首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
An NAD-dependent rat liver cytosolic dehydrogenase accepted as substrate retinal generated in situ by microsomes from retinol bound to excess CRBP (cellular retinol binding protein, type I). This activity, which was not retained by anion-exchange chromatography at pH 9.15, was designated P1. P1 activity increased 2.5-fold, with no statistically significant change in its K or Hill coefficient, in liver cytosol from rats fed a retinoid-deficient diet. Orally dosed retinoic acid partially suppressed the increase. Activities chromatographically similar to hepatic P1 were observed in cytosols from rat kidney and testes. P1, purified from rat liver cytosol, had a pI of approximately 8.3, migrated as a tetramer (214 kDa) on a Sephadex G-200 column, and had a subunit molecular mass of 55 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. With free retinal it catalyzed a maximum rate of retinoic acid synthesis of 265 nmol/min/mg of protein and exhibited allosteric kinetics with a K of 0.76 +/- 0.35 microM and a Hill coefficient of 1.5 +/- 0.13 (mean +/- S.D., n = 4). Substrate inhibition was noted with retinal concentrations greater than 6 microM. The purified enzyme not only recognized retinal generated by microsomes as substrate, but also recognized retinal bound to CRBP. The rates of retinoic acid synthesis from CRBP-retinal, with a series of increasing apoCRBP concentrations, exceeded the rates that would be supported by the free retinal present. The CRBP-retinal complex exhibited allosteric kinetics (K, 0.13 microM; Hill coefficient, 1.75; averages of duplicates) in the presence of excess apoCRBP (the ratio total CRBP/total retinal at each concentration of retinal was 2). This enzyme is likely to play a significant role in retinoic acid synthesis in vivo, because it participates in the synthesis of retinoic acid from a physiologically occurring form of retinol (holoCRBP), reflects retinoid status, and is distributed in extrahepatic tissues in addition to liver. These results also suggest a novel role for CRBP in retinoid metabolism, facilitating the conversion of retinal into retinoic acid.  相似文献   

2.
3.
Holo-CRBP (cellular retinol binding protein) is recognized specifically by an NADP-dependent microsomal retinol dehydrogenase and protects retinol from conversion into retinal by NAD and NADPH dependent dehydrogenases. The synthesis of retinal from free retinol is catalyzed by both NADP- and NAD-dependent pathways, with the former being the preferred one (Km of 4 vs. 22 microM for retinol, and Vmax/Km of 33 vs. 9, respectively). NADPH does not support quantitatively significant retinal synthesis from physiological concentrations of retinol or holo-CRBP, if an NADPH regenerating system is used to prevent NADP formation.  相似文献   

4.
Retinol (vitamin A alcohol), which plays an important role in the differentiation of epithelia, can be transferred to chromatin in vitro. Rat liver chromatin can accept retinol in a specific and saturable manner only when the retinol is presented as a complex with cellular retinol-binding protein (CRBP). A partial characterization of the nuclear components responsible for accepting retinol is reported here. A preparation of solubilized chromatin isolated from liver nuclei was able to accept retinol from its complex with CRBP as described previously for nuclei and chromatin. The binding of retinol to chromatin was noncovalent. However, chromatin prepared from nuclei which were incubated with DNase I or micrococcal nuclease did not accept retinol specifically. Chromatin in the form of mono and dinucleosomes also did not accept retinol. However, treatment of nuclei with RNase did not affect the specific binding of retinol. Furthermore, it has been found that retinol was not transferred to purified double or single stranded DNA. These results are interpreted to indicate that the transfer of retinol to specific nuclear binding sites requires a higher order of chromatin structure than that occurring in nucleosome preparations.  相似文献   

5.
Nonpolar substrates of microsomal UDP-glucuronyl-transferase partition between the hydrophobic phase of the microsomal membrane and the bulk aqueous phase in a suspension of microsomes in water. Partitioning of estrone into the membranes was measured in the studies presented and was extensive. Comparison of the rate of conjugation of estrone and the rate of its release from microsomes into the bulk aqueous phase showed that the pool of estrone within the membrane is the substate for UDP-glucuronyl-transferase. The rate of conjugation of estrone was 6-fold greater than the rate of release of estrone from the membrane into the aqueous phase. Several additional experiments showed that the rate of glucuronidation of estrone did not depend on the amount of estrone in the bulk aqueous phase. It is concluded that the microsomal membrane serves to concentrate nonpolar substrates of UDP-glucuronly-transferase. The phospholipid region of the microsomal membrane also may be a co-factor of UDP-glucuronyltransferase in the sense that binding of estrone to the membrane restricts its orientation in a manner that facilitates catalysis.  相似文献   

