首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The crystal structure of a sarcoplasmic Ca(2+)-binding protein (SCP) from the sandworm Nereis diversicolor has been determined and refined at 2.0 A resolution using restrained least-squares techniques. The two molecules in the crystallographic asymmetric unit, which are related by a non-crystallographic 2-fold axis, were refined independently. The refined model includes all 174 residues and three calcium ions for each molecule, as well as 213 water molecules. The root-mean-square difference in co-ordinates for backbone atoms and calcium ions of the two molecules is 0.51 A. The final crystallographic R-factor, based on 18,959 reflections in the range 2.0 A less than or equal to d less than or equal to 7.0 A, with intensities exceeding 2.0 sigma, is 0.182. Bond lengths and bond angles in the molecules have root-mean-square deviations from ideal values of 0.013 A and 2.2 degrees, respectively. SCP has four distinct domains with the typical helix-loop-helix (EF-hand) Ca(2+)-binding motif, although the second Ca(2+)-binding domain is not functional due to amino acid changes in the loop. The structure shows several unique features compared to other Ca(2+)-binding proteins with four EF-hand domains. The overall structure is highly compact and globular with a predominant hydrophobic core, unlike the extended dumbbell-shaped structure of calmodulin or troponin C. A hydrophobic tail at the COOH terminus adds to the structural stability by packing against a hydrophobic pocket created by the folding of the NH2 and COOH-terminal Ca(2+)-binding domain pairs. The first and second domains show different helix-packing arrangements from any previously described for Ca(2+)-binding proteins.  相似文献   

2.
Among the known regulatory proteins that are conformationally sensitive to the binding of calcium ions, calmodulin and troponin-C have the greatest primary sequence homology. This observation has led to the conclusion that the most accurate predicted molecular model of calmodulin would be based on the X-ray crystallographic coordinates of the highly refined structure of turkey skeletal troponin-C. This paper describes the structure of calmodulin built from such a premise. The resulting molecular model was subjected to conjugate gradient energy minimization to remove unacceptable intramolecular non-bonded contacts. In the analysis of the resulting structure, many features of calmodulin, including the detailed conformation of the Ca2+-binding loops, the amino- and carboxy-terminal hydrophobic patches of the Ca2+-bound form, and the several clusters of acidic residues can be reconciled with much of the previously published solution data. Calmodulin is missing the N-terminal helix characteristic of troponin-C. The deletion of three residues from the central helical linker (denoted D/E in troponin-C) shortens the molecule and changes the orientation of the two domains of calmodulin by 60 degrees relative to those in troponin-C. The molecular model has been used to derive two possible binding sites for the antipsychotic drug trifluoperazine, a potent competitive inhibitor of calmodulin activity.  相似文献   

3.
Calmodulin structure refined at 1.7 A resolution.   总被引:3,自引:0,他引:3  
We have determined and refined the crystal structure of a recombinant calmodulin at 1.7 A resolution. The structure was determined by molecular replacement, using the 2.2 A published native bovine brain structure as the starting model. The final crystallographic R-factor, using 14,469 reflections in the 10.0 to 1.7 A range with structure factors exceeding 0.5 sigma, is 0.216. Bond lengths and bond angle distances have root-mean-square deviations from ideal values of 0.009 A and 0.032 A, respectively. The final model consists of 1279 non-hydrogen atoms, including four calcium ions, 1130 protein atoms, including three Asp118 side-chain atoms in double conformation, 139 water molecules and one ethanol molecule. The electron densities for residues 1 to 4 and 148 of calmodulin are poorly defined, and not included in our model, except for main-chain atoms of residue 4. The calmodulin structure from our crystals is very similar to the earlier 2.2 A structure described by Babu and coworkers with a root-mean-square deviation of 0.36 A. Calmodulin remains a dumb-bell-shaped molecule, with similar lobes and connected by a central alpha-helix. Each lobe contains three alpha-helices and two Ca2+ binding EF hand loops, with a short antiparallel beta-sheet between adjacent EF hand loops and one non-EF hand loop. There are some differences in the structure of the central helix. The crystal packing is extensively studied, and facile crystal growth along the z-axis of the triclinic crystals is explained. Herein, we describe hydrogen bonding in the various secondary structure elements and hydration of calmodulin.  相似文献   

