首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The determination of kinetic parameters of chitinases using natural substrates is difficult due to low K(m) values, which require the use of low substrate concentrations that are hard to measure. Using the natural substrate (GlcNAc)(4), we have developed an assay for the determination of k(cat) and K(m)values of chitinases. Product concentrations as low as 0.5 microM were detected using normal-phase high-performance liquid chromatography (HPLC) with an amide 80 column (0.20 x 25 cm) using spectrophotometric detection at 210 nm. By means of this assay, k(cat) and K(m)values for chitinases A (ChiA) and B (ChiB) of Serratia marcescens were found to be 33+/-1s(-1) and 9+/-1 microM and 28+/-2s(-1) and 4+/-2 microM, respectively. For ChiB, these values were compared to those found with commonly used substrates where the leaving group is a (nonnatural) chromophore, revealing considerable differences. For example, assays with 4-methylumbelliferyl-(GlcNAc)(2) yielded a k(cat) value of 18+/-2s(-1) and a K(m) value of 30+/-6 microM. For two ChiB mutants containing a Trp --> Ala mutation in the +1 or +2 subsites, the natural substrate and the 4-methylumbelliferyl-(GlcNAc)(2) assays yielded rather similar K(m) values (5-fold difference at most) but showed dramatic differences in k(cat) values (up to 90-fold). These results illustrate the risk of using artificial substrates for characterization of chitinases and, thus, show that the new HPLC-based assay is a valuable tool for future chitinase research.  相似文献   

2.
A new method to assay the mitochondrial pyrimidine de novo enzyme, dihydroorotate (DHO) dehydrogenase, which catalyzes the dehydrogenation of DHO, with orotic acid as the product was developed. The assay was optimized using a rat liver mitochondrial preparation. Orotic acid was quantified with high-performance liquid chromatography using an anion-exchange column (Partisil-SAX) with uv detection at 280 nm. Isocratic elution with low phosphate buffer at pH 4.0 was used. The detection limit was 20 pmol per injection, which is comparable to previously described radiometric assays. The HPLC assay was compared with a spectrophotometric assay measuring orotic acid formation in a deproteinized reaction mixture. Absorbance was measured at the optimal wavelength for orotic acid, 278.5 nm. This assay is less sensitive and less specific than the HPLC assay, which can also detect UMP which might be formed from orotic acid in whole homogenates. With both assays kinetic parameters of the enzyme were determined. In the high concentration range (80-1000 microM) both Km and Vmax values were comparable. With the HPLC assay the concentration range was extended down to 12 microM and initial rates could be determined. The apparent Km was about 12 microM. The HPLC assay is also suitable for use in the study of inhibition of DHO dehydrogenase.  相似文献   

3.
Carboxypeptidase E (CPE) is a carboxypeptidase B-like enzyme involved in the biosynthesis of numerous peptide hormones and neurotransmitters. A sensitive assay for CPE and other carboxypeptidase B-like enzymes has been developed using 125I-acetyl-Tyr-Ala-Arg (125I-AcYAR) as the substrate. This peptide is poorly soluble in ethyl acetate whereas the product of carboxypeptidase B-like enzymatic activity (125I-AcYA) can be quantitatively extracted with this solvent, allowing the rapid separation of product from substrate. This radiometric assay can detect less than 1 pg of either CPE or carboxypeptidase B. For CPE, the assay with 125I-AcYAR is approximately 1000 times more sensitive than a fluorescent assay using dansyl-Phe-Ala-Arg (dans-FAR), and 6000 times more sensitive than a spectrophotometric assay using hippuryl-Arg (hipp-R). CPE hydrolyzes the three substrates with Kcat values of 16 s-1 for AcYAR, 13 s-1 for dans-FAR, and 8.5 s-1 for hipp-R. The Km values for CPE with AcYAR (28 microM) and dans-FAR (34 microM) are similar, and are much lower than the Km with hipp-R (400 microM). Thus, the primary reason for the increased sensitivity of the 125I-AcYAR assay over the fluorescent assay is not a result of kinetic differences but is due to the detection limit of iodinated product (10(-15) mol), compared to the fluorescent product (5 x 10(-11) mol). Applications of this rapid and sensitive radiometric assay to detect CPE in cultured cells and in subcellular fractions of the pituitary are described.  相似文献   