6.
Microsomal glutathione transferase-1 (MGST1) is a trimeric, membrane-bound enzyme with both glutathione (GSH) transferase and hydroperoxidase activities. As a member of the MAPEG superfamily, MGST1 aids in the detoxication of numerous xenobiotic substrates and in cellular protection from oxidative stress through the GSH-dependent reduction of phospholipid hydroperoxides. However, little is known about the location of the different substrate binding sites, including whether the transferase and peroxidase activities overlap structurally. Although molecular density attributed to GSH has been observed in the 3.2 A resolution electron crystallographic structure of MGST1, the electrophilic and phospholipid hydroperoxide substrate binding sites remain elusive. Amide H-D exchange kinetics and H-D ligand footprinting experiments indicate that GSH and hydrophobic substrates bind within similar, but distinct, regions of MGST1. Site-directed mutagenesis, guided by the H-D exchange results, demonstrates that specific residues within the GSH footprint effect transferase activity toward 1-chloro-2,4-dinitrobenzene. In addition, cytosolic residues surrounding the chemical stress sensor C49 but not modeled in the crystal structure appear to play an important role in the formation of the binding site for hydrophobic substrates. Although the fatty acid/phospholipid binding site structurally overlaps that for GSH, it does not appear to be localized to the same region as other hydrophobic substrates. Finally, H-D exchange mass spectrometry reveals a specific conformational transition that may mediate substrate binding and/or product release. Such structural changes in MGST1 are essential for activation of the enzyme and are important for its biological function.  相似文献   

7.
A binding protein with apparent specificity for beta-glucuronidase has been partially purified from a Triton X-100 extract of rat liver microsomes by affinity chromatography on glucuronidase-Sepharose 2B. It appears that once removed from the membrane, this binding protein self-aggregates to form large macromolecular complexes. With the use of polyacrylamide gel electrophoretic and sucrose density gradient ultracentrifugation assays to monitor the conversion of glucuronidase tetramer to a very high molecular weight complex, it was shown that the binding activity is heatlabile and protease-sensitive. However, binding activity is not influenced by salts, carbohydrates, other proteins or glycoproteins, or by extensive periodate oxidation of beta-glucuronidase, nor does binding occur with any other protein tested. The binding protein does not discriminate against any form of beta-glucuronidase from any rat organ tested. However, the binding protein does show organ localization, being present in the liver and kidney but not the spleen. The possible relationship of this binding protein to egasyn, a membrane protein which stabilizes beta-glucuronidase in mouse liver endoplasmic reticulum, is discussed.  相似文献   

8.
脂肪组织可分泌大量脂肪细胞因子如脂联素、抵抗素、网膜素、视黄醇结合蛋白4等,这些脂肪细胞因子在心血管疾病发生中的重要作用成为目前的研究热点.在动物与人类的研究中均发现,视黄醇结合蛋白4与胰岛素抵抗、动脉硬化、脂类代谢、高血压等密切相关.本文就相关的进展进行综述.  相似文献   

9.
In calf uterus cytosol a cellular retinol-binding protein (cRBP) was detected which was found to bind to DNA-cellulose. The binding to DNA-cellulose could be enhanced by ATP in a dose-dependent manner. ATP treatment did not change the physico-chemical properties of the retinol-cRBP complex. Our findings suggest a role for ATP in the binding of retinol-cRBP complex to DNA.  相似文献   

