首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Brain injuries promote upregulation of so-called proinflammatory prostaglandins, notably prostaglandin E2 (PGE2), leading to overactivation of a class of its cognate G-protein-coupled receptors, including EP1, which is considered a promising target for treatment of ischemic stroke. However, the role of the EP1 receptor is complex and depends on the type of brain injury. This study is focused on the investigation of the role of the EP1 receptor in a controlled cortical impact (CCI) model, a preclinical model of traumatic brain injury (TBI). The therapeutic effects of post-treatments with a widely studied EP1 receptor antagonist, SC-51089, were examined in wildtype and EP1 receptor knockout C57BL/6 mice. Neurological deficit scores (NDS) were assessed 24 and 48 h following CCI or sham surgery, and brain immunohistochemical pathology was assessed 48 h after surgery. In wildtype mice, CCI resulted in an obvious cortical lesion and localized hippocampal edema with an associated significant increase in NDS compared to sham-operated animals. Post-treatments with the selective EP1 receptor antagonist SC-51089 or genetic knockout of EP1 receptor had no significant effects on cortical lesions and hippocampal swelling or on the NDS 24 and 48 h after CCI. Immunohistochemistry studies revealed CCI-induced gliosis and microglial activation in selected ipsilateral brain regions that were not affected by SC-51089 or in the EP1 receptor-deleted mice. This study provides further clarification on the respective contribution of the EP1 receptor in TBI and suggests that, under this experimental paradigm, the EP1 receptor would have limited effects in modulating acute neurological and anatomical pathologies following contusive brain trauma. Findings from this protocol, in combination with previous studies demonstrating differential roles of EP1 receptor in ischemic, neurotoxic, and hemorrhagic conditions, provide scientific background and further clarification of potential therapeutic application of prospective prostaglandin G-protein-coupled receptor drugs in the clinic for treatment of TBI and other acute brain injuries.  相似文献   

2.
EP3 is prostaglandin E2 receptor subtype 3 and mediates the activation of several signaling pathways, changing in cAMP levels, calcium mobilization, and activation of phospholipase C. Previous studies demonstrated a direct role for EP3 in various neurodegenerative disorders, such as stroke and Alzheimer disease. However, the distribution and function of EP3 in ICH diseases remain unknown. Here, we demonstrate that EP3 may be involved in neuronal apoptosis in the processes of intracerebral hemorrhage (ICH). From the results of Western blot and immunohistochemistry, we obtained a significant up-regulation of EP3 in neurons adjacent to the hematoma following ICH. Up-regulation of EP3 was found to be accompanied by the increased expression of active caspase-3 and pro-apoptotic Bcl-2-associated X protein (Bax) and decreased expression of anti-apoptotic protein B cell lymphoma-2 (Bcl-2) in vivo and vitro studies. Furthermore, the expression of these three proteins reduced active caspase-3 and Bax expression, while increased Bcl-2 were changed after knocking down EP3 by RNA interference in PC12 cells, further confirmed that EP3 might exert its pro-apoptotic function on neuronal apoptosis. Thus, EP3 may play a role in promoting the neuronal apoptosis following ICH.  相似文献   

3.
With increasing body weight, macrophages accumulate in adipose tissue. There, activated macrophages secrete numerous proinflammatory cytokines and chemokines, giving rise to chronic inflammation and insulin resistance. Prostaglandin E2 suppresses macrophage activation via EP4; however, the role of EP4 signaling in insulin resistance and type 2 diabetes mellitus remains unknown. In this study, we treated db/db mice with an EP4-selective agonist, ONO-AE1-329, for 4 weeks to explore the role of EP4 signaling in obesity-related inflammation in vivo. Administration of the EP4 agonist did not affect body weight gain or food intake; however, in the EP4 agonist–treated group, glucose tolerance and insulin resistance were significantly improved over that of the vehicle–treated group. Additionally, administration of the EP4 agonist inhibited the accumulation of F4/80-positive macrophages and the formation of crown-like structures in white adipose tissue, and the adipocytes were significantly smaller. The treatment of the EP4 agonist increased the number of anti-inflammatory M2 macrophages, and in the stromal vascular fraction of white adipose tissue, which includes macrophages, it markedly decreased the levels of proinflammatory cytokines and chemokines. Further, EP4 activation increased the expression of adiponectin and peroxidase proliferator–activated receptors in white adipose tissue. Next, we examined in vitro M1/M2 polarization assay to investigate the impact of EP4 signaling on determining the functional phenotypes of macrophages. Treatment with EP4 agonist enhanced M2 polarization in wild-type peritoneal macrophages, whereas EP4-deficient macrophages were less susceptible to M2 polarization. Notably, antagonizing peroxidase proliferator–activated receptor δ activity suppressed EP4 signaling-mediated shift toward M2 macrophage polarization. Thus, our results demonstrate that EP4 signaling plays a critical role in obesity-related adipose tissue inflammation and insulin resistance by regulating macrophage recruitment and polarization. The activation of EP4 signaling holds promise for treating obesity and type 2 diabetes mellitus.  相似文献   