4.
A new family of proteins (annexins) that bind to membranes at micromolar free Ca2+ has been recognized. Its members include an EGF-receptor kinase substrate (p35), a retroviral tyrosine kinase substrate (p36), the liver protein endonexin (p32) and an electric ray protein, calelectrin. Each protein contains four sequence repeats with a further 2-fold internal homology. Using the predicted secondary structure and pattern of conserved hydrophobic residues in each repeat, we have built a three-dimensional model that is largely isostructural with the known molecular conformation of bovine intestinal calcium-binding protein. The final (energy-refined) model had a core formed from the conserved hydrophobic residues. It differed from ICaBP principally in the length of the two Ca2+-binding loops with only one loop being able to bind. The model suggests a mechanism for interaction of these new Ca2+-binding proteins with phospholipid bilayers.  相似文献   

5.
Analysis of sequence similarity and comparison of the three-dimensional (3D) structures of troponin C and calmodulin have revealed a sequence in the central helix of calmodulin with a high probability for bending. The three amino acids known to form a bend in the N-terminal portion of troponin C are also found in the central helix of calmodulin. The modelling of a bent calmodulin structure, using the dihedral angles of the three residues in the bend of troponin C as a 3D template, results in a conformation of calmodulin where the N- and C-terminal domains are able to form contacts. Dynamics simulations starting from the X-ray structure of calmodulin and from the modelled bent calmodulin were carried out to compare flexibility and correlated movements of Ca2+ in the binding loops. Both conformations of calmodulin remained stable during the period of simulation. In the simulation of calmodulin in the extended form, the motions of the Ca2+ atoms in the two domains (Ca2+1 and Ca2+2 in one domain, and Ca2+3 and Ca2+4 in the other) are correlated. In the simulation of the bent form, an additional correlation between the Ca atoms in the two different domains is observed. The results are compatible with the occurrence of a bent conformation of calmodulin in the presence of targets, and with increased Ca2+ affinity and cooperativity of the Ca(2+)-binding loops in the calmodulin-peptide complexes.  相似文献   

6.
Interactions between Ca2+, calmodulin and turkey gizzard myosin light chain kinase have been studied by equilibrium gel filtration and analyzed in terms of the theory of free energy coupling as formulated by Huang and King for calmodulin-regulated systems (Current Topics in Cellular Regulation 27, 1966-1971, 1985). Direct binding studies revealed that upon interaction with the enzyme, calmodulin acquires strong positive cooperativity in Ca2+-binding. The determination of the Ca2+-binding constants is inherently approximative due to the apparent homotropic cooperativity; therefore a statistical chi 2 analysis was carried out to delimit the formation-, and subsequently the stoichiometric Ca2+-binding constants. Whereas the first two stoichiometric Ca2+-binding constants of enzyme-bound CaM do not differ or are at the upmost 10-fold higher than those in free calmodulin, the third Ca2+ ion binds with an at least 70-fold and more likely 3000-fold higher affinity constant. The binding constant for the fourth Ca2+ is only 5-fold higher than the corresponding one in free calmodulin, thus creating a plateau at 3 bound Ca2+ in the isotherm. Direct binding of Ca2+-free calmodulin to myosin light chain kinase at 10(-7) M free Ca2+ yielded a l/l stoichiometry and an affinity constant of 2.2 x 10(5) M-1. It is thus anticipated that in resting smooth muscle ([Ca2+] less than or equal to 10(-7) M) more than half of the enzyme is bound to metal-free calmodulin. Analysis of the enzymatic activation of myosin light chain kinase at different concentrations of calmodulin and Ca2+ revealed that this Ca2+-free complex is inactive and that activation is concomitant with the formation of the enzyme.calmodulin.Ca3 complex.  相似文献   

