共查询到20条相似文献,搜索用时 0 毫秒
1.
Human ceruloplasmin (CP) is a multicopper oxidase essential for normal iron homeostasis. The protein has six beta-barrel domains with one type 1 copper in each of domains 2, 4, and 6; the remaining copper ions form a catalytic trinuclear cluster, one type 2 and two type 3 coppers, at the interface between domains 1 and 6. We have characterized urea-induced unfolding of holo- and apo-forms of CP by far-UV circular dichroism, intrinsic fluorescence, 8-anilinonaphthalene-1-sulfonic acid binding, visible absorption, copper content, and oxidase activity probes (pH 7, 23 degrees C). We find that holo-CP unfolds in a complex reaction with at least one intermediate. The formation of the intermediate correlates with decreased secondary structure, exposure of aromatics, loss of two coppers, and reduced oxidase activity; this step is reversible, indicating that the trinuclear cluster remains intact. Further additions of urea trigger complete protein unfolding and loss of all coppers. Attempts to refold this species result in an inactive apoprotein with molten-globule characteristics. The apo-form of CP also unfolds in a multistep reaction, albeit the intermediate appears at a slightly lower urea concentration. Again, correct refolding is possible from the intermediate but not the unfolded state. Our study demonstrates that in vitro equilibrium unfolding of CP involves intermediates and that the copper ions are removed in stages. When the catalytic site is finally destroyed, refolding is not possible at neutral pH. This implies a mechanistic role for the trinuclear metal cluster as a nucleation point, aligning domains 1 and 6, during CP folding in vivo. 相似文献
2.
3.
4.
The measurement of N2 fixation by legumes is necessary for gaining an understanding of their contributions to the N economies of agricultural and forestry systems and for their management in those systems. We report research to determine whether N2 fixation of four of the commonly-grown ureide-producing legumes, soybean (Glycine max), cowpea (Vigna unguiculata), mungbean (V. radiata) and black gram (V. mungo), could be quantified from a single sampling and N-solute analysis of xylem sap. Data were derived from a previously-published experiment involving six genotypes of soybean at five field sites and from a second, irrigated experiment in which two genotypes of soybean, and one each of cowpea, mungbean and black gram were assessed in low- and high-nitrate soils for nodulation, yields of shoot and grain dry matter and N, and N2 fixation using xylem solute (ureide) and 15N methods. Regression analysis of the published soybean data set indicated that the early pod-fill (R3.5 and R4) samplings for xylem sap gave estimates of percentage of plant N derived from N2 fixation (%Ndfa) which agreed well with %Ndfa for the entire growing season obtained from 15N analysis of the shoots at R6-7. There was a marginal benefit in combining the R3.5 and R4 samplings and using the average of the two, with regression coefficients (r
2) increasing from 0.86 (R3.5 or R4 alone) to 0.92 (average of R3.5+R4). There was no additional benefit in combining R3, R3.5 and R4. In the second experiment, agreement between 15N-determined %Ndfa and either measured (R4 sampling) or calculated ureide-determined %Ndfa (R3.5 sampling) was also good (r
2 of 0.73 (R4) and 0.79 (R3.5)). We conclude that seasonal %Ndfa can be accurately estimated using the xylem solute (ureide) method from a single sampling of xylem sap during early pod-fill (R3.5) and that this simplification of the protocol of the technique may encourage expanded use. 相似文献
5.
6.