4.
In this study, we evaluated the potential beneficial effects of antagonizing prostaglandin E2 (PGE2) EP1 receptor on motor and memory deficits in Huntington's disease (HD). To this aim, we implanted an osmotic mini-pump system to chronically administrate an EP1 receptor antagonist (SC-51089) in the R6/1 mouse model of HD, from 13 to 18 weeks of age, and used different paradigms to assess motor and memory function. SC-51089 administration ameliorated motor coordination and balance dysfunction in R6/1 mice as analyzed by rotarod, balance beam, and vertical pole tasks. Long-term memory deficit was also rescued after EP1 receptor antagonism as assessed by the T-maze spontaneous alternation and the novel object recognition tests. Additionally, treatment with SC-51089 improved the expression of specific synaptic markers and reduced the number of huntingtin nuclear inclusions in the striatum and hippocampus of 18-week-old R6/1 mice. Moreover, electrophysiological studies showed that hippocampal long-term potentiation was significantly recovered in R6/1 mice after EP1 receptor antagonism. Altogether, these results show that the antagonism of PGE2 EP1 receptor has a strong therapeutic effect on R6/1 mice and point out a new therapeutic candidate to treat motor and memory deficits in HD.  相似文献   

5.
6.
7.
Elevated levels of prostaglandins such as PGE2 in inflamed gingiva play a significant role in the tissue destruction caused by periodontitis, partly by targeting local fibroblasts. Only very few studies have shown that PGE2 inhibits the proliferation of a gingival fibroblast (GF) cell line, and we expanded this research by using primary human GFs (hGFs) and looking into the mechanisms of the PGE2 effect. GFs derived from healthy human gingiva were treated with PGE2 and proliferation was assessed by measuring cell number and DNA synthesis and potential signaling pathways were investigated using selective activators or inhibitors. PGE2 inhibited the proliferation of hGFs dose‐dependently. The effect was mimicked by forskolin (adenylate cyclase stimulator) and augmented by IBMX (a cAMP‐breakdown inhibitor), pointing to involvement of cAMP. Indeed, PGE2 and forskolin induced cAMP generation in these cells. Using selective EP receptor agonists we found that the anti‐proliferative effect of PGE2 is mediated via the EP2 receptor (which is coupled to adenylate cyclase activation). We also found that the effect of PGE2 involved activation of Epac (exchange protein directly activated by cAMP), an intracellular cAMP sensor, and not PKA. While serum increased the amount of phospho‐ERK in hGFs by ~300%, PGE2 decreased it by ~50%. Finally, the PGE2 effect does not require endogenous production of prostaglandins since it was not abrogated by two COX‐inhibitors. In conclusion, in human gingival fibroblasts PGE2 activates the EP2—cAMP—Epac pathway, reducing ERK phosphorylation and inhibiting proliferation. This effect could hamper periodontal healing and provide further insights into the pathogenesis of inflammatory periodontal disease. J. Cell. Biochem. 108: 207–215, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

8.

Background and Purpose

Recent evidence has supported the neuroprotective effect of bpV (pic), an inhibitor of phosphatase and tensin homolog deleted on chromosome 10 (PTEN), in models of ischemic stroke. However, whether PTEN inhibitors improve long-term functional recovery after traumatic brain injury (TBI) and whether PTEN affects blood brain barrier (BBB) permeability need further elucidation. The present study was performed to address these issues.

