首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Viral mimicry of cytokines,chemokines and their receptors   总被引:1,自引:0,他引:1  
Viruses have evolved elegant mechanisms to evade detection and destruction by the host immune system. One of the evasion strategies that have been adopted by large DNA viruses is to encode homologues of cytokines, chemokines and their receptors--molecules that have a crucial role in control of the immune response. Viruses have captured host genes or evolved genes to target specific immune pathways, and so viral genomes can be regarded as repositories of important information about immune processes, offering us a viral view of the host immune system. The study of viral immunomodulatory proteins might help us to uncover new human genes that control immunity, and their characterization will increase our understanding of not only viral pathogenesis, but also normal immune mechanisms. Moreover, viral proteins indicate strategies of immune modulation that might have therapeutic potential.  相似文献   

2.
Throughout the process of pathogen-host co-evolution, viruses have developed a battery of distinct strategies to overcome biochemical and immunological defenses of the host. Thus, viruses have acquired the capacity to subvert host cell apoptosis, control inflammatory responses, and evade immune reactions. Since the elimination of infected cells via programmed cell death is one of the most ancestral defense mechanisms against infection, disabling host cell apoptosis might represent an almost obligate step in the viral life cycle. Conversely, viruses may take advantage of stimulating apoptosis, either to kill uninfected cells from the immune system, or to induce the breakdown of infected cells, thereby favoring viral dissemination. Several viral polypeptides are homologs of host-derived apoptosis-regulatory proteins, such as members of the Bcl-2 family. Moreover, viral factors with no homology to host proteins specifically target key components of the apoptotic machinery. Here, we summarize the current knowledge on the viral modulation of mitochondrial apoptosis, by focusing in particular on the mechanisms by which viral proteins control the host cell death apparatus.  相似文献   

3.
Malnutrition has been associated with a decrease in immune function. Impairment of immune function may lead to increased susceptibility to infection with viruses. Although there are many studies documenting the effect of host nutritional status on immune functions, fewer studies have examined the effect of host nutritional status on viral pathogenesis. This review examines the relationship between viral infection and the nutritional status of the host, and documents that not only can the nutritional status of the host affect immune function, but can have profound effects on the virus itself. One mechanism by which nutritional status affects the virulence of the viral pathogen involves selection for virulent viral genotypes. Other mechanisms remain to be elucidated.  相似文献   

4.
Finlay BB  McFadden G 《Cell》2006,124(4):767-782
Multicellular organisms possess very sophisticated defense mechanisms that are designed to effectively counter the continual microbial insult of the environment within the vertebrate host. However, successful microbial pathogens have in turn evolved complex and efficient methods to overcome innate and adaptive immune mechanisms, which can result in disease or chronic infections. Although the various virulence strategies used by viral and bacterial pathogens are numerous, there are several general mechanisms that are used to subvert and exploit immune systems that are shared between these diverse microbial pathogens. The success of each pathogen is directly dependant on its ability to mount an effective anti-immune response within the infected host, which can ultimately result in acute disease, chronic infection, or pathogen clearance. In this review, we highlight and compare some of the many molecular mechanisms that bacterial and viral pathogens use to evade host immune defenses.  相似文献   

5.
宿主细胞内的DNA识别受体可识别病毒核酸分子并激活细胞天然免疫反应,从而产生抗病毒效应;同时,病毒也进化出相应机制来逃避或抑制这种免疫反应。本文总结了宿主细胞内DNA识别受体PYHIN家族识别病毒核酸并激活细胞天然免疫反应的特点和分子机制,并讨论了病毒逃避宿主天然免疫应答的方式。  相似文献   