Milk ceruloplasmin is a valuable source of nutrient copper ions for mammalian newborns 总被引:2,自引:0,他引:2
Natalia Platonova Natalie Guolikhandanova Nadezhda Tsymbalenko Evelyn Zhiguleva Tatiana Zhivulko Andrey Vasin Inna Evsukova Ludmila Puchkova 《Journal of trace elements in medicine and biology》2007,21(3):184-193
This research focuses on the role of milk ceruloplasmin (Cp), the main extracellular copper-containing protein of vertebrates, as a source of copper for newborns. In the first part of the study, Cp concentration and Cp-associated copper were measured in human skimmed milk at the 1st and the 5th days postpartum. It was shown that most of the copper was associated with Cp and that the decrease in copper concentration during lactation was related to the drop of Cp levels. The following in vivo experiments demonstrated that milk [(125)I]Cp per os administered to 6-day-old rats (embryonic-type copper metabolism) was transported into their bloodstream. The electrophoretic mobility and relative molecular weight of [(125)I]Cp transferred through the cellular barrier remained unaltered. However, 22-day-old rats (adult-type copper metabolism) digested the administered milk [(125)I]Cp completely. In the final part of the study, newborn rats were fed with baby formula for 8d. It was found that these rats switched their copper metabolism from embryonic type to adult type earlier than their littermates fed by dams. Activation of Cp gene expression in the liver, increased Cp and copper concentrations in the blood, and reduced copper content of the liver were observed in the rats fed with baby formula. In the brain, no copper concentration change was observed, but Cp and copper concentrations were dramatically increased in the cerebrospinal fluid. The role of milk Cp as a source of copper adapted to embryonic-type copper metabolism is discussed. 相似文献
7.
Human ceruloplasmin (CP) is a multicopper oxidase essential for normal iron homeostasis. The protein has six domains with one type-1 copper in each of domains 2, 4, and 6; the remaining coppers form a catalytic trinuclear cluster at the interface between domains 1 and 6. To assess the role of the coppers in CP thermal stability, we have probed the thermal unfolding process as a function of scan rate of holo- and apo-forms using several detection methods (circular dichroism, aromatic and 8-anilino-naphthalene-1-sulfonic acid fluorescence, visible absorption, activity, and differential scanning calorimetry). Both species of CP undergo irreversible thermal reactions to denatured states with significant residual structure. For identical scan rates, the thermal midpoint appears at temperatures 15-20° higher for the holo- as compared with the apo- form. The thermal data for both forms were fit by a mechanistic model involving two consecutive, irreversible steps (N → I → D). The holo-intermediate, I, has lost one oxidized type-1 copper and secondary structure in at least one domain; however, the trinuclear copper cluster remains intact as it is functional in oxidase activity. The activation parameters obtained from the fits to the thermal transitions were used to assess the kinetic stability of apo- and holo-CP at physiological temperatures (i.e., at 37°C). It emerges that native CP (i.e., with six coppers) is rather unstable and converts to I in <1 day at 37°C. Nonetheless, this form remains intact for more than 2 weeks and may thus be a biologically relevant state of CP in vivo. In contrast, apo-CP unfolds rapidly: the denatured state is reached in <2 days at 37°C. 相似文献
8.
9.
Wallner S Winkler A Riedl S Dully C Horvath S Gruber K Macheroux P 《Biochemistry》2012,51(31):6139-6147
Berberine bridge enzyme (BBE) is a paradigm for the class of bicovalently flavinylated oxidases, which catalyzes the oxidative cyclization of (S)-reticuline to (S)-scoulerine. His174 was identified as an important active site residue because of its role in the stabilization of the reduced state of the flavin cofactor. It is also strictly conserved in the family of BBE-like oxidases. Here, we present a detailed biochemical and structural characterization of a His174Ala variant supporting its importance during catalysis and for the structural organization of the active site. Substantial changes in all kinetic parameters and a decrease in midpoint potential were observed for the BBE His174Ala variant protein. Moreover, the crystal structure of the BBE His174Ala variant showed significant structural rearrangements compared to wild-type enzyme. On the basis of our findings, we propose that His174 is part of a hydrogen bonding network that stabilizes the negative charge at the N1-C2═O locus via interaction with the hydroxyl group at C2' of the ribityl side chain of the flavin cofactor. Hence, replacement of this residue with alanine reduces the stabilizing effect for the transiently formed negative charge and results in drastically decreased kinetic parameters as well as a lower midpoint redox potential. 相似文献
10.
