首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Increase of the extracellular K +  concentration mediates seizure-like synchronized activities in vitro and was proposed to be one of the main factors underlying epileptogenesis in some types of seizures in vivo. While underlying biophysical mechanisms clearly involve cell depolarization and overall increase in excitability, it remains unknown what qualitative changes of the spatio-temporal network dynamics occur after extracellular K +  increase. In this study, we used multi-electrode recordings from mouse hippocampal slices to explore changes of the network activity during progressive increase of the extracellular K +  concentration. Our analysis revealed complex spatio-temporal evolution of epileptiform activity and demonstrated a sequence of state transitions from relatively simple network bursts into complex bursting, with multiple synchronized events within each burst. We describe these transitions as qualitative changes of the state attractors, constructed from experimental data, mediated by elevation of extracellular K +  concentration.  相似文献   

4.
The purpose of this study was to determine if mild hypothermia alters mitotic activity in normal and post-ischemic hippocampal slices. (1) Normothermic oxygen–glucose deprivation (OGD 60 min) increased mitotic activity in the hippocampus up to 4d post-OGD. (2) Mild hypothermia (33 °C for 24 h) initiated after OGD stress reduced mitotic activity compared to normothermic controls up to 8 d post-OGD. (3) Mild hypothermia stimulated mitotic activity in normal (no OGD stress) hippocampus up to 24 h post-hypothermia. In conclusion, mild transient hypothermia can increase or decrease mitotic activity depending upon the experimental condition of the hippocampal slices when hypothermia is induced.  相似文献   

5.
探讨电刺激致海马(hippocampus,HPC)癫痫网络的神经信息特征和M型胆碱能受体阻断剂东莨菪碱(scopolamine)对该信息特征的调制作用。实验用雄性SD大鼠45只,体重150 ̄250g。急性强直电(60Hz,2s,0.4 ̄0.6mA)刺激右侧后背HPC(acutetetanizationoftherightposteriordorsalhippocampus,ATPDH),双电极同步记录同侧HPC网络和单个神经元电活动。分析癫痫发作样高频电振荡(ripple)功率谱(powerspec-trum)、尖波连续发放峰间间隔(interpeakinterval,IPI)和单位时间内平均频率(Hz),并同步分析单个神经元放电脉冲间隔(interspikeinterval,ISI)的变化特征。发现:(1)ATPDH诱导的HPC癫痫放电模式主要包括rip-ple和具有稳定频率特征的尖波样连续发放;(2)东莨菪碱(i.p.)可以提前ripple第1组分最大功率(μV2)与单个神经元原发性单位后放电最大ISI出现的时间,对最大ISI的作用更明显;(3)东莨菪碱可以部分再现重复施加ATPDH诱导出现巨大尖波连续发放IPI和神经元放电ISI平行发展特征。结果提示:M胆碱能受体阻断剂东莨菪碱可以同时调制HPC癫痫网络成员电场和细胞的瞬时编码信息;而成员电场ripple功率谱/连续尖波IPI和神经元放电ISI点分布的对比研究,可以用于分析癫痫网络瞬时编码信息和药物生物学效应。  相似文献   

6.
Effect of dizocilpine (0.5 mg/kg i.p.) on epileptic afterdischarges elicited by low-frequency electrical stimulation of the dorsal hippocampus was studied in rat pups aged 12 and 18 days. Repeated elicitation of afterdischarges (ADs) in control animals resulted in a progressive increase of the duration of ADs in both age groups. Dizocilpine (MK-801) injected after the first afterdischarge suppressed this prolongation in 12-day-old rats only. Hypobaric hypoxia (simulated altitude of 9000 m for one hour) led to a marked prolongation of the first afterdischarge in both age groups with a tendency to shorter ADs after repeated stimulations. Dizocilpine potentiated this tendency in 12-day-old rat pups so that it became statistically significant. Administration of dizocilpine before hypoxia prevented the increase in duration of the first afterdischarge in both age groups.  相似文献   