7.
Native calmodulin binds four calcium ions per molecule and exhibits strong Ca2+-dependent binding to phenyl-Sepharose. In contrast, calmodulin inactivated by oxidation of methionine residues or by deamidation binds fewer calcium ions (two per molecule) and shows relatively weak interaction with phenyl-Sepharose. Calmodulin inactivated by modification of lysine residues still is able to bind four calcium ions per molecule and shows strong binding to phenyl-Sepharose similar to native calmodulin. The results suggest that complete exposure of calmodulin's hydrophobic region occurs only after the binding of four ions of calcium to the calmodulin molecule. Thus, phenyl-Sepharose hydrophobic interaction chromatography might be used to separate active calmodulin from inactive forms of calmodulin obtained by oxidation or heat treatment for prolonged periods. As an example, phenyl-Sepharose chromatography can be used to separate free iodide and inactivated species of calmodulin readily from the active, iodinated form of calmodulin following iodination.  相似文献   

8.
Mg2+ binds to calmodulin without inducing the changes in secondary structure that are characteristic of Ca2+ binding, or the exposure of hydrophobic surfaces that are involved in typical Ca2+-dependent target interactions. The binding of Mg2+ does, however, produce significant spectroscopic changes in residues located in the Ca2+-binding loops, and the Mg-calmodulin complex is significantly different from apo-calmodulin in loop conformation. Direct measurement of Mg2+ binding constants, and the effects of Mg2+ on Ca2+ binding to calmodulin, are consistent with specific binding of Mg2+, in competition with Ca2+. Mg2+ increases the thermodynamic stability of calmodulin, and we conclude that under resting, nonstimulated conditions, cellular Mg2+ has a direct role in conferring stability on both domains of apo-calmodulin. Apo-calmodulin binds typical target sequences from skeletal muscle myosin light chain kinase and neuromodulin with Kd approximately 70-90 nM (at low ionic strength). These affinities are virtually unchanged by 5 mM Mg2+, in marked contrast to the strong enhancement of peptide affinity induced by Ca2+. Under conditions of stimulation and increased [Ca2+], Mg2+ has a role in directing the mode of initial target binding preferentially to the C-domain of calmodulin, due to the opposite relative affinities for binding of Ca2+ and Mg2+ to the two domains. Mg2+ thus amplifies the intrinsic differences of the domains, in a target specific manner. It also contributes to setting the Ca2+ threshold for enzyme activation and increases the importance of a partially Ca2+-saturated calmodulin-target complex that can act as a regulatory kinetic and equilibrium intermediate in Ca2+-dependent target interactions.  相似文献   

9.
Calmodulin (CaM) is a multifunctional Ca2+-binding protein that regulates the activity of many enzymes in response to changes in the intracellular Ca2+ concentration. There are two globular domains in CaM, each containing a pair of helix-loop-helix Ca2+-binding motifs called EF-hands. Ca2+-binding induces the opening of both domains thereby exposing hydrophobic pockets that provide binding sites for the target enzymes. Here, I present a 2.4 A resolution structure of a calmodulin mutant (CaM41/75) in which the N-terminal domain is locked in the closed conformation by a disulfide bond. CaM41/75 crystallized in a tetragonal lattice with the Ca2+ bound in all four EF-hands. In the closed N-terminal domain Ca ions are coordinated by the four protein ligands in positions 1, 3, 5 and 7 of the loop, and by two solvent ligands. The glutamate side-chain in the 12th position of the loop (Glu31 in site I and Glu67 in site II), which in the wild-type protein provides a bidentate Ca2+ ligand, remains in a distal position. Based on a comparison of CaM41/75 with other CaM and troponin C structures a detailed two-step mechanism of the Ca2+-binding process is proposed. Initially, the Ca2+ binds to the N-terminal part of the loop, thus generating a rigid link between the incoming helix (helix A, or helix C) and the central beta structure involving the residues in the sixth, seventh and eighth position of the loop. Then, the exiting helix (helix B or helix D) rotates causing the glutamate ligand in the 12th position to move into the vicinity of the immobilized Ca2+. An adjustment of the phi, psi backbone dihedral angles of the Ile residue in the eighth position is necessary and sufficient for the helix rotation and functions as a hinge. The model allows for a significant independence of the Ca2+-binding sites in a two-EF-hand domain.  相似文献   