4.
A spectrophotometric assay for dissimilatory nitrite reductases   总被引:1,自引:0,他引:1  
A spectrophotometric assay for dissimilatory nitrite reductases has been developed utilizing mammalian cytochrome c (equine heart) as reductant and spectrophotometric agent. The copper-containing nitrite reductase from Achromobacter cycloclastes has been shown to have apparent Km's for reduced cytochrome c and nitrite of 86 +/- 5 and 5.63 +/- 0.03 microM, respectively. The heme cd-containing enzyme from Pseudomonas stutzeri was shown to have apparent Km's for reduced cytochrome c and nitrite of 260 +/- 60 and 1.8 +/- 0.8 microM, respectively. This assay represents a simple, general method for consistently evaluating the activity of the copper- and heme cd-containing nitrite reductases that are capable of utilizing readily available mammalian cytochrome c as electron donor and should be useful for mechanistic studies of these enzymes.  相似文献   

5.
Two convenient and sensitive continuous spectrophotometric assays for cytosolic epoxide hydrolase are described. The assays are based on the differences in the ultraviolet spectra of the epoxide substrates and their diol products. The hydrolysis of 1,2-epoxy-1-(p-nitrophenyl)pentane (ENP5) is accompanied by a decrease in absorbance at 302 nm, while the hydration of 1,2-epoxy-1-(2-quinolyl)pentane (EQU5) produces an increase in absorbance at 315.5 nm. The Km, Vmax values for ENP5 and EQU5 with purified mouse liver cytosolic epoxide hydrolase were 1.7 microM, 11,700 nmol/min/mg and 25 microM, 8300 nmol/min/mg, respectively. Both substrates are hydrolyzed significantly faster than trans-stilbene oxide, which is currently the most commonly used substrate for measuring cytosolic epoxide hydrolase activity. No spontaneous hydrolysis of the substrates is detectable under normal assay conditions. The assays are applicable to whole tissue homogenates as well as purified enzyme preparations. p-Nitrostyrene oxide and p-nitrophenyl glycidyl ether were also examined and found to be very poor substrates for cytosolic epoxide hydrolase from mouse liver.  相似文献   

6.
Human erythrocyte transketolase could be resolved from thiamin diphosphate (TDP) by acidification of the ammonium sulfate precipitate to pH 3.5, but not by other tested procedures. Resolution was 98% by chemical measurement of residual thiamin and 95% by residual enzyme activity. Reconstitution of the resolved preparation by incubation with TDP was dependent upon TDP concentration, duration, temperature, and the presence of dithiothreitol. At low TDP concentrations, 1 h was required for maximum activation; kinetic analysis then yielded an apparent Km value for TDP of 65 nM (SD 14 nM) from 100 erythrocyte lysates and similar values for reconstituted resolved preparations previously purified 400-fold and 10,000-fold. Velocity data obtained by transketolase assays in which the TDP was added to resolved preparations simultaneously with substrates yielded an apparent Km value for TDP of 2.3 microM (SD 1.6 microM) from 114 erythrocyte lysates and similar values for purified preparations. The recovery of activity following resolution and reconstitution ranged from 21 to 60% from lysates and 38 to 70% from purified preparations. Residual ammonium sulfate up to 4.9 mM decreased the apparent Km value for TDP, while a concentration of 11.3 mM increased the value in a manner competitive with TDP and with an apparent Ki value of 2.3 mM. The spectrophotometric assay of transketolase activity was greatly affected by storage of frozen solutions of the substrate ribose 5-phosphate.  相似文献   