7.
Several studies have indicated that weak, extremely-low-frequency (ELF; 1–100 Hz) magnetic fields affect brain electrical activity and memory processes in man and laboratory animals. Our studies sought to determine whether ELF magnetic fields could couple directly with brain tissue and affect neuronal activity in vitro. We used rat hippocampal slices to study field effects on a specific brain activity known as rhythmic slow activity (RSA), or theta rhythm, which occurs in 7–15 s bursts in the hippocampus during memory functions. RSA, which, in vivo, is a cholinergic activity, is induced in hippocampal slices by perfusion of the tissue with carbachol, a stable analog of acetylcholine. We previously demonstrated that the free radical nitric oxide (NO), synthesized in carbachol-treated hippocampal slices, lengthened and destabilized the intervals between successive RSA episodes. Here, we investigate the possibility that sinusoidal ELF magnetic fields could trigger the NO-dependent perturbation of the rate of occurrence of the RSA episodes. Carbachol-treated slices were exposed for 10 min epochs to 1 or 60 Hz magnetic fields with field intensities of 5.6, 56, or 560 μT (rms), or they were sham exposed. All exposures took place in the presence of an ambient DC field of 45 μT, with an angle of -66° from the horizontal plane. Sinusoidal 1 Hz fields at 56 and 560 μT, but not at 5.6 μT, triggered the irreversible destabilization of RSA intervals. Fields at 60 Hz resulted in similar, but not statistically significant, trends. Fields had no effects on RSA when NO synthesis was pharmacologically inhibited. However, field effects could take place when extracellular NO, diffusing from its cell of origin to the extracellular space, was chelated by hemoglobin. These results suggest that ELF magnetic fields exert a strong influence on NO systems in the brain; therefore, they could modulate the functional state of a variety of neuronal ensembles. © 1996 Wiley-Liss, Inc.  相似文献   

8.
Neuronal activity was recorded in surviving hippocampal and medial preoptic thalamic slices from guinea pigs using extracellular techniques during thermal changes. Rate of generating action potentials changed in seven of the 19 hypothalamic cells tested once a threshold temperature of 36–38°C had been reached. Above this range, activity in these neurons was temperature dependent. It is suggested that these neurons form a sensory element in the system controlling brain temperature over a narrow (1–2°C) range. In the hippocampus (the control structure), pyramidal layer cells were insensitive to temperatures in the 32–40°C range.Institute of Physiology, Academy of Sciences of the Byelorussian SSR, Minsk. Translated from Neirofiziologiya, Vol. 21, No. 3, pp. 358–365, May–June, 1989.  相似文献   

9.
It has been shown in experiments on hippocampal slices of (CBA X C57BL/6)F1 mice with corazol kindling that the threshold of the appearance of the induced seizure discharge (ISD) in the area CA1 was decreased by stimulation of Schaffer collaterals. Diazepam provoked an increase in seizure susceptibility to corazol and penicillin and reduction of the ISD. The data suggest that alterations in neuronal reactivity, which follow kindling, can be found in an individual hippocampal segment, thus making it possible to investigate this phenomenon at the synaptic and molecular levels.  相似文献   

10.
海马内微量注射褪黑素的免疫调节及机制研究   总被引:3,自引:0,他引:3  
Li J 《生理科学进展》1998,29(4):331-334
本文采用海马内微量注射褪黑素(ih,MT)的技术,发现ihMT具有明显的免疫调节作用。进一步发现,ih MT能提高海马内去甲肾上腺素水平,通过α2受体,交感神经系统调节免疫功能。本研究还发现,脾功能能产生MT,脾细胞中可能存在着MT合成的关键酶。ihMT能通过交感神经系统去甲肾上腺素能神经,促进脾细胞产生MT,由此诱导β-End调节免疫功能,ihMT还能通过海马去甲肾上腺素作用α2受体,反馈抑制松  相似文献   

11.
Considering the involvement of caspase-3 in neuronal plasticity, we studied caspase-3 activity in the rat hippocampal slices, and electrophysiological characteristics of extracellular responses to paired-pulse stimulation of Schaffer's collaterals in the CA1 subfield of hippocampus. Caspase-3 activity was measured after electrophysiological recording in each slice separately. Maximal caspase-3 activity was observed in the slices with low responsiveness to single afferent stimulation indicative of decreased efficacy of interneuronal interaction. This phenomenon is unrelated to depression of neuronal excitability since paired-pulse stimulation increases the synaptic efficacy to second stimulus thus restoring population spike amplitudes to normal values. In "damaged" slices with impaired spike generation up to disappearing spikes to both stimuli, caspase-3 activity was close to the normal level of the "healthy" slices. The activity of another proteinase, cathepsin B, was increased in the "damaged" slices, no correlation with the modifications of electrophysiological indices being detected. Our data suggest that high caspase-3 activity in hippocampal slices is involved in maintenance of synaptic plasticity but not necessarily related to apoptosis.  相似文献   