10.
The crystal structure of troponin C from turkey skeletal muscle has been refined at 2.0 A resolution (1 A = 0.1 nm). The resulting crystallographic R factor (R = sigma[[Fo[-[Fc[[/sigma[Fo[, where [Fo[ and [Fc[ are the observed and calculated structure factor amplitudes) is 0.155 for the 8054 reflections with intensities I greater than or equal to 2 sigma(I) within the 10 A to 2.0 A resolution range. With 66% of the residues in helical conformation, troponin C provides a good sample for helix analysis. The mean alpha-helix dihedral angles (phi, psi = -62 degrees, -42 degrees) agree with values observed for helical regions in other proteins. The helices are all curved and/or kinked. In particular, the 31 amino acid long inter-domain helix is smoothly curved, with a rather large radius of curvature of 137 A. Helix packing is different in the Ca2+-free domain (N-terminal) and the Ca2+-bound domain (C-terminal). The inter-helix angles for the two helix-loop-helix motifs in the regulatory domain are 133 degrees and 151 degrees, whereas the value for the two motifs in the C-terminal domain is 110 degrees, as observed in the EF-hands of parvalbumin. These differences affect the packing of the respective hydrophobic cores of each domain, in particular the disposition of aromatic rings. Pairwise arrangement of Ca2+-binding loops is common to both states, but the conformation is markedly different. Conversion of one to the other can be achieved by small cumulative changes of main-chain dihedral angles. The integrity of loop structure is maintained by numerous electrostatic interactions. Both salt bridges and carboxyl-carboxylate interactions are observed in TnC. There are more intramolecular (9) than intermolecular (1) salt bridges. Carboxyl-carboxylate interactions occur because the pH of the crystals is 5.0 and there is a multitude of aspartate and glutamate residues. One is intramolecular and four are intermolecular. Polar side-chain interactions occur more commonly with main-chain carbonyls and amides than with other polar side-chains. These interactions are mostly short range, and are similar to those observed in other proteins with one exception: negatively charged side-chains interact more frequently with main-chain carbonyl oxygen atoms. However, out of 19 such interactions, 10 involve oxygen atoms of the Ca2+ ligands. These unfavorable interactions are compensated by the favorable interactions with the Ca2+ ions and with main-chain amides. They are a trivial consequence of the tight fold of the Ca2+-binding loops.  相似文献   

11.
The differential reactivities of individual lysines on porcine testicular calmodulin were determined by trace labeling with high specific activity [3H]acetic anhydride as a function of the molar ratio of Ca2+ to calmodulin. In progressing from the Ca2+-depleted form of the protein to a Ca2+:calmodulin molar ratio of 5:1, six of the seven lysyl residues exhibited a modest 1.5- to 3.0-fold increase in reactivity. Lys 75, in contrast, was enhanced in reactivity greater than 20-fold. When the change in reactivity of each lysine was normalized as a percentage of the maximum change, most of the residues were found to fall into two distinct classes. One class, comprising lysines 94 and 148 from the two carboxy terminal Ca2+-binding domains 3 and 4, respectively, exhibited about 90% of their reactivity change when the Ca2+:calmodulin molar ratio was 2:1, and these residues were perturbed very little upon further addition of Ca2+. The other class, encompassing lysines 13, 21, and 30 from the amino terminal domain 1 and Lys 75 from the extended helix connecting the two globular lobes of calmodulin, underwent most of their overall reactivity change (55-70%) between 2 and 5 equivalents of Ca2+ per mol of calmodulin. Lys 77 was distinct in its pattern of change, undergoing approximately equal changes with each Ca2+ increment. These results are consistent with a model where Ca2+ first binds to the two carboxy terminal sites of calmodulin with no apparent preference, concomitant with minor alterations in the microenvironments of lysines in the unoccupied amino terminal domains. The third and fourth Ca2+ ions then bind to these latter two domains, again with no evidence of preference, with little change in the lysine reactivities at the carboxy terminus of the molecule. The environments of groups in the central helix appear to undergo changes in a manner that reflects their proximity to the amino and carboxy terminal domains. In the course of this work, it was found that Lys 94 in apocalmodulin is specifically perturbed by the addition of EGTA, suggesting that the chelating agent may interact with calmodulin at or near the third Ca2+-binding domain.  相似文献   