7.
The neutral pH optimum beta-glucosidases of mammalian liver and almonds are each capable of hydrolyzing a number of plant glucosides, including L-picein (p-hydroxyacetophenone-beta-D-glucoside) and prunasin (D-mandelonitrile-beta-D-glucoside). Taking advantage of the marked differences in the spectra of the substrate/product pairs of L-picein/p-hydroxyacetophenone and prunasin/mandelonitrile, we have devised spectrophotometric assays that permit the continuous monitoring at pH 7.0 of p-hydroxyacetophenone (piceol) release from L-picein by guinea pig hepatic cytosolic beta-glucosidase and mandelonitrile from prunasin by almond beta-glucosidase. When L-picein hydrolysis was monitored at 320 nm and prunasin at 282 nm, the molar absorption coefficients determined for their products, namely piceol and mandelonitrile, were 3200 and 1360 M-1 cm-1, respectively. The kinetic parameter Km and Vmax values obtained using these spectrophotometric procedures for the guinea pig liver cytosolic beta-glucosidase acting on L-picein were 0.88 mM and 5.29 x 10(5) units/mg protein and for the almond beta-glucosidase acting on prunasin, Km 1.1 mM and Vmax 5.24 x 10(6) units/mg protein. These values agreed well with previously reported values obtained using less convenient, discontinuous assay procedures.  相似文献   

8.
The SrtA isoform of the Staphylococcus aureus sortase transpeptidase is responsible for the covalent attachment of virulence- and colonization-associated proteins to the bacterial peptidoglycan. Sortase utilizes two substrates, undecaprenol-pyrophosphoryl-MurNAc(GlcNAc)-Ala-d-isoGlu-Lys(-Gly5)-d-Ala-d-Ala (branched Lipid II) and secreted proteins containing a highly conserved LPXTG sequence near their C termini. SrtA simultaneously cleaves the Thr-Gly bond of the LPXTG-containing protein and forms a new amide bond with the nucleophilic amino group of the Gly5 portion of branched Lipid II, anchoring the protein to this key intermediate that is subsequently polymerized into peptidoglycan. Here we show that reported fluorescence quenching activity assays for SrtA are subject to marked fluorescence inner filter effect quenching, resulting in prematurely hyperbolic velocity versus substrate profiles and underestimates of the true kinetic parameters kcat and Km. We therefore devised a discontinuous high-performance liquid chromatography (HPLC)-based assay to monitor the SrtA reaction employing the same substrates used in the fluorescence quenching assay: Gly5 and Abz-LPETG-Dap(Dnp)-NH2. Fluorescence or UV detection using these substrates facilitates separate analysis of both the acylation and the transpeptidation steps of the reaction. Because HPLC was performed using fast-flow analytical columns (<8min/run), high-throughput applications of this assay for analysis of SrtA substrate specificity, kinetic mechanism, and inhibition are now feasible. Kinetic analysis using the HPLC assay revealed that the kinetic parameters for SrtA with Abz-LPETG-Dap(Dnp)-NH2 are 5.5mM for Km and 0.27s-1 for kcat. The Km for Gly5 was determined to be 140microM. These values represent a 300-fold increase in Km for the LPXTG substrate and a 12,000-fold increase in kcat over literature-reported values, suggesting that SrtA is more a robust enzyme than previous analyses indicated.  相似文献   