6.
Mitochondria are dynamic organelles whose architecture changes depending on the cell’s energy requirements and other signalling events. These structural changes are collectively known as mitochondrial dynamics. Mitochondrial dynamics are crucial for cellular functions such as differentiation, energy production and cell death. Importantly, it has become clear in recent years that mitochondrial dynamics are a critical control point for immune cell function. Mitochondrial remodelling allows quiescent immune cells to rapidly change their metabolism and become activated, producing mediators, such as cytokines, chemokines and even metabolites to execute an effective immune response. The importance of mitochondrial dynamics in immunity is evident, as numerous pathogens have evolved mechanisms to manipulate host cell mitochondrial remodelling in order to promote their own survival. In this review, we comprehensively address the roles of mitochondrial dynamics in immune cell function, along with modulation of host cell mitochondrial morphology during viral and bacterial infections to facilitate either pathogen survival or host immunity. We also speculate on what the future may hold in terms of therapies targeting mitochondrial morphology for bacterial and viral control.  相似文献   

7.
Immunomodulation by cytomegaloviruses: manipulative strategies beyond evasion   总被引:23,自引:0,他引:23  
Human cytomegalovirus (CMV) remains the major infectious cause of birth defects as well as an important opportunistic pathogen. Individuals infected with CMV mount a strong immune response that suppresses persistent viral replication and maintains life-long latency. Loss of immune control opens the way to virus reactivation and disease. The large number of immunomodulatory functions encoded by CMV increases the efficiency of infection, dissemination, reactivation and persistent infection in hosts with intact immune systems and could contribute to virulence in immunocompromised hosts. These functions modulate both the innate and adaptive arms of the immune response and appear to target cellular rather than humoral responses preferentially. CMV encodes a diverse arsenal of proteins focused on altering and/or mimicking: (1) classical and non-classical major histocompatibility complex (MHC) protein function; (2) leukocyte migration, activation and cytokine responses; and (3) host cell susceptibility to apoptosis. Evidence that the host evolves mechanisms to counteract virus immune modulation is also accumulating. Although immune evasion is certainly one clear goal of the virus, the pro-inflammatory impact of certain viral functions suggests that increased inflammation benefits viral dissemination. The ability of such viral functions to successfully 'face off' against the host immune system ensures the success of this pathogen in the human population and could provide key insights into disease mechanisms.  相似文献   

8.
9.
Cytomegalovirus (CMV) has yielded many insights into immune escape mechanisms. Both human and mouse CMV encode a diverse array of gene products, many of which appear to modulate the immune response in the host. Some deflect the host response to infection and contribute to lifelong viral persistence while others exploit immune cells that respond to infection. Here, the viral functions that modulate and mimic host major histocompatibility complex (MHC) function will be reviewed. Viral gene products related to both classical and non-classical components of the MHC system assure the virus will persist in immunocompetent individuals. Examples of host countermeasures that neutralize viral immunomodulatory functions have emerged in the characterization of viral functions that contribute to this stand-off in CMVs that infect humans, other primates and rodents. CMV-induced disease occurs when the immune system is not yet developed, such as in the developing fetus, or when it is compromised, such as in allograft transplant recipients, suggesting that the balance between virus escape and host control is central to pathogenesis. Although evidence supports the dominant role of immune escape in CMV pathogenesis and persistence, MHC-related immunomodulatory functions have been ascribed only subtle impact on pathogenesis and the immune response during natural infection. Viral gene products that interface with the MHC system may impact natural killer cell function, antigen presentation, and T lymphocyte immune surveillance. Many also interact with other cells, particularly those in the myeloid lineage, with consequences that have not been explored. Overall, the virus-encoded modulatory functions that have been acquired by CMV likely ensure survival and adaptation to the wide range of mammalian host species in which they are found.  相似文献   

10.
Influenza A viruses (IAV) are highly contagious pathogens causing dreadful losses to human and animal, around the globe. IAVs first interact with the host through epithelial cells, and the viral RNA containing a 5′-triphosphate group is thought to be the critical trigger for activation of effective innate immunity via pattern recognition receptors-dependent signaling pathways. These induced immune responses establish the antiviral state of the host for effective suppression of viral replication and enhancing viral clearance. However, IAVs have evolved a variety of mechanisms by which they can invade host cells, circumvent the host immune responses, and use the machineries of host cells to synthesize and transport their own components, which help them to establish a successful infection and replication. In this review, we will highlight the molecular mechanisms of how IAV infection stimulates the host innate immune system and strategies by which IAV evades host responses.  相似文献   