12.
The crystal structure of calmodulin (Mr 16,700, 148 residues) from Drosophila melanogaster as expressed in a bacterial system has been determined and refined at 2.2-A resolution. Starting with the structure of mammalian calmodulin, we produced an extensively refitted and refined model with a conventional crystallographic R value of 0.197 for the 5,239 reflections (F greater than or equal to 2 sigma (F)) within the 10.0-2.2-A resolution range. The model includes 1,164 protein atoms, 4 calcium ions, and 78 water molecules and has root mean square deviations from standard values of 0.018 A for bond lengths and 0.043 A for angle distances. The overall structure is similar to mammalian calmodulin, with a seven-turn central helix connecting the two calcium-binding domains. The "dumb-bell" shaped molecule contains seven alpha-helices and four "EF hand" calcium-binding sites. Although the amino acid sequences of mammalian and Drosophila calmodulins differ by only three conservative amino acid changes, the refined model reveals a number of significant differences between the two structures. Superimposition of the structures yields a root mean square deviation of 1.22 A for the 1,120 equivalent atoms. The calcium-binding domains have a root mean square deviation of 0.85 A for the 353 equivalent atoms. There are also differences in the amino terminus, the bend of the central alpha-helix, and the orientations of some of the side chains.  相似文献   

13.
M Ikura  O Minowa  K Hikichi 《Biochemistry》1985,24(16):4264-4269
The C-terminal half-fragment (residues 78-148) of scallop testis calmodulin was investigated by 500-MHz two-dimensional proton NMR in order to clarify the structure and the structural change accompanying Ca2+ binding. The sequential resonance assignment to individual amino acid residues was made in part (27 out of 71 residues) by a combination of correlated spectroscopy and nuclear Overhauser effect spectroscopy of a 90% H2O solution. In the Ca2+-bound state, resonances of backbone amide protons of Gly-98, Gly-134, Ile-100, Asn-137, and Val-136 appear at extremely low fields. These findings suggest that amide protons of these residues are hydrogen bonded. In the Ca2+-free state, the amide resonances of Ile-100 and Gly-134 disappear into the crowded normal shift region. This observation indicates that two hydrogen bonds of Ile-100 and Gly-134 are destroyed (or weakened) as Ca2+ ions are removed from two Ca2+-binding sites. Chemical shifts of amide and alpha-protons of residues located in the Ca2+-binding loop of domain III are similar to those of domain IV. These results suggest that the conformations of the two loops are very similar. The present results can be interpreted in terms of a structure predicted by Kretsinger [Kretsinger, R.H. (1980) Ann. N.Y. Acad. Sci. 356, 14].  相似文献   

14.
We have determined solution structures of the N-terminal half domain (N-domain) of yeast calmodulin (YCM0-N, residues 1-77) in the apo and Ca(2+)-saturated forms by NMR spectroscopy. The Ca(2+)-binding sites of YCM0-N consist of a pair of helix-loop-helix motifs (EF-hands), in which the loops are linked by a short beta-sheet. The binding of two Ca(2+) causes large rearrangement of the four alpha-helices and exposes the hydrophobic surface as observed for vertebrate calmodulin (CaM). Within the observed overall conformational similarity in the peptide backbone, several significant conformational differences were observed between the two proteins, which originated from the 38% disagreement in amino acid sequences. The beta-sheet in apo YCM0-N is strongly twisted compared with that in the N-domain of CaM, while it turns to the normal more stable conformation on Ca(2+) binding. YCM0-N shows higher cooperativity in Ca(2+) binding than the N-domain of CaM, and the observed conformational change of the beta-sheet is a possible cause of the highly cooperative Ca(2+) binding. The hydrophobic surface on Ca(2+)-saturated YCM0-N appears less flexible due to the replacements of Met51, Met71, and Val55 in the hydrophobic surface of CaM with Leu51, Leu71, and Ile55, which is thought to be one of reasons for the poor activation of target enzymes by yeast CaM.  相似文献   