12.
Vlkolinský R  Stolc S  Ross A 《Life sciences》1999,65(18-19):1969-1971
Reactive oxygen species have been suggested to participate in the impairment of nervous tissue by oxidative stress, induced by hypoxia (HYP) followed by reoxygenation (ROX). Although the mechanisms of such injury are rather complex, antioxidants might exert some protective action under such circumstances. This study tested the effect of a series of compounds interfering with the generation and action of reactive oxygen species on impairment of synaptic transmission in the CA1 region of rat hippocampal slices exposed to HYP followed by ROX in vitro. Shortlasting HYP (typically 4.5-7.5 min under the conditions used) resulted in fast decay of the amplitude of population spikes evoked in the CA1 neurons by stimulation of Sch?ffer collaterals. The impairment was mostly irreversible. However, in the presence of the antioxidants stobadine, 21-aminosteroid U-74389G, melatonin and trolox (with optimal concentrations of 10-30 micromol/l, 10 micromol/l, 30-100 micromol/l and 200 micromol/l, respectively), the irreversible damage of the transmission was significantly diminished. The decay of the synaptic transmission failure during HYP was also delayed by stobadine, U-74389G and melatonin. The results demonstrated that compounds with antioxidant activity may effectively protect nervous tissue during HYP and ROX.  相似文献   

13.

Background

Maternal epileptic seizures during pregnancy can affect the hippocampal neurons in the offspring. The polysialylated neural cell adhesion molecule (PSA-NCAM), which is expressed in the developing central nervous system, may play important roles in neuronal migration, synaptogenesis, and axonal outgrowth. This study was designed to assess the effects of kindling either with or without maternal seizures on hippocampal PSA-NCAM expression in rat offspring.

Methods

Forty timed-pregnant Wistar rats were divided into four groups: A) Kind+/Seiz+, pregnant kindled (induced two weeks prior to pregnancy) rats that received repeated intraperitoneal (i.p.) pentylenetetrazol, PTZ injections on gestational days (GD) 14-19; B) Kind-/Seiz+, pregnant non-kindled rats that received PTZ injections on GD14-GD19; C) Kind+/Seiz-, pregnant kindled rats that did not receive any PTZ injections; and D) Kind-/Seiz-, the sham controls. Following birth, the pups were sacrificed on PD1 and PD14, and PSA-NCAM expression and localization in neonates’ hippocampi were analyzed by Western blots and immunohistochemistry.

Results

Our data show a significant down regulation of hippocampal PSA-NCAM expression in the offspring of Kind+/Seiz+ (p = 0.001) and Kind-/Seiz+ (p = 0.001) groups compared to the sham control group. The PSA-NCAM immunoreactivity was markedly decreased in all parts of the hippocampus, especially in the CA3 region, in Kind+/Seiz+ (p = 0.007) and Kind-/Seiz+ (p = 0.007) group’s newborns on both PD1 and 14.

Conclusion

Our findings demonstrate that maternal seizures but not kindling influence the expression of PSA-NCAM in the offspring’s hippocampi, which may be considered as a factor for learning/memory and cognitive impairments reported in children born to epileptic mothers.  相似文献   

14.
Protein synthesis is an extremely important cell function and there is now good evidence that changes in synthesis play important roles both in neuronal cell damage from ischemic insults and in neural plasticity though the mechanisms of these effects are not at all clear. The brain slice, and particularly the hippocampal slice, is an excellent preparation for studying these effects although, as with all studies on slices, caution must be exercised in that regulation in the slice may be different from regulation in vivo. Studies on neural tissue need to take into account the heterogeneity of neural tissue as well as the very different compartments within neurons. Autoradiography at both the light and electron microscope levels is a very powerful method for doing this. Successful autoradiography depends on many factors. These include correct choice of precursor amino acid, mechanisms for estimating changes in the specific activity of the precursor amino acid pool, and reliable methods for quantitation of the autoradiographs. At a more technical level these factors include attention to detail in processing tissue sections so as to avoid light contamination during exposure and developing and, also, appropriate choices of the various parameters such as exposure time and section thickness. The power of autoradiography is illustrated here by its ability to discern effects of ischemia and of plasticity-related neural input on distinct cell types and also in distinct compartments of neurons. Ischemia inhibits protein synthesis in principal neurons but activates synthesis in other cell types of the brain slice. Plasticity-related neural input immediately enhances protein synthesis in dendrites but does not affect cell bodies.  相似文献   

15.
The acetylcholinesterase (AChE) activity is studied in rat slices of the cerebral cortex, corpus striatum, hypothalamus and medulla oblongata of rats during hypothermia (20 degrees C) and also 1 and 7 days after the posthypothermal period. Cooling of animals down to 20 degrees C is accompanied by an increase in the AChE activity in the brain both under incubation temperature of 20 degrees and 37 degrees C. Under prolonged hypothermia the AChE activity in the investigated brain regions, except for corpus striatum, returns to the control level. By the 7th day of posthypothermal period the AChE activity in corpus striatum, hypothalamus and medulla oblongata does not restore completely. The most substantial changes in the AChE activity both under hypothermia and posthypothermal period occur in corpus striatum, which obviously reflects its complicated functional role.  相似文献   