9.
The activities of the mitochondrial enzymes citrate synthase (citrate oxaloacetatelyase, EC 4.1.3.7), NADP-linked isocitrate dehydrogenase (threo-Ds-isocitrate:NADP+ oxidoreductase (decarboxylating), EC 1.1.1.42), and succinate dehydrogenase (succinate: FAD oxidoreductase, EC 1.3.99.1) as well as their kinetic behavior in the two developmental forms of Trypanosoma cruzi at insect vector stage, epimastigotes and infective metacyclic trypomastigotes, were studied. The results presented in this work clearly demonstrate a higher mitochondrial metabolism in the metacyclic forms as is shown by the extraordinary enhanced activities of metacyclic citrate synthase, isocitrate dehydrogenase, and succinate dehydrogenase. In epimastigotes, the specific activities of citrate synthase at variable concentrations of oxalacetate and acetyl-CoA were 24.6 and 26.6 mU/mg of protein, respectively, and the Michaelis constants were 7.88 and 6.84 microM for both substrates. The metacyclic enzyme exhibited the following kinetic parameters: a specific activity of 228.4 mU/mg and Km of 3.18 microM for oxalacetate and 248.5 mU/mg and 2.75 microM, respectively, for acetyl-CoA. NADP-linked isocitrate dehydrogenase specific activities for epimastigotes and metacyclics were 110.2 and 210.3 mU/mg, whereas the apparent Km's were 47.9 and 12.5 microM, respectively. No activity for the NAD-dependent isozyme was found in any form of T. cruzi differentiation. The particulated succinate dehydrogenase showed specific activities of 8.2 and 39.1 mU/mg for epimastigotes and metacyclic trypomastigotes, respectively, although no significant changes in the Km (0.46 and 0.48 mM) were found. The cellular role and the molecular mechanism that probably take place during this significant shift in the mitochondrial metabolism during the T. cruzi differentiation have been discussed.  相似文献   

10.
Sensitive, soluble chromogenic substrates for HIV-1 proteinase   总被引:14,自引:0,他引:14  
By replacement of the P1' residue in a capsid/nucleocapsid cleavage site mimic with 4-NO2-phenylalanine (Nph), an excellent chromogenic substrate, Lys-Ala-Arg-Val-Leu*Nph-Glu-Ala-Met, for HIV-1 proteinase (kappa cat = 20 s-1, Km = 22 microM) has been prepared. Substitution of the Leu residue in P1 with norleucine, Met, Phe, or Tyr had minimal effects on the kinetic parameters (kappa cat and kappa cat/Km) determined at different pH values, whereas peptides containing Ile or Val in P1 were hydrolyzed extremely slowly. The spectrophotometric assay has been used to characterize the proteinase further with respect to pH dependence, ionic strength dependence, and the effect of competitive inhibitors of various types.  相似文献   

11.
Soybean nodule xanthine dehydrogenase: a kinetic study   总被引:1,自引:0,他引:1  
Xanthine dehydrogenase was purified from soybean nodules and the kinetic properties were studied at pH 7.5. Km values of 5.0 +/- 0.6 and 12.5 +/- 2.5 microM were obtained for xanthine and NAD+, respectively. The pattern of substrate dependence suggested a Ping-Pong mechanism. Reaction with hypoxanthine gave Km's of 52 +/- 3 and 20 +/- 2.5 microM for hypoxanthine and NAD+, respectively. The Vmax for this reaction was twice that for the xanthine-dependent reaction. The pH dependence of Vmax gave a pKa of 7.6 +/- 0.1 for either xanthine or hypoxanthine oxidation. In addition the Km for xanthine had a pKa of 7.5 consistent with the protonated form of xanthine being the true substrate. Km for hypoxanthine varied only 2.5-fold between pH 6 and 10.7. Product inhibition studies were carried out with urate and NADH. Both products gave mixed inhibition with respect to both substrates. Xanthine dehydrogenase was able to use APAD+ as an electron acceptor for xanthine oxidation, with a Km at pH 7.5 of 21.2 +/- 2.5 microM and Vmax the same as that obtained with NAD+. Reduction of APAD+ by NADH was also catalyzed by xanthine dehydrogenase with a Km of 102 +/- 15 microM; Vmax was approximately 2.5 times that for the xanthine-dependent reaction, and was independent of pH between 6 and 9. Reaction with group-specific reagents indicated the possibility of an essential histidyl group. A thiol-modifying reagent did not cause inactivation of the enzyme. A role for the histidyl side chain in catalysis is proposed.  相似文献   