15.
Mutant versions of the calmodulin of Drosophila melanogaster have been prepared for use in the study of Ca2+ binding and Ca2(+)-induced conformational changes. In each mutant, a conserved glutamic acid residue indicated to play a critical role in Ca2+ binding has been mutated to glutamine in one of the Ca2(+)-binding sites. Thus a series of four proteins, each with an analogous mutation in one of the four binding sites, has been generated. Here the Ca2(+)-induced conformational changes in these proteins have been examined by use of the fluorescent hydrophobic reporter molecule, 9-anthroyl choline. These studies confirm earlier work which indicates that the carboxyl-terminal pair of Ca2(+)-binding sites shows cooperative Ca2+ binding to produce a major conformational change in the protein. However, these studies provide evidence that the sites of the amino-terminal pair are more independent in their Ca2+ binding properties and contribute individually to the conformational changes associated with Ca2+ binding in the amino-terminal half of the protein. This work also indicates that mutation of either of the amino-terminal Ca2(+)-binding sites can influence the conformational change produced by Ca2+ binding to the carboxyl-terminal sites.  相似文献   

16.
Fluorescence investigations of calmodulin hydrophobic sites   总被引:3,自引:0,他引:3  
Calmodulin activation of target enzymes depends on the interaction between calmodulin hydrophobic regions and some enzyme areas. The Ca2+ induced exposure of calmodulin hydrophobic sites was studied by means of 2-p-toluidinylnaphthalene-6-sulfonate, a fluorescent probe. Scatchard and Job plots showed that the calmodulin-Ca42+ complex bound two molecules of this hydrophobic probe, with KD congruent to 1.4 X 10(-4) M. These sites are not totally exposed until calmodulin has bound four Ca2+ per molecule, so the conformational change is not over before the four specific Ca2+ - binding sites are saturated with Ca2+.  相似文献   

17.
Amino acid sequences of the two major isoforms of troponin C from crayfish   总被引:1,自引:0,他引:1  
The primary structure of the two major isoforms (alpha and gamma) of troponin C (TnC) from crayfish tail muscle has been determined by the application of manual and automated Edman degradation procedures to fragments generated by suitable chemical and proteolytic cleavages. Both amino acid sequences commence with an acetylated methionyl residue and contain 150 amino acid residues, including a single proline residue at position 29 and 2 residues of tyrosine at positions 95 and 102. No cysteine or tryptophan are present. The molecular weights calculated for alpha- and gamma-TnC are 17,157 and 16,974, respectively. The two crayfish proteins are invariable at 129 positions and conserved at 11 others. Pairwise comparisons show that the two sequences are 33-39% identical with those of seven TnCs reported so far and 39% identical with that of bovine brain calmodulin. The N-terminal end of about 10 residues, found in vertebrate TnCs, is absent in crayfish TnCs. In the latter proteins, domains I and III appear as abortive Ca2+-binding sites due to nonconservative amino acid replacements at the key Ca2+-coordinating positions in their loops. The remaining two Ca2+-binding loops (II and IV) show a remarkable similarity with the Ca2+-specific loops (I and II) found in vertebrate TnCs. These findings are consistent with the Ca2+-binding data (Wnuk, W. (1989) J. Biol. Chem. 264, 18240-18246) which indicate the presence of two Ca2+-specific sites in crayfish TnCs. These two sites display the same affinity for Ca2+ (log KCa = 4.3) on gamma-TnC but differ in their affinity (log KCa = 6.0 and 4.1) on alpha-TnC. The only structural difference between the dodecapeptide loops II and IV in both alpha- and gamma-TnC, which correlates with the existence of the high affinity (log KCa = 6.0) Ca2+-specific site on alpha-TnC, is position 11 occupied by a methionyl residue in the loop IV of alpha-TnC as opposed to negatively charged residues found in the other three loops. This suggests that the high affinity Ca2+-specific site on alpha-TnC is located in domain IV. Since the Ca2+-binding studies show that the formation of the complex of crayfish troponin I (TnI) with alpha- and gamma-TnC increases significantly the affinity of only one of their two Ca2+-specific sites and this TnI-sensitive site is not the high affinity Ca2+-specific site on alpha-TnC, we conclude that the binding of Ca2+ to site II controls the Ca2+-dependent interaction between crayfish TnCs and TnI.  相似文献   