11.
Coexistence of viruses and their hosts imposes an evolutionary pressure on both the virus and the host immune system. On the one hand, the host has developed an immune system able to attack viruses and virally infected cells, whereas on the other hand, viruses have developed an array of immune evasion mechanisms to escape killing by the host's immune system. Generally, the larger the viral genome, the more diverse mechanisms are utilized to extend the time-window for viral replication and spreading of virus particles. In addition, herpesviruses have the capacity to hide from the immune system by their ability to establish latency. The strategies of immune evasion are directed towards three divisions of the immune system, i.e., the humoral immune response, the cellular immune response and immune effector functions. Members of the herpesvirus family are capable of interfering with the host's immune system at almost every level of immune clearance. Antibody recognition of viral epitopes, presentation of viral peptides by major histocompatibility complex (MHC) class I and class II molecules, the recruitment of immune effector cells, complement activation, and apoptosis can all be impaired by herpesviruses. This review aims at summarizing the current knowledge of viral evasion mechanisms.  相似文献   

12.
Numerous mechanisms allow viruses to evade host immune surveillance, and new evasion strategies continue to be identified. In addition to interference with antigen processing and presentation, direct viral modulation of host immune responses can also be achieved by altering the host cytokine milieu and the development of immunoregulatory cells. A better understanding of these viral evasion strategies will help to define critical host defense mechanisms and will lead to novel immune-based therapeutic strategies in the future.  相似文献   

13.
Epstein-Barr virus (EBV), a ubiquitous human herpes virus, is associated with an increasing number of lymphoid and epithelial malignancies. The ability of the virus to establish life-long persistent infections and induce growth transformation is related to the function of a set of viral proteins that are variously expressed in both normal and malignant cells. Recent evidence indicates that these viral proteins are able to usurp cellular pathways that promote the cell growth and survival, while impairing anti-viral immune responses. Elucidation of the mechanisms by which EBV induces cell transformation and escapes host immune control provides the rational background for the design of new strategies of intervention for EBV-related malignancies.  相似文献   

14.
Viral mimicry of the complement system   总被引:4,自引:0,他引:4  
The complement system is a potent innate immune mechanism consisting of cascades of proteins which are designed to fight against and annul intrusion of all the foreign pathogens. Although viruses are smaller in size and have relatively simple structure, they are not immune to complement attack. Thus, activation of the complement system can lead to neutralization of cell-free viruses, phagocytosis of C3b-coated viral particles, lysis of virus-infected cells, and generation of inflammatory and specific immune responses. However, to combat host responses and succeed as pathogens, viruses not only have developed/adopted mechanisms to control complement, but also have turned these interactions to their own advantage. Important examples include poxviruses, herpesviruses, retroviruses, paramyxoviruses and picornaviruses. In this review, we provide information on the various complement evasion strategies that viruses have developed to thwart the complement attack of the host. A special emphasis is given on the interactions between the viral proteins that are involved in molecular mimicry and the complement system.  相似文献   

15.
Viruses utilize a variety of strategies to evade the host immune response and replicate in the cells they infect. The comparatively large genomes of the Orthopoxviruses and gammaherpesviruses encode several immunomodulatory proteins that are homologous to component of the innate immune system of host cells, which are reviewed here. However, the viral mechanisms used to survive host responses are quite distinct between these two virus families. Poxviruses undergo continuous lytic replication in the host cytoplasm while expressing many genes that inhibit innate immune responses. In contrast, herpesviruses persist in a latent state during much of their lifecycle while expressing only a limited number of relatively non-immunogenic viral proteins, thereby avoiding the adaptive immune response. Poxviruses suppress, whereas latent gammaherpesviruses activate, signaling by NF-kappaB, yet both viruses target similar host signaling pathways to suppress the apoptotic response. Here, modulation of apoptotic and NF-kappaB signal transduction pathways are examined as examples of common pathways appropriated in contrasting ways by herpesviruses and poxviruses.  相似文献   