Methods

Adult Sprague-Dawley rats were subjected to fluid percussion injury (FPI) after treatment with a well-established PTEN inhibitor bpV (pic) or saline starting 24 h before FPI. Western blotting, real-time quantitative PCR, or immunostaining was used to measure PTEN, p-Akt, or MMP-9 expression. We determined the presence of neuron apoptosis by TUNEL assay. Evans Blue dye extravasation was measured to evaluate the extent of BBB disruption. Functional recovery was assessed by the neurological severity score (NSS), and Kaplan-Meier analysis was used for survival analysis.

Results

PTEN expression was up-regulated after TBI. After bpV (pic) treatment, p-Akt was also up-regulated. We found that bpV (pic) significantly decreased BBB permeability and reduced the number of TUNEL-positive cells. We further demonstrated that PTEN inhibition improved neurological function recovery in the early stage after TBI.

Conclusion

These data suggest that treatment with the PTEN inhibitor bpV (pic) has a neuroprotective effect in TBI rats.  相似文献   

9.
Traumatic brain injury (TBI) is frequently characterized by neuronal, axonal and myelin loss, reactive gliosis and neuroinflammation, often associated with functional deficits. Endogenous repair mechanisms include production of new neurons from precursor cells, but usually the new neurons fail to integrate and survive more than a few weeks. This is in part mediated by the toxic and inflammatory environment present in the injured brain which activates precursor cells to proliferate and differentiate but limits survival of the newborn progeny. Therefore, an understanding of mechanisms that regulate production and survival of newborn neurons and the neuroinflammatory response after brain injury may lead to therapeutic options to improve outcomes. Suppressor of Cytokine Signaling 2 (SOCS2) promotes hippocampal neurogenesis and survival of newborn neurons in the adult brain and regulates anti-inflammatory responses in the periphery, suggesting it may be a useful candidate to improve outcomes of TBI. In this study the functional and cellular responses of SOCS2 over-expressing transgenic (SOCS2Tg) mice were compared to wildtype littermates following mild or moderately severe TBI. Unlike wildtype controls, SOCS2Tg mice showed functional improvement on a ladder test, with a smaller lesion volume at 7d post injury and increased numbers of proliferative CD11b+ microglia/macrophages at 35d post-injury in the mild injury paradigm. At 7d post-moderately severe injury there was an increase in the area covered by cells expressing an anti-inflammatory M2 phenotype marker (CD206+) but no difference in cells with a pro-inflammatory M1 phenotype marker (CD16/32+). No effect of SOCS2 overexpression was observed in production or survival of newborn neurons, even in the presence of the neuroprotective agent erythropoietin (EPO). Therefore, SOCS2 may improve outcome of TBI in mice by regulating aspects of the neuroinflammatory response, promoting a more anti-inflammatory environment, although this was not sufficient to enhance survival of newborn cortical neurons.  相似文献   

10.
We investigated the neuroprotective action of nicotinamide in focal ischemia. Male spontaneously hypertensive rats (5–7 months old) were subjected to photothrombotic occlusion of the right distal middle cerebral artery (MCA). Either nicotinamide (125 or 250 mg/kg) or vehicle was injected IV before MCA occlusion. Changes in the cerebral blood flow (CBF) were monitored using laser-Doppler flowmetry, and infarct volumes were determined with TTC staining 3 days after MCA occlusion. In another set of experiments, the brain nicotinamide and nicotinamide adenine dinucleotide (NAD+) levels were analyzed by HPLC using the frozen samples dissected from the regions corresponding to the ischemic core and penumbra. In the 250-mg/kg nicotinamide group, the ischemic CBF was significantly increased compared to that the untreated group, and the infarct volumes were substantially attenuated (–36%). On the other hand, the ischemic CBF in the 125 mg/kg nicotinamide group was not significantly different from the untreated CBF, however, the infarct volumes were substantially attenuated (–38%). Cerebral ischemia per se did not affect the concentrations of nicotinamide and NAD+ both in the penumbra and ischemic core. In the nicotinamide groups, the brain nicotinamide levels increased significantly in all areas examined, and brain NAD+ levels increased in the penumbra but not in the ischemic core. Increased brain levels of nicotinamide are considered to be primarily important for neuroprotection against ischemia, and the protective action may be partly mediated through the increased NAD+ in the penumbra.  相似文献   