10.
11.
A membrane protein fraction was obtained from rat liver rough microsomes by affinity chromatography on a concanavalin A-Sepharose column and then a chelating-Sepharose column. This protein fraction comprised about 2% of the total membrane proteins of rough microsomes and the ribosome-binding activity of ribosome-stripped rough microsomes was predominantly found in this protein fraction, as determined with a liposome assay system. To identify the essential components responsible for the ribosome binding, two approaches were employed. Trypsin treatment of liposomes reconstituted with this protein fraction resulted in the loss of the ribosome-binding activity in parallel with the loss of a dominant band, estimated Mr 34,000, in SDS-polyacrylamide gels. Next, the direct interaction between the binding sites on the membrane of reconstituted liposomes and 60S ribosomal subunits was investigated by photocrosslinking using sulfosuccinimidyl 2-(m-azido-o-nitrobenzamido)-ethyl-1,3'-dithiopropionate (SAND). The photocrosslinked complex was formed between 60S ribosomal subunits pretreated with SAND and binding-site proteins on the membrane of the liposomes. Then, after the liposomes were solubilized, the complex was isolated by sucrose gradient centrifugation of the binding mixture. The crosslinked proteins were released from 60S ribosomal subunits by cleavage of of crosslinks with beta-ME and analyzed by SDS-polyacrylamide gel electrophoresis and 125I-autoradiography. The 34-kDa protein (p34) was the predominant component that crosslinked to the 60S ribosomal subunits and was found in proportion to the amount of 60S ribosomal subunits added to the system. The p34 was distinguishable by immunoblot analysis from urate oxidase, which is the 34-kDa protein of peroxisomal cores contaminating rough microsomes. These results suggest that the present p34 is a likely candidate molecule for the ribosome-binding activity of rough microsomes.  相似文献   

12.
The interaction between the retinol binding protein and four ligands was evaluated using HINT, a software based on experimental LogP values of individual atoms. A satisfactory correlation was found between the HINT scores and the experimental dissociation constants of three of the ligands, fenretinide, N-ethylretinamide and all-trans retinol, despite their hydrophobic nature. A prediction is made for the binding affinity of the fourth ligand, axerophtene, not yet determined in solution.  相似文献   

13.
A protein kinase specific for casein and acidic ribosomal proteins was isolated and partly characterized.It was found that the enzyme utilizes GTP and ATP as phosphoryl donors. Its affinity for ATP was considerably higher than for GTP with the km values of 7.6 × 10-6M and 5.5 × 10-5M, respectively.Two-dimensional acrylamide gel electrophoresis revealed the phosphorylation of the same ribosomal proteins with either of the [-32P] nucleotides used. It was also shown that one acidic protein (S1 or S2) of 40 S and two acidic proteins (L2 and L3) of 60 S ribosomal subunits were predominantly phosphorylated in vitro. The phosphorylated proteins: L2 and L3 seem to correspond to the proteins of L7 and L12 of E. coli ribosomes. The isolated kinase phosphorylated several basic ribosomal proteins though to a lower extent than the acidic ones.  相似文献   

14.
Relationships between structure and function for retinol binding protein (RBP) are elucidated with help of a 2.0 A resolution X-ray structure of the holo-protein and an average molecular dynamics (MD) structure of the apo-form. Comparisons between MD simulations of both the apo- and holo-forms with the X-ray holo-structure show conformational changes in apo-RBP that may be functionally significant. The average three dimensional structure obtained for apo-RBP is compared to the related protein apo-beta-lactoglobulin. Available biochemical information is consistent with structure/function relationships derived here.  相似文献   

15.
The sugar nucleotide analogue UDP-glucosamine was found to function as a sugar donor in microsomal preparations of both chick-embryo cells and rat liver, yielding dolichyl monophosphate glucosamine (Dol-P-GlcN). This was characterized by t.l.c. and retention by DEAE-cellulose. Glucosamine was the only water-soluble product released on mild acid hydrolysis. Dol-P-GlcN did not serve as substrate by transferring its glucosamine moiety to dolichol-linked oligosaccharide. Competition experiments between UDP-[3H]glucose and UDP-glucosamine showed Dol-P-[3H]glucose synthesis to be depressed by 56 or 73% in microsomes from chick-embryo cells and rat liver respectively. The concentrations of the UDP-sugars in this experiment were comparable with those occurring in galactosamine-metabolizing liver. These findings suggest that Dol-P-GlcN, formed as a metabolite of D-galactosamine, may interfere with Dol-P-dependent reactions.  相似文献   