18.
The amino acid sequence of a new Ca2+-binding protein (CaVP) from Amphioxus muscle (Cox, J. A., J. Biol. Chem. 261, 13173-13178) has been determined. The protein contains 161 amino acid residues and has a molecular weight of 18,267. The N terminus is blocked by an acetyl group. The two functional Ca2+-binding sites have been localized based on homology with known Ca2+-binding domains, on internal homology and on secondary structure prediction, and appear to be the domains III and IV. The C-terminal half of CaVP, which contains the two Ca2+-binding sites, shows a remarkable similarity with human brain calmodulin (45%) and with rabbit skeletal troponin C (40%). Functional domain III contains 2 epsilon-N-trimethyllysine residues in the alpha-helices flanking the Ca2+-binding loop. Sequence determination revealed two abortive Ca2+-binding domains in the N-terminal half of CaVP with a similarity of 24 and 30% as compared with calmodulin and troponin C, respectively. This half is also characterized by the presence of a disulfide bridge linking the N-terminal helix of domain I to the C-terminal helix of domain II. This disulfide bond is very resistant to reduction in the native state, but not in denatured CaVP. The optically interesting aromatic chromophores (2 tryptophan and 1 tyrosine residues) are all located in the nonfunctional domain II.  相似文献   

19.
Guanylyl cyclase-activating proteins (GCAPs are 23-kDa Ca2+-binding proteins belonging to the calmodulin superfamily. Ca2+-free GCAPs are responsible for activation of photoreceptor guanylyl cyclase during light adaptation. In this study, we characterized GCAP1 mutants in which three endogenous nonessential Trp residues were replaced by Phe residues, eliminating intrinsic fluorescence. Subsequently, hydrophobic amino acids adjacent to each of the three functional Ca2+-binding loops were replaced by reporter Trp residues. Using fluorescence spectroscopy and biochemical assays, we found that binding of Ca2+ to GCAP1 causes a major conformational change especially in the region around the EF3-hand motif. This transition of GCAP1 from an activator to an inhibitor of GC requires an activation energy Ea = 9.3 kcal/mol. When Tyr99 adjacent to the EF3-hand motif was replaced by Cys, a mutation linked to autosomal dominant cone dystrophy in humans, Cys99 is unable to stabilize the inactive GCAP1-Ca2+ complex. Stopped-flow kinetic measurements indicated that GCAP1 rapidly loses its bound Ca2+ (k-1 = 72 s-1 at 37 degrees C) and was estimated to associate with Ca2+ at a rate (k1 > 2 x 10(8) M-1 s-1) close to the diffusion limit. Thus, GCAP1 displays thermodynamic and kinetic properties that are compatible with its involvement early in the phototransduction response.  相似文献   

20.
We have determined the amino acid sequence of the Ca2+-dependent cell adhesion molecule uvomorulin as it appears on the cell surface. The extracellular part of the molecule exhibits three internally repeated domains of 112 residues which are most likely generated by gene duplication. Each of the repeated domains contains two highly conserved units which could represent putative Ca2+-binding sites. Secondary structure predictions suggest that the putative Ca2+-binding units are located in external loops at the surface of the protein. The protein sequence exhibits a single membrane-spanning region and a cytoplasmic domain. Sequence comparison reveals extensive homology to the chicken L-CAM. Both uvomorulin and L-CAM are identical in 65% of their entire amino acid sequence suggesting a common origin for both CAMs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号