Amit K. Gandhi Faik N. Musayev Samuel O. Aboagye Verne Schirch 《Biochemical and biophysical research communications》2009,381(1):12-15
Pyridoxal kinase catalyzes the phosphorylation of pyridoxal (PL) to pyridoxal 5′-phosphate (PLP). A D235A variant shows 7-fold and 15-fold decreases in substrate affinity and activity, respectively. A D235N variant shows ∼2-fold decrease in both PL affinity and activity. The crystal structure of D235A (2.5 Å) shows bound ATP, PL and PLP, while D235N (2.3 Å) shows bound ATP and sulfate. These results document the role of Asp235 in PL kinase activity. The observation that the active site of PL kinase can accommodate both ATP and PLP suggests that formation of a ternary Enz·PLP·ATP complex could occur in the wild-type enzyme, consistent with severe MgATP substrate inhibition of PL kinase in the presence of PLP. 相似文献
11.
Spinozzi F Gatto S De Filippis V Carsughi F Di Muro P Beltramini M 《Archives of biochemistry and biophysics》2005,439(1):42-52
We have investigated the effect of copper binding on the structural properties of hemocyanin (Hc). To this aim, we have studied the holo- and apo-form of the protein, both in the hexameric and in the monomeric state (CaeSS2 subunit), with experimental approaches that report on the protein aggregation and conformational stability. The results of gel-filtration chromatography and small angle X-ray scattering (SAXS) provide evidence that the hydrodynamic and gyration radius (R(g)) of Hc in the hexameric form only slightly increase upon copper removal, whereas a remarkable enhancement in the R(g) value is observed for the CaeSS2 monomer. CD measurements in the far- and near-UV region indicate that removal of copper only marginally affects the conformation of the hexameric Hc. Instead, copper depletion in the CaeSS2 strongly alters the tertiary structure of the monomer (near-UV CD), even though it is almost inconsequential on the secondary structure content (far-UV CD). These findings are fully consistent with the results of limited proteolysis experiments showing that the hexameric Hc is similarly resistant to proteolysis by trypsin both in the holo- and apo-form. Conversely, the apo-form of CaeSS2 monomer is much more susceptible to proteolytic attack by trypsin than the holo-form. Based on SAXS measurements, the concentration-dependent oligomerization process for apo-CaeSS2 has been analyzed on the basis of a thermodynamic model involving a concentration-dependent equilibrium between a monomer in a native-like and an hexameric aggregate of monomers. 相似文献
12.
Gaucher disease is a lysosomal storage disorder caused by a deficiency in glucocerebrosidase which cleaves the beta-glucosidic linkage of glucosylceramide, a normal intermediate in glycolipid metabolism. Glucocerebrosidase belongs to the clan GH-A of glycoside hydrolases, a large group of enzymes which function with retention of the anomeric configuration at the hydrolysis site. Accurate three-dimensional (3D) structure data for glucocerebrosidase should help to better understand the molecular bases of Gaucher disease. As such 3D structure data were not available, we used the two-dimensional hydrophobic cluster analysis (HCA) method to make structure predictions for the catalytic domains of clan GH-A glycoside hydrolases. We found that all the enzymes of clan GH-A may share a similar catalytic domain consisting of an (alpha/beta)8 barrel with the critical acid/base and nucleophile residues located at the C-terminal ends of strands beta 4 and beta 7, respectively. In the case of glucocerebrosidase, Glu 235 was predicted to be the putative acid/base catalyst whereas the nucleophile was located at Glu 340. Next, in order to obtain experimental evidence supporting these HCA-based predictions, we used retroviral vectors to express, in murine null cells, E235A and E340A mutant proteins, in which alanine residues unable to participate in the enzymatic reaction replace the presumed critical glutamic acid residues. Both mutants were found to be catalytically inactive although they were correctly folded/processed and sorted to the lysosome. Thus, Glu 235 and Glu 340 do indeed play key roles in the active site of human glucocerebrosidase as predicted by the HCA analysis. In a broader perspective, our work points out that bioinformatics approaches may be highly useful for generating structure-function predictions based on sequence-structure interrelationships, especially in the context of a rapid increase in protein sequence information through genome sequencing. 相似文献
13.