16.
The levels of mRNA for cellular retinol binding protein (CRBP) were studied in primary rat Sertoli cell cultures treated with cAMP analogues and retinol. In the presence of cyclic AMP analogues a dose- and time-dependent reduction (70-90%) of the levels of mRNA for CRBP was observed. Retinol concentrations above 10 nM induced a dose- and time-dependent increase (2-3 fold) in mRNA levels for CRBP. Assuming that CRBP is important for vitamin A action, our data indicate that both cAMP and retinol itself modulate the sensitivity of the Sertoli cells for retinol.  相似文献   

17.
Through the use of CD and DSC, the thermal unfolding of holo serum retinol binding protein containing a single, tightly bound retinol ligand was studied at pH 7.4. The DSC endotherm of the holoprotein ([retinol]/[protein] = 1) was asymmetric about the transition temperature of 78 degrees C. Using changes in ellipticity at 230 nm, the thermal unfolding curve was also asymmetric about the inflection point centered near 78 degrees C. van't Hoff enthalpies were determined by three means and compared to the calorimetric enthalpy (delta Hcal) of 200 kcal/mol. A van't Hoff enthalpy of 190 kcal/mol was determined from the dependence of transition temperature on the concentration of the ligand-bound protein. This value agreed well with the van't Hoff enthalpies found from fits of the DSC (delta HvH = 184 kcal/mol) and spectroscopic (delta HvH = 181 kcal/mol) curves to a two-state thermodynamic model that included ligand dissociation (NR in equilibrium with U+R, where NR is the native holoprotein, U is the unfolded apoprotein, and R is retinol). Poor agreement was obtained with a two-state model that ignored ligand dissociation (N in equilibrium with U). Furthermore, the NR in equilibrium with U+R model accounted for the asymmetry in both CD and DSC transitions and yielded a much improved fit of the data over the N in equilibrium with U model. From these considerations and simulations on other equilibrium models, it is suggested that the NR in equilibrium with U+R model is the simplest model that describes the thermal unfolding of this ligand-bound protein.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
We have evaluated the possibility that a major, abundant cellular substrate for protein kinase C might be a calmodulin-binding protein. We have recently labeled this protein, which migrates on sodium dodecyl sulfate-gel electrophoresis with an apparent Mr of 60,000 from chicken and 80,000-87,000 from bovine cells and tissues, the myristoylated alanine-rich C kinase substrate (MARCKS). The MARCKS proteins from both species could be cross-linked to 125I-calmodulin in a Ca2+-dependent manner. Phosphorylation of either protein by protein kinase C prevented 125I-calmodulin binding and cross-linking, suggesting that the calmodulin-binding domain might be located at or near the sites of protein kinase C phosphorylation. Both bovine and chicken MARCKS proteins contain an identical 25-amino acid domain that contains all 4 of the serine residues phosphorylated by protein kinase C in vitro. In addition, this domain is similar in sequence and structure to previously described calmodulin-binding domains. A synthetic peptide corresponding to this domain inhibited calmodulin binding to the MARCKS protein and also could be cross-linked to 125I-calmodulin in a calcium-dependent manner. In addition, protein kinase C-dependent phosphorylation of the synthetic peptide inhibited its binding and cross-linking to 125I-calmodulin. The peptide bound to fluorescently labeled 5-dimethylaminonaphthalene-1-sulfonyl-calmodulin with a dissociation constant of 2.8 nM, and inhibited the calmodulin-dependent activation of cyclic nucleotide phosphodiesterase with an IC50 of 4.8 nM. Thus, the peptide mimics the calmodulin-binding properties of the MARCKS protein and probably represents its calmodulin-binding domain. Phosphorylation of these abundant, high affinity calmodulin-binding proteins by protein kinase C in intact cells could cause displacement of bound calmodulin, perhaps leading to activation of Ca2+-calmodulin-dependent processes.  相似文献   

19.
20.
When an [35S] labeled mixture of methionine and cysteine was injected intratesticularly into retinol-deficient rats, two hours later more than 980 cytosolic proteins were detected by computer aided two dimensional gel electrophoresis. Furthermore, two hours after oral refeeding retinyl acetate as the source of retinol to retinol deficient rats, synthesis of 286 proteins was inhibited and that of 101 proteins was activated. Refeeding with retinoic acid leads in two hours to even higher inhibition of protein synthesis and the labeling patterns of proteins are not identical when compared to retinol refed rats. The results indicate that retinol or retinoic acid quickly influence expression of many proteins and suggest that retinol action in the testes is not identical to that of retinoic acid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号