11.
摘要 目的:研究EP受体在慢性鼻-鼻窦炎伴鼻息肉(chronic rhinosinusitis with nasal polyps, CRSwNP)中的表达及意义。方法:收集20例嗜酸粒细胞性CRSwNP(eosinophilic CRSwNP,ECRSwNP )、20例非嗜酸粒细胞性CRSwNP(noneosinophilic CRSwNP,non-ECRSwNP)患者息肉和14例正常对照组鼻腔钩突黏膜。免疫组织化学和Western blot技术检测各组鼻组织中四种EP受体亚型蛋白的表达;对连续切片行免疫组化染色,检测EP受体与活化的嗜酸粒细胞之间的关系;用Real-time PCR检测各组EP受体和IL-5/IL-13 mRNA的表达水平。结果:EP受体主要表达于鼻黏膜上皮、腺体和上皮下炎症细胞,EP1受体选择性表达于上皮下炎症细胞。与对照组和non-ECRSwNP相比较,ECRSwNP组中EP1 mRNA和蛋白表达均上调,而三组间EP2、EP3和EP4受体的表达无明显差异。连续切片免疫组化染色示,EP1阳性的嗜酸粒细胞占EP1阳性总细胞数的50%。息肉组织EP1 mRNA与IL-5(r=0.55; P <0.001)、IL-13(r=0.69; P<0.001)mRNA的表达水平呈正相关。结论:ECRSwNP中EP1的表达上调与大量的嗜酸粒细胞等浸润有关。EP1受体可能通过趋化和活化嗜酸粒细胞参与ECRSwNP组织炎症的发生和发展。  相似文献   

12.
13.
摘要 目的:探究前列腺素E2(prostaglandin E2,PGE2)及其受体前列腺素E2受体(E-prostanoid2 receptor,EP2R)在链脲佐菌素诱导的糖尿病大鼠视网膜病变中的作用及机制。方法:将SD大鼠随机分为6组:对照组使用标准饲料喂养;其他组大鼠使用高脂高糖饲料喂养+腹膜内注射链脲佐菌素(30 mg/kg)建立糖尿病大鼠模型;PGE2组、Butaprost组、AH6809组大鼠分别给予玻璃体腔内注射5 mmol/L的PGE2、EP2R激动剂Butaprost或EP2R抑制剂AH6809,注射剂量为6 μL。DMSO组注射等剂量DMSO盐溶液。每周注射1次,共注射4周。通过苏木精伊红(HE)染色评价视网膜病变;免疫组化或蛋白质印迹分析视网膜组织中EP2R、胰岛素受体底物1 (IRS-1)、磷酸肌醇3激酶(PI3K)、p-PI3K、蛋白激酶B (Akt)、p-Akt、细胞间粘附分子-1 (ICAM-1)、内皮一氧化氮合酶(eNOS)、核因子κB p65 (NF-κB p65)和血管内皮生长因子(VEGF)的表达。此外,分别应用PGE2、Butaprost或AH6809处理高糖培养基(4.5 g/L葡萄糖)培养的视网膜微血管内皮细胞系(HRMEC),并检测各组细胞活力、细胞凋亡率和血管生成情况。结果:与正常视网膜组织相比,糖尿病大鼠视网膜组织中EP2R呈显著高表达(P<0.05)。与对照组和模型组相比,PGE2和Butaprost组的EP2R、IRS-1、p-PI3K、p-Akt、ICAM-1、eNOS、NF-κBp65和VEGF的表达水平显著升高,而AH6809组的上述蛋白的表达水平显著降低(P<0.05)。体外研究中,与对照组和模型组HRMEC相比,PGE2和Butaprost处理的HRMEC的活力和血管生成数量显著升高,而细胞凋亡率显著降低,AH6809处理则抑制了上述细胞改变(P<0.05)。结论:PGE2/EP2R可能通过促进IRS-1/PI3K/Akt信号通路介导的炎症反应、细胞凋亡和血管生成促进糖尿病视网膜病变的发生和发展。  相似文献   

