed retained anti-leukemic and anti-tumor potential after CIK cell manipulation. Even being sequentially infused into immunodeficient mice grafted with malignant cells, cytotoxic effects were fewest after irradiation but were improved by CD56 enrichment and were best with conventional CIK cells. Hence, considering the proliferative capacity of inoculated malignancies and effector cells, a single dose of conventional CIK cells resulted in prolonged disease-free survival and elimination of rhabdomyosarcoma cells, whereas sequential infusions were needed to achieve comparable results in leukemia-bearing mice. However, this mouse model has limitations: highly effective conventional CIK cells demonstrated both limited xenogenic GVHD and low alloreactive potential in vitro.ConclusionsOur study revealed that conventional CIK cells demonstrate no significant alloreactive potential but provide the strongest anti-tumor efficacy compared with manipulated CIK cells. Conventional CIK cells may therefore be tested in high numbers and short-term intervals in patients with impending relapse even after mismatched transplantation.  相似文献   

18.
Background aimsAdoptive immunotherapy with the use of chimeric antigen receptor (CAR)-engineered T cells specific for CD19 has shown promising results for the treatment of B-cell lymphomas and leukemia. This therapy involves the transduction of autologous T cells with a viral vector and the subsequent cell expansion. We describe a new, simplified method to produce anti-CD19-CAR T cells.MethodsT cells were isolated from peripheral blood mononuclear cell (PBMC) with anti-CD3/anti-CD28 paramagnetic beads. After 2 days, the T cells were added to culture bags pre-treated with RetroNectin and loaded with the retroviral anti-CD19 CAR vector. The cells, beads and vector were incubated for 24 h, and a second transduction was then performed. No spinoculation was used. Cells were then expanded for an additional 9 days.ResultsThe method was validated through the use of two PBMC products from a patient with B-cell chronic lymphoblastic leukemia and one PBMC product from a healthy subject. The two PBMC products from the patient with B-cell chronic lymphoblastic leukemia contained 11.4% and 12.9% T cells. The manufacturing process led to final products highly enriched in T cells with a mean CD3+ cell content of 98%, a mean expansion of 10.6-fold and a mean transduction efficiency of 68%. Similar results were obtained from the PBMCs of the first four patients with acute lymphoblastic leukemia treated at our institution.ConclusionsWe developed a simplified, semi-closed system for the initial selection, activation, transduction and expansion of T cells with the use of anti-CD3/anti-CD28 beads and bags to produce autologous anti-CD19 CAR–transduced T cells to support an ongoing clinical trial.  相似文献   

19.
Graft-versus-host disease (GVHD) is the limiting barrier to the broad use of bone marrow transplant as a curative therapy for a variety of hematological deficiencies. GVHD is caused by mature alloreactive T cells present in the bone marrow graft that are infused into the recipient and cause damage to host organs. However, in mice, T cells must be added to the bone marrow inoculum to cause GVHD. Although extensive work has been done to characterize T cell responses post transplant, bioluminescent imaging technology is a non-invasive method to monitor T cell trafficking patterns in vivo. Following lethal irradiation, recipient mice are transplanted with bone marrow cells and splenocytes from donor mice. T cell subsets from L2G85.B6 (transgenic mice that constitutively express luciferase) are included in the transplant. By only transplanting certain T cell subsets, one is able to track specific T cell subsets in vivo, and based on their location, develop hypotheses regarding the role of specific T cell subsets in promoting GVHD at various time points. At predetermined intervals post transplant, recipient mice are imaged using a Xenogen IVIS CCD camera. Light intensity can be quantified using Living Image software to generate a pseudo-color image based on photon intensity (red = high intensity, violet = low intensity). Between 4-7 days post transplant, recipient mice begin to show clinical signs of GVHD. Cooke et al.1 developed a scoring system to quantitate disease progression based on the recipient mice fur texture, skin integrity, activity, weight loss, and posture. Mice are scored daily, and euthanized when they become moribund. Recipient mice generally become moribund 20-30 days post transplant. Murine models are valuable tools for studying the immunology of GVHD. Selectively transplanting particular T cell subsets allows for careful identification of the roles each subset plays. Non-invasively tracking T cell responses in vivo adds another layer of value to murine GVHD models.  相似文献   

20.
BackgroundLiver is the pivotal organ responsible for plasma protein production, biliary secretion, xenobiotic elimination, glucose and lipid homeostasis. Dysregulation of these functions usually leads to liver diseases and further related complications. The incidence of liver diseases is increasing worldwide, with high morbidity and mortality when at advanced stages, and has become significant public health concern and substential economic burden. Thus, novel therapeutic strategies for managing liver diseases progression are urgently required. T. ruticarpum is one of the most famous and frequently used herbal medicine and has been prescribed in traditional Chinese medicine (TCM) formulas for the treatment of various ailments, including liver diseases. A considerable amount of bioactive ingredients have been isolated and identified from the roots of T. ruticarpum, including alkaloids, saponins, phenols, volatile oils and other compounds. Among these compounds, evodiamine (EVO) and rutaecarpine (RUT) are believed to be the most bioactive compounds.PurposeTo summarize recent findings regarding to the metabolism, pharmacological/toxicological effects of EVO and RUT and to highlight the potential therapeutic effects of them against liver diseases.MethodsOnline academic databases (including PubMed, Google Scholar, Web of Science and CNKI) were searched using search terms of “T. ruticarpum”, “Wu Zhu Yu”, “evodiamine”, “rutaecarpine”, “liver” and combinations to include published studies of EVO and RUT primarily from 2004–2019. Several critical previous studies beyond this period were also included.ResultsEvodiamine (EVO) and rutaecarpine (RUT) are believed to be the most bioactive alkaloids in T. ruticarpum, having anti-inflammation, anti-fibrosis, anti-lipotoxicity, anti-cancer activities, and thus having potential to improve liver disorders. In the current review, we comprehensively summarized recent progresses in the studies of EVO- and RUT-mediated promising hepatoprotective effects and also provide novel insights regarding the potential use of EVO and RUT as therapeutic options for the treatment of liver diseases.ConclusionWith further in-depth pharmacology and pharmacokinetic studies, we believe that natural products in T. ruticarpum and their derivatives will become promising medicines with improved clinical efficacy for the treatment of liver diseases in the immediate future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号