12.
G Mannor  B Movsas  R S Yalow 《Life sciences》1984,34(14):1341-1345
The Michaelis constants (Km's) and maximum reaction velocities (Vmax's) for the degradation of beef insulin by livers from frogs, guinea pigs, rats, a rabbit, a dog and a pig were determined. The Km's for mammalian livers appear to be species-dependent and range from 0.25 microM to 0.65 microM. The Km for frog liver was somewhat lower, averaging 0.13 microM. The Km is independent of animal age, but the enzyme concentrations (Vmax) were greatly reduced in the fetal guinea pig and 3 day rat compared to the adult livers. There appears to be no relation between Km and the chemical dissimilarity between beef insulin and endogenous insulin of the species, since guinea pig liver insulinase had a Km (0.50 microM) intermediate between dog (0.47 microM) and pig (0.65 microM) liver insulinase although guinea pig insulin has a markedly different amino acid sequence and biologic activity.  相似文献   

13.
A previous published assay method for tyrosine hydroxylase by the evolution of 14CO2 was modified to a two-step procedure to allow reliable measurement of large numbers of samples containing low tyrosine hydroxylase activity. The reliability of the method was examined in detail. Properties of rat brain and pineal tyrosine hydroxylase solubilized with 0.2% Triton X-100 were as follows. The apparent Km values of the brain enzyme for L-tyrosine with 1 mM-(6-DL)-5,6,7,8-tetrahydro-L-erythro-biopterin (BPH4) as cofactor and for BPH4 with 62 microM-L-tyrosine as substrate were approximately 25 microM and 85 microM, respectively. The Km's for L-tyrosine with 1 mM-(6-DL)-5,6,7,8-tetrahydro-6-methylpterin (6MPH4) as cofactor and for 6MPH4 with 210 microM-L-tyrosine as substrate were 68 microM and 270 microM, respectively. The marked substrate inhibition by high concentrations of L-tyrosine was observed only when BPH4 was used as cofactor. High concentrations of BPH4 inhibited the reaction slightly. The kinetic properties of tyrosine hydroxylase in the pineal extract were similar to those of the brain enzyme, except that a Lineweaver-Burk plot of reciprocal velocity versus the reciprocal concentration of BPH4 with 62 microM-L-tyrosine as substrate deviated downward at a BPH4 concentration of about 100 microM. Analyses of the plot indicated that the peculiar kinetic property may represent either the reaction occurring at two independent sites or with two forms (6L- and 6D-isomers) of the tetrahydrobiopterin cofactor, with apparent Km for BPH4 of 23 microM and 1025 microM, respectively, or the negatively cooperative ligand binding with a Hill coefficient of 0.72. Based on the results obtained as reported above the standard assay conditions of tyrosine hydroxylase in tissue extracts were established. Using the assay method and conditions, the absence of the daily rhythmicity of tyrosine hydroxylase in rat pineal glands and three discrete brain areas was demonstrated. The findings, especially on pineal tyrosine hydroxylase, are discussed in relation to the daily change of noradrenaline turnover.  相似文献   

14.
N-Arginine dibasic (NRD) convertase is a recently described peptidase capable of selectively cleaving peptides between paired basic residues. The characterization of this unique peptidase has been hindered by the fact that no facile assay procedure has been available. Here we report the development of a rapid and sensitive assay for NRD convertase, based on the utilization of two new internally quenched fluorogenic peptides: Abz-GGFLRRVGQ-EDDnp and Abz-GGFLRRIQ-EDDnp. These peptides contain the fluorescent 2-aminobenzoyl moiety that is quenched in the intact peptide by a 2, 4-dinitrophenyl moiety. Cleavage by NRD convertase at the Arg-Arg sequence results in an increase of fluorescence. NRD convertase cleaves these peptides efficiently and with high specificity as observed by both HPLC and fluorescence spectroscopy. The rate of hydrolysis of the fluorogenic substrates is proportional to enzyme concentration, and obeys Michaelis-Menten kinetics. The kinetic parameters for the fluorescent peptides (Km values of approximately 1.0 microM, and Vmax values of approximately 1 microM/(min. mg) are similar to those obtained with peptide hormones as substrates.  相似文献   