16.
Viruses have been fighting the immune systems of their hosts for millions of years and have evolved evasion strategies to ensure their survival. Viruses can teach us efficient mechanisms to control the immune system, and this information can be used to design new strategies of immune modulation that we might apply to diminish immunopathological responses that cause human diseases. Large DNA viruses, such as poxviruses and herpesviruses, encode proteins that are secreted from infected cells, bind cytokines and neutralize their activity. A subgroup of these viral proteins binds chemokines, a complex family of cytokines that control the recruitment of cells to sites of infection and inflammation. One of the major unresolved questions in the field was to understand how these viral secreted proteins bind chemokines with high affinity, despite having no amino acid sequence similarity to the host chemokine receptors, which are seven-transmembrane-domain proteins that cannot be engineered as soluble proteins.  相似文献   

17.
Many viruses regulate a crucial point in the apoptotic pathway by expressing viral Bcl-2 homologues, which have become useful tools to investigate the mechanisms behind the control of the mitochondrial checkpoint of apoptosis. Concurrently, a number of viral inhibitors of innate immune signalling have been instrumental tools in the discovery of key host pathways. Here we discuss how viral inhibitors of the apoptotic and innate signalling pathways have further enhanced the understanding of both research fields and are beginning to shed light on how these two pathways converge.  相似文献   

18.
Individuals infected with hepatitis C virus (HCV) have two possible outcomes of infection, clearance or persistent infection. The focus of this review is the host mechanisms that facilitate clearance. The interaction between HCV viral components and the immune system ultimately determines the balance between the virus and host. Strong evidence points to the aspects of cellular immune response as the key determinants of outcome. The recent discovery of viral evasion strategies targeting innate immunity suggests that the interferon-alpha/beta induction pathways are also critical. A growing body of evidence has implicated polymorphisms in both innate and adaptive immune response genes as determinants of viral clearance in individuals infected with HCV.  相似文献   

19.
Influenza is an infectious disease that primarily attacks the respiratory system. Innate immunity provides both a very early defense to influenza virus invasion and an effective control of viral growth. Previous modelling studies of virus–innate immune response interactions have focused on infection with a single virus and, while improving our understanding of viral and immune dynamics, have been unable to effectively evaluate the relative feasibility of different hypothesised mechanisms of antiviral immunity. In recent experiments, we have applied consecutive exposures to different virus strains in a ferret model, and demonstrated that viruses differed in their ability to induce a state of temporary immunity or viral interference capable of modifying the infection kinetics of the subsequent exposure. These results imply that virus-induced early immune responses may be responsible for the observed viral hierarchy. Here we introduce and analyse a family of within-host models of re-infection viral kinetics which allow for different viruses to stimulate the innate immune response to different degrees. The proposed models differ in their hypothesised mechanisms of action of the non-specific innate immune response. We compare these alternative models in terms of their abilities to reproduce the re-exposure data. Our results show that 1) a model with viral control mediated solely by a virus-resistant state, as commonly considered in the literature, is not able to reproduce the observed viral hierarchy; 2) the synchronised and desynchronised behaviour of consecutive virus infections is highly dependent upon the interval between primary virus and challenge virus exposures and is consistent with virus-dependent stimulation of the innate immune response. Our study provides the first mechanistic explanation for the recently observed influenza viral hierarchies and demonstrates the importance of understanding the host response to multi-strain viral infections. Re-exposure experiments provide a new paradigm in which to study the immune response to influenza and its role in viral control.  相似文献   

20.
核型多角体病毒(Nucleopolyhedrovirus,NPV)应用广泛,已被开发成微生物杀虫剂和用于重组蛋白表达等.NPV具有两种病毒颗粒:包埋型病毒粒子(occlusion-derived virus,ODV)和芽生型病毒粒子(budded virus,BV),两者的构成和组装存在差异.病毒包涵体在肠道中溶解后释...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号