Chicken ceruloplasmin. Evidence in support of a trinuclear cluster involving type 2 and 3 copper centers 总被引:1,自引:0,他引:1
Ceruloplasmin was isolated to purity from chicken plasma by a single-step chromatography on amino-ethyl-derivatized Sepharose. Molecular mass, as estimated by nonreducing sodium dodecyl sulfate-electrophoresis, was approximately 140 kDa, slightly higher than that found for ceruloplasmins from other sources. Specific activity as p-phenylenediamine oxidase was five times higher than that reported for mammalian ceruloplasmins. The copper content was estimated to be 5.01 +/- 0.35 atoms per protein molecule, 50% of which was EPR-detectable. The EPR spectrum was completely devoid of any signal typical of the type 2 copper as seen in the other blue multicopper oxidases and in ceruloplasmin from mammalian species. Anaerobic reduction of chicken ceruloplasmin resulted in the disappearance of the 330 nm optical band typical of type 3 copper, which was followed by the appearance of an EPR signal typical of type 2 copper. Subsequently, the type 1 copper and finally the newly formed type 2 copper were reduced. The original optical and EPR spectra were recovered within few minutes upon exposure of reduced ceruloplasmin to air. It is concluded that in oxidized chicken ceruloplasmin type 2 copper interacts with the diamagnetic pair responsible for the 330 nm absorption in such a way as to become EPR-undetectable and that the interaction is relieved by reduction of the pair. Whether this interaction is intrinsically weaker in other blue oxidases and ceruloplasmins studied or is lost with standard preparation procedures remains to be established. 相似文献
14.
Crystal structure determination of cholesterol oxidase from Streptomyces and structural characterization of key active site mutants 总被引:2,自引:0,他引:2
Cholesterol oxidase is a monomeric flavoenzyme which catalyzes the oxidation and isomerization of cholesterol to cholest-4-en-3-one. The enzyme interacts with lipid bilayers in order to bind its steroid substrate. The X-ray structure of the enzyme from Brevibacterium sterolicum revealed two loops, comprising residues 78-87 and residues 433-436, which act as a lid over the active site and facilitate binding of the substrate [Vrielink et al. (1991) J. Mol. Biol. 219, 533-554; Li et al. (1993) Biochemistry 32, 11507-11515]. It was postulated that these loops must open, forming a hydrophobic channel between the membrane and the active site of the protein and thus sequestering the cholesterol substrate from the aqueous environment. Here we describe the three-dimensional structure of the homologous enzyme from Streptomyces refined to 1.5 A resolution. Structural comparisons to the enzyme from B. sterolicum reveal significant conformational differences in these loop regions; in particular, a region of the loop comprising residues 78-87 adopts a small amphipathic helical turn with hydrophobic residues directed toward the active site cavity and hydrophilic residues directed toward the external surface of the molecule. It seems reasonable that this increased rigidity reduces the entropy loss that occurs upon binding substrate. Consequently, the Streptomyces enzyme is a more efficient catalyst. In addition, we have determined the structures of three active site mutants which have significantly reduced activity for either the oxidation (His447Asn and His447Gln) or the isomerization (Glu361Gln). Our structural and kinetic data indicate that His447 and Glu361 act as general base catalysts in association with conserved water H2O541 and Asn485. The His447, Glu361, H2O541, and Asn485 hydrogen bond network is conserved among other oxidoreductases. This catalytic tetrad appears to be a structural motif that occurs in flavoenzymes that catalyze the oxidation of unactivated alcohols. 相似文献
15.