15.
G Cs-Szabó  E Széll  P El?di 《FEBS letters》1986,195(1-2):265-268
The kinetic features of human granulocyte elastase, chymotrypsin, porcine pancreatic elastase and elastomucoproteinase were compared. Amino acyl ester substrates were assayed and Km and kcat values were defined. Aldehyde analogues of the p-nitroanilide substrates designed for granulocyte elastase as optimal for Km appeared to be potent inhibitors. Suc-D-Phe-Pro-valinal (Ki = 40 microM) was found to inhibit granulocyte elastase competitively and specifically when measured with synthetic substrates, and the Ki was 3 microM with the natural protein substrate, elastin.  相似文献   

16.
Mixed DNA/RNA polymers are cleaved by the hammerhead ribozyme.   总被引:3,自引:0,他引:3  
A series of chemically synthesized oligodeoxyribonucleotides containing one or two ribonucleotides (DNA/RNA mixed polymers) at and/or adjacent to the cleavage site of the substrate can be cleaved by the "hammerhead" ribozyme. In comparison with the all-RNA substrate, the predominantly deoxyribonucleotide substrates have (1) lower optimal temperatures of cleavage, (2) approximately 6-fold higher Km's and 7-fold lower kcat's at 30 degrees C, and (3) 15-fold higher Km's and 8-fold lower kcat's at 37 degrees C. The extent to which the RNA substrate cleavage is inhibited in the presence of an all-DNA (KI = 13 microM) and an RNA substrate analogue with a dC at the cleavage site (KI = 0.96 microM) supports the contention that the formation of the ribozyme-substrate complex with the predominantly deoxyribonucleotide substrates (D substrates) is impaired. The weaker binding of D substrates was confirmed by thermal denaturation and determination of the Tm of the complex. Analysis of the kinetic data also suggests that the conformation of the catalytic core of the ribozyme-substrate complex differs from that of the all-RNA complex, a change that results from the presence of a DNA/RNA heteroduplex in the complex.  相似文献   

17.
Adenosine kinase (AK) is a purine salvage enzyme that catalyzes the phosphorylation of adenosine to AMP. In Mycobacterium tuberculosis, AK can also catalyze the phosphorylation of the adenosine analog 2-methyladenosine (methyl-Ado), the first step in the metabolism of this compound to an active form. Purification of AK from M. tuberculosis yielded a 35-kDa protein that existed as a dimer in its native form. Adenosine (Ado) was preferred as a substrate at least 30-fold (Km = 0.8 +/- 0.08 microM) over other natural nucleosides, and substrate inhibition was observed when Ado concentrations exceeded 5 micro M. M. tuberculosis and human AKs exhibited different affinities for methyl-Ado, with Km values of 79 and 960 microM, respectively, indicating that differences exist between the substrate binding sites of these enzymes. ATP was a good phosphate donor (Km = 1100 +/- 140 microM); however, the activity levels observed with dGTP and GTP were 4.7 and 2.5 times the levels observed with ATP, respectively. M. tuberculosis AK activity was dependent on Mg2+, and activity was stimulated by potassium, as reflected by a decrease in the Km and an increase in Vmax for both Ado and methyl-Ado. The N-terminal amino acid sequence of the purified enzyme revealed complete identity with Rv2202c, a protein currently classified as a hypothetical sugar kinase. When an AK-deficient strain of M. tuberculosis (SRICK1) was transformed with this gene, it exhibited a 5,000-fold increase in AK activity compared to extracts from the original mutants. These results verified that the protein that we identified as AK was coded for by Rv2202c. AK is not commonly found in bacteria, and to the best of our knowledge, M. tuberculosis AK is the first bacterial AK to be characterized. The enzyme shows greater sequence homology with ribokinase and fructokinase than it does with other AKs. The multiple differences that exist between M. tuberculosis and human AKs may provide the molecular basis for the development of nucleoside analog compounds with selective activity against M. tuberculosis.  相似文献   