14.
Cytosolic prostaglandin (PG) E synthase was purified from human brain cortex. The N-terminal amino acid sequence, PMTLGYXNIRGL, was identical to that of the human mu-class glutathione transferase (GST) M2 subunit. Complementary DNAs for human GSTM2, GSTM3, and GSTM4 subunits were cloned, and recombinant proteins were expressed as homodimers in Escherichia coli. The recombinant GSTM2-2 and 3-3 catalyzed the conversion of PGH2 to PGE2 at the rates of 282 and 923 nmol/min/mg of protein, respectively, at the optimal pH of 8, whereas GSTM4-4 was inactive; although all three enzymes showed GST activity. The PGE synthase activity depended on thiols, such as glutathione, dithiothreitol, 2-mercaptoethanol, or L-cysteine. Michaelis-Menten constants and turnover numbers for PGH2 were 141 M and 10.8 min–1 for GSTM2-2 and 1.5 mM and 130 min–1 for GSTM3-3, respectively. GSTM2-2 and 3-3 may play crucial roles in temperature regulation, nociception, and sleep-wake regulation by producing PGE2 in the brain.  相似文献   

15.
SARS病毒受体ACE2的克隆、原核表达及其功能区鉴定   总被引:1,自引:0,他引:1  
ACE2(angiotensin-converting enzyme 2,ACE2)是SARS冠状病毒(severe acute respiratory syndrome associatedcoronavirus,SARS-CoV)的主要受体。此研究旨在鉴定ACE2的SARS-CoV受体功能区,为进一步阐明SARS-CoV与细胞间的相互作用机制及研制抗病毒药物等提供理论依据。利用RT-PCR从Vero-E6细胞的mRNA中分两段扩增ACE2基因,其中N端片段ACE2A1-367(102~1 210nt)不包括ACE2的酶活性位点(1 223~1 237nt,或374~378aa),而C端片段ACE2B335-805(1 101~2 524nt)包括ACE2的酶活性位点。扩增片段克隆入pMD-18T,并进行测序鉴定。进一步构建与GST基因融合表达的原核表达质粒pGEX-ACE2A与pGEX-ACE2B,IPTG诱导表达。表达的融合蛋白分子量为65kD和77kD,主要以包涵体形式存在。Western blot证实表达产物具有免疫学活性。将纯化的包涵体蛋白质复性后进行Western blot分析,证实pGEX-ACE2A表达的蛋白(~65kD)能与SARS-CoV S1蛋白特异结合,而pGEX-ACE2B表达的蛋白(~77kD)不能与S1蛋白结合。结果表明,ACE2的受体活性与酶活性位点无关,受体功能区在ACE2 N端367个氨基酸内。  相似文献   

16.
Oral squamous cell carcinoma has a striking tendency to migrate and metastasize. Cyclooxygenase (COX)-2, the inducible isoform of prostaglandin (PG) synthase, has been implicated in tumor metastasis. However, the effects of COX-2 on human oral cancer cells are largely unknown. We found that overexpression of COX-2 or exogenous PGE2 increased migration and intercellular adhesion molecule 1 (ICAM)-1 expression in human oral cancer cells. Using pharmacological inhibitors, activators, and genetic inhibition of EP receptors, we discovered that the EP1 receptor, but not other PGE receptors, is involved in PGE2-mediated cell migration and ICAM-1 expression. PGE2-mediated migration and ICAM-1 up-regulation were attenuated by inhibitors of protein kinase C (PKC)δ, and c-Src. Activation of the PKCδ, c-Src, and AP-1 signaling pathway occurred after PGE2 treatment. PGE2-induced expression of ICAM-1 and migration activity were inhibited by a specific inhibitor, siRNA, and mutants of PKCδ, c-Src, and AP-1. In addition, migration-prone sublines demonstrated that cells with increased migration ability had higher expression of COX-2 and ICAM-1. Taken together, these results indicate that the PGE2 and EP1 interaction enhanced migration of oral cancer cells through an increase in ICAM-1 production.  相似文献   