Futer O Sintchak MD Caron PR Nimmesgern E DeCenzo MT Livingston DJ Raybuck SA 《Biochimica et biophysica acta》2002,1594(1):27-39
The oxidation of IMP to XMP is the rate-limiting step in the de novo synthesis of guanine ribonucleotides. This NAD-dependent reaction is catalyzed by the enzyme inosine monophosphate dehydrogenase (IMPDH). Based upon the recent structural determination of IMPDH complexed to oxidized IMP (XMP*) and the potent uncompetitive inhibitor mycophenolic acid (MPA), we have selected active site residues and prepared mutants of human type II IMPDH. The catalytic parameters of these mutants were determined. Mutations G326A, D364A, and the active site nucleophile C331A all abolish enzyme activity to less than 0.1% of wild type. These residues line the IMP binding pocket and are necessary for correct positioning of the substrate, Asp364 serving to anchor the ribose ring of the nucleotide. In the MPA/NAD binding site, significant loss of activity was seen by mutation of any residue of the triad Arg322, Asn303, Asp274 which form a hydrogen bonding network lining one side of this pocket. From a model of NAD bound to the active site consistent with the mutational data, we propose that these resides are important in binding the ribose ring of the nicotinamide substrate. Additionally, mutations in the pair Thr333, Gln441, which lies close to the xanthine ring, cause a significant drop in the catalytic activity of IMPDH. It is proposed that these residues serve to deliver the catalytic water molecule required for hydrolysis of the cysteine-bound XMP* intermediate formed after oxidation by NAD. 相似文献
16.
O. Farver P. Frank I. Pecht 《Biochemical and biophysical research communications》1982,108(1):273-278
The interaction between hydrogen peroxide and oxidized laccase from which the type 2 copper has been removed, was investigated. For that end, the circular dichroic spectrum of the modified enzyme has been measured in the presence of increasing concentrations of hydrogen peroxide. The characteristic band observed upon binding peroxide to native laccase is also observed for the type 2 copper depleted enzyme. However, there are several quantitative differences in the latter one. First, the intensity is lower and band width is larger. Secondly, from the titrations, it becomes apparent that the affinity for H2O2 is markedly lower than that of the native enzyme. While the affinity for the native enzyme is higher than 108 M?1, it decreases to 1·104 M?1 for the type 2 depleted enzyme. 相似文献
17.
Wang PF Flynn AJ Naor MM Jensen JH Cui G Merz KM Kenyon GL McLeish MJ 《Biochemistry》2006,45(38):11464-11472
All known guanidino kinases contain a conserved cysteine residue that interacts with the non-nucleophilic eta1-nitrogen of the guanidino substrate. Site-directed mutagenesis studies have shown that this cysteine is important, but not essential for activity. In human muscle creatine kinase (HMCK) this residue, Cys283, forms part of a conserved cysteine-proline-serine (CPS) motif and has a pKa about 3 pH units below that of a regular cysteine residue. Here we employ a computational approach to predict the contribution of residues in this motif to the unusually low cysteine pKa. We calculate that hydrogen bonds to the hydroxyl and to the backbone amide of Ser285 would both contribute approximately 1 pH unit, while the presence of Pro284 in the motif lowers the pKa of Cys283 by a further 1.2 pH units. Using UV difference spectroscopy the pKa of the active site cysteine in WT HMCK and in the P284A, S285A, and C283S/S285C mutants was determined experimentally. The pKa values, although consistently about 0.5 pH unit lower, were in broad agreement with those predicted. The effect of each of these mutations on the pH-rate profile was also examined. The results show conclusively that, contrary to a previous report (Wang et al. (2001) Biochemistry 40, 11698-11705), Cys283 is not responsible for the pKa of 5.4 observed in the WT V/K(creatine) pH profile. Finally we use molecular dynamics simulations to demonstrate that, in order to maintain the linear alignment necessary for associative inline transfer of a phosphoryl group, Cys283 needs to be ionized. 相似文献
18.