16.
Changes in the activity of transport Ca-ATPase in osmotically disrupted synaptosomes were studied in corazol-induced generalized epileptic activity (EA) monitored by electrocorticogram. The enzyme activity was found to be unchanged at the beginning of the latent period, but significantly diminished towards the end of the latent period and further reduced at the peak of EA. After ET was no longer observed the enzyme activity returned to normal. The activity of transport Ca-ATPase in synaptic junction fraction was found to be 3 times higher than in osmotically disrupted synaptosomes. A possible role of the inactivation of membrane Ca pump in synaptic brain structures is discussed in relation to pathological hyperactivity of neurons.  相似文献   

17.
1. Neural activity was recorded in hippocampal slices from euthermic chipmunks, hamsters and rats. 2. While recording the evoked potentials, the temperature of the Ringer's solution bathing the slice was varied by controlling the temperature of an outer chamber jacketing the recording chamber. 3. The temperature just below that at which a population spike could be evoked, Tt, was 10.4 +/- 0.3 degrees C (mean +/- SEM) for chipmunk slices, 14.1 +/- 0.4 degrees C for rat slices and 14.8 +/- 0.4 degrees C for hamster slices. Tt was significantly lower in the chipmunk slices (P<0.01) than in the rat and hamster slices. 4. Data were interpreted as consistent with the hypothesis that chipmunk hippocampal neurons are intrinsically cold resistant.  相似文献   

18.
The increasingly appreciated role of astrocytes in neurophysiology dictates a thorough understanding of the mechanisms underlying the communication between astrocytes and neurons. In particular, the uptake and release of signaling substances into/from astrocytes is considered as crucial. The release of different gliotransmitters involves regulated exocytosis, consisting of the fusion between the vesicle and the plasma membranes. After fusion with the plasma membrane vesicles may be retrieved into the cytoplasm and may continue to recycle. To study the mobility implicated in the retrieval of secretory vesicles, these structures have been previously efficiently and specifically labeled in cultured astrocytes, by exposing live cells to primary and secondary antibodies. Since the vesicle labeling and the vesicle mobility properties may be an artifact of cell culture conditions, we here asked whether the retrieving exocytotic vesicles can be labeled in brain tissue slices and whether their mobility differs to that observed in cell cultures. We labeled astrocytic vesicles and recorded their mobility with two-photon microscopy in hippocampal slices from transgenic mice with fluorescently tagged astrocytes (GFP mice) and in wild-type mice with astrocytes labeled by Fluo4 fluorescence indicator. Glutamatergic vesicles and peptidergic granules were labeled by the anti-vesicular glutamate transporter 1 (vGlut1) and anti-atrial natriuretic peptide (ANP) antibodies, respectively. We report that the vesicle mobility parameters (velocity, maximal displacement and track length) recorded in astrocytes from tissue slices are similar to those reported previously in cultured astrocytes.  相似文献   

19.
Functional glycine receptors (GlyRs) are enriched in the hippocampus, but their roles in synaptic transmission are unclear. In this study, we examined the effect of GlyR activation on paired-pulse stimulation of the whole-cell postsynaptic currents (PSCs) in the Schaffer-CA1 synapses in rat hippocampal slices. Bath application of glycine reduced the amplitude of PSCs, accompanied by an increase in holding current and resting conductance. Moreover, glycine application increased the paired-pulse ratio (PPR) of PSCs significantly, an effect largely abolished by the GlyR specific antagonist strychnine. Interestingly, glycine application had no significant effect on either the amplitude or the PPR of excitatory postsynaptic currents (EPSCs). Our findings suggest that GlyR activation regulates hippocampal short-term plasticity by altering GABAergic neurotransmission.  相似文献   

20.
Xue BJ  Wang ZA  He RR  Ho SY 《生理学报》1998,50(1):55-60
用细胞外记录单位放电技术,在大鼠海马脑片上观察了L-精氨酸(L-arg)、N-硝基L-精氨酸(L-NNA)及SIN-1对谷氨酸(glutamate,Glu)诱导的CA1区神经元放电的影响。旨在了解L-精氨酸:NO通路在谷氨酸诱发的海马放电中的作用及其可能的机制。结果如下:(1)用GlU(0.5mmol/L)灌流海马脑片1min,12个放电单位放电频率明显增加,表现为癫痫样放电;(2)海马脑片2mi  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号