18.
A direct continuous UV-Vis spectrophotometric assay has been developed for VanX, a D-alanyl-D-alanine aminodipeptidase necessary for vancomycin resistance. This method is based on the hydrolysis of the alternative substrate D-alanyl-alpha-(R)-phenylthio-glycine D-Ala-D-Gly(S-Ph)-OH (H-DAla-DPsg-OH, 5a). Spontaneous decomposition of the released phenylthioglycine generates thiophenol, which is quantified using Ellman's reagent. The dipeptide behaved as an excellent substrate of VanX, exhibiting Michaelis-Menten kinetics with a kcat of 76 +/- 5/s and a KM of 0.83 +/- 0.08 mm (kcat = 46 +/- 3/s and KM = 0.11 +/- 0.01 mm for D-Ala-D-Ala). Determination of the kinetic parameters of the previously reported mechanism-based inhibitor D-Ala-D-Gly(SPhip-CHF2)-OH (H-D-Ala-DPfg-OH, 5c) [Araoz, R., Anhalt, E., René, L., Badet-Denisot, M.-A., Courvalin, P. & Badet, B. (2000) Biochemistry 39, 15971-15979] using the substrate reported in the present study yielded values of Kirr of 22 +/- 1 microM and kinact of 9.3 +/- 0.4/min in good agreement with values previously obtained in our laboratory (Kirr = 30 +/- 1 mm; kinact = 7.3 +/- 0.3/min). In addition, inhibition by the competing substrate D-Ala-D-Ala resulted in determination of a Ki = 70 +/- 6 microM close to the previously reported KM value. These results demonstrate that the present assay is a convenient, rapid and sensitive tool in the search for VanX inhibitors.  相似文献   

19.
Substrate determinants for rabbit and chicken skeletal muscle myosin light chain kinases were examined with synthetic peptides. Both skeletal muscle myosin light chain kinases had similar phosphorylation kinetics with synthetic peptide substrates. Average kinetic constants for skeletal muscle myosin light chain heptadecapeptide, (formula; see text) where S(P) is phosphoserine, were Km, 2.3 microM and Vmax, 0.9 mumol/min/mg of enzyme. Km values were 122 and 162 microM for skeletal muscle peptides containing A-A for basic residues at positions 2-3 and 6-7, respectively. Average kinetic constants for smooth muscle myosin light chain peptide, (formula; see text), were Km, 1.4 microM and Vmax 27 mumol/min/mg of enzyme. Average Km values for the smooth muscle peptide, residues 11-23, were 10 microM which increased 6- and 11-fold with substitutions of alanine at residues 12 and 13, respectively. Vmax values decreased and Km values increased markedly by substitution of residue 16 with glutamate in the 11-23 smooth muscle tridecapeptide. Basic residues located 3 and 6-7 residues toward the NH2 terminus from phosphoserine in smooth muscle myosin light chain and 6-8 and 10-11 residues toward the NH2 terminus from phosphoserine in skeletal muscle myosin light chain appear to be important substrate determinants for skeletal muscle myosin light chain kinases. These properties are different from myosin light chain kinase from smooth muscle.  相似文献   

20.
An improved cathepsin-D substrate and assay procedure   总被引:1,自引:0,他引:1  
Ten analogs of the peptide A-Phe(NO2)-Phe-Val-Leu-B were synthesized and tested as substrates for cathepsin D and pepsin. The best substrate found for cathepsin D, Phe-Ala-Ala-Phe(NO2)-Phe-Val-Leu-OM4P (kcat = 2.9 s-1; Km = 7.1 microM), has the largest kcat/Km value (408 mM-1 s-1) reported to date for this enzyme. The effect of peptide structure on solubility and kinetic parameters is discussed. The peptide provides a useful new substrate for continuous assay of cathepsin D.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号