Dacil Zurita Isabelle Gautier-Luneau Stéphane Ménage J.-L. Pierre Eric Saint-Aman 《Journal of biological inorganic chemistry》1997,2(1):46-55
Copper(II) complexes derived from the tripodal ligand bis(3′-t–butyl-2′-hydroxybenzyl)(2-pyridylmethyl)amine (LH2) have been studied in order to mimic the redox active site of the free radical-containing copper metalloenzyme galactose
oxidase. In non-coordinating solvents such as dichloromethane, only an EPR-silent dimeric complex was obtained (L2Cu2). The crystal structure of L2Cu2 revealed a "butterfly" design of the [Cu(μOR)2Cu] unit, which is not flattened and leads to a short Cu–Cu distance, the t–butyl groups being localized on the same side of the [Cu(μOR)2Cu] unit. The dimeric structure was broken down by acetonitrile or by alcohols, leading quantitatively to a brown mononuclear
copper(II) complex. UV-visible and EPR data indicated the coordination of the solvent in these mononuclear complexes. Electrochemical
as well as chemical (silver acetate) one-electron oxidation of acetonitrile solutions of the monomeric complex led to a yellow-green
solution. Based on EPR, UV-visible and resonance Raman spectroscopy, the one-electron oxidation product was identified as
a cupric phenoxyl radical system. It slowly decomposes into a product where the ligand has been substituted (dimerization)
in the para position of the hydroxyl group, for one of the phenolic groups. The data for the one-electron oxidized species provides strong
evidence for a free-radical copper (II) complex.
Received: 19 July 1996 / Accepted: 16 October 1996 相似文献
19.
Anaphylatoxins activate immune cells to trigger the release of proinflammatory mediators that can lead to the pathology of several immune-inflammatory diseases. However, the intracellular signaling pathways triggered by anaphylatoxins are not well understood. Here we report for the first time that sphingosine kinase (SPHK) plays a key role in C5a-triggered signaling, leading to physiological responses of human neutrophils. We demonstrate that C5a rapidly stimulates SPHK activity in neutrophils and differentiated HL-60 cells. Using the SPHK inhibitor N,N-dimethylsphingosine (DMS), we show that inhibition of SPHK abolishes the Ca2+ release from internal stores without inhibiting phospholipase C or protein kinase C activation triggered by C5a but has no effect on calcium signals triggered by other stimuli (FcgammaRII). We also show that DMS inhibits degranulation, activation of the NADPH oxidase, and chemotaxis triggered by C5a. Moreover, an antisense oligonucleotide against SPHK1, in neutrophil-differentiated HL-60 cells, had similar inhibitory properties as DMS, suggesting that the SPHK utilized by C5a is SPHK1. Our data indicate that C5a stimulation decreases cellular sphingosine levels and increases the formation of sphingosine-1-phosphate. Exogenously added sphingosine has a dual effect on C5a-stimulated oxidative burst: it has a priming effect at lower concentrations but a dose-dependent inhibitory effect at higher concentrations; however, C5a-triggered protein kinase C activity was only reduced at high concentration of sphingosine. In contrast, C5a-triggered Ca2+ signals, chemotaxis, and degranulation were not affected by sphingosine at all. Exogenous sphingosine-1-phosphate, by itself, did not induce degranulation or chemotaxis, but it did marginally induce Ca2+ signals and oxidative burst and had a priming effect, enhancing all the C5a-triggered responses. Taken together, these results suggest that SPHK plays an important role in the immune-inflammatory pathologies triggered by anaphylatoxins in human neutrophils and point out SPHK as a potential therapeutic target for the treatment of diseases associated with neutrophil hyperactivation. 相似文献
20.
Dihydrofolate reductase (DHFR, EC 1.5.1.3) is one of the enzymes active in the folate cycle which plays an important role in DNA synthesis. Inhibition of DHFR is a key element in the treatment of many diseases, including cancer and AIDS related infections. A search for new selective inhibitors is motivated by the resistance to common drugs observed in the course of treatment. In this paper, results of a detailed computer analysis of human DHFR interactions with the lipophilic inhibitor piritrexim (PTX) are presented. It was found that the NADPH cofactor contributes 30% of the total PTX-enzyme interaction energy. Substitution of the highly conserved Glu30 with alanine does not lead to the release of the inhibitor from the hDHFR pocket. The important L22F point mutation does affect PTX orientation but does not changethe binding energy. Simulations of the dynamics of binary hDHFR-PTX complexes were performed with the use of Extensible Systematic Force Field (ESFF) and the results indicate structural changes in the enzyme induced by NADPH binding. 相似文献