17.
Abstract: cDNAs encoding four isoforms of the human NMDA receptor (NMDAR) NMDAR2C (hNR2C-1, -2, -3, and -4) have been isolated and characterized. The overall identity of the deduced amino acid sequences of human and rat NR2C-1 is 89.0%. The sequences of the rat and human carboxyl termini (Gly925-Val1,236) are encoded by different exons and are only 71.5% homologous. In situ hybridization in human brain revealed the expression of the NR2C mRNA in the pontine reticular formation and lack of expression in substantia nigra pars compacta in contrast to the distribution pattern observed previously in rodent brain. The pharmacological properties of hNR1A/2C were determined by measuring agonist-induced inward currents in Xenopus oocytes and compared with those of other human NMDAR subtypes. Glycine, glutamate, and NMDA each discriminated between hNR1A/2C-1 and at least one of hNR1A/2A, hNR1A/2B, or hNR1A/2D subtypes. Among the antagonists tested, CGS 19755 did not significantly discriminate between any of the four subtypes, whereas 5,7-dichlorokynurenic acid distinguished between hNR1A/2C and hNR1A/2D. Immunoblot analysis of membranes isolated from HEK293 cells transiently transfected with cDNAs encoding hNR1A and each of the four NR2C isoforms indicated the formation of heteromeric complexes between hNR1A and all four hNR2C isoforms. HEK293 cells expressing hNR1A/2C-3 or hNR1A/2C-4 did not display agonist responses. In contrast, we observed an agonist-induced elevation of intracellular free calcium and whole-cell currents in cells expressing hNR1A/2C-1 or hNR1A/2C-2. There were no detectable differences in the macroscopic biophysical properties of hNR1A/2C-1 or hNR1A/2C-2.  相似文献   

18.
《Cell reports》2020,30(2):381-396.e4
  1. Download : Download high-res image (191KB)
  2. Download : Download full-size image
  相似文献   

19.
The cross-signaling between (cell) adhesion molecules is nowadays a well-accepted phenomenon and includes orchestrated cellular changes and changes in the microenvironment. For example, Ep-CAM is an epithelial adhesion molecule that prevails in active proliferating tissue and is suppressed in a more differentiated state of the cell. E-cadherin adhesion complexes are typical for the advanced and terminal differentiated cell status. During normal proliferation, E-cadherin is not suppressed. We have demonstrated the effect of overexpression of Ep-CAM on E-cadherin, which probably affects the connection of cadherins and F-actin. Phosphatidylinositol 3-kinase (Pi3K) participates in various regulating mechanisms, for example in signaling to nuclei, vesicle transport, and cytoskeletal rearrangements. The effect of Ep-CAM on E-cadherin mediated junctions as well as the involvement of Pi3K in regulating adherens junctions, led us to investigate the potential interaction between Pi3K and Ep-CAM. Introduction of Ep-CAM in the epithelial cells caused abrogation of N-cadherin mediated cell–cell adhesion, which could be inhibited by Pi3K inhibitor LY294002. Moreover, the Pi3K subunit p85 was precipitated with Ep-CAM from cell lysates, and this complex showed kinase activity. The Pi3K activity shuttled from N-cadherin to Ep-CAM. From our results, we conclude that Ep-CAM cross signaling with N-cadherin involves Pi3K, resulting in the abrogation of the cadherin adhesion complexes in epithelial cells.  相似文献   

20.
As a member of the four subtypes of receptors for prostaglandin E2 (PGE2), prostaglandin E receptor 2 (PTGER2) is in the family of G-protein coupled receptors and has been characterized to be involved in the development and growth of hair follicles. In this study, we cloned and characterized the full-length coding sequence (CDS) of PTGER2 gene from cashmere goat skin. The entire open reading frame (ORF) of PTGER2 gene was 1047 bp and encoded 348 amino acid residues. The deduced protein contained one G-protein coupled receptors family 1 signature, seven transmembrane domains, and other potential sites. Tissue expression analysis showed that PTGER2 gene was expressed strongly in the skin. The general expression tendency of PTGER2 gene at different hair follicle developmental stages in the skin was gradually decreased from anagen to catagen to telogen. After comparing with the expression of BMP4 gene and related reports, we further presume that it seems to have a relationship between the hair follicle cycle and the expression level of PTGER2 gene in cashmere goat skin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号