首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sets of SNARE proteins mediate membrane fusion by assembling into core complexes. Multiple SNAREs are thought to function in different intracellular trafficking steps but it is often unclear which of the SNAREs cooperate in individual fusion reactions. We report that syntaxin 7, syntaxin 8, vti1b and endobrevin/VAMP-8 form a complex that functions in the fusion of late endosomes. Antibodies specific for each protein coprecipitate the complex, inhibit homotypic fusion of late endosomes in vitro and retard delivery of endocytosed epidermal growth factor to lysosomes. The purified proteins form core complexes with biochemical and biophysical properties remarkably similar to the neuronal core complex, although each of the four proteins carries a transmembrane domain and three have independently folded N-terminal domains. Substitution experiments, sequence and structural comparisons revealed that each protein occupies a unique position in the complex, with syntaxin 7 corresponding to syntaxin 1, and vti1b and syntaxin 8 corresponding to the N- and C-terminal domains of SNAP-25, respectively. We conclude that the structure of core complexes and their molecular mechanism in membrane fusion is highly conserved between distant SNAREs.  相似文献   

2.
Endocytosis in alveolar macrophages can be reversibly inhibited, permitting the isolation of endocytic vesicles at defined stages of maturation. Using an in vitro fusion assay, we determined that each isolated endosome population was capable of homotypic fusion. All vesicle populations were also capable of heterotypic fusion in a temporally specific manner; early endosomes, isolated 4 min after internalization, could fuse with endosomes isolated 8 min after internalization but not with 12-min endosomes or lysosomes. Lysosomes fuse with 12-min endosomes but not with earlier endosomes. Using homogenous populations of endosomes, we have identified Syntaxin 7 as a soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) required for late endosome-lysosome and homotypic lysosome fusion in vitro. A bacterially expressed human Syntaxin 7 lacking the transmembrane domain inhibited homotypic late endosome and lysosome fusion as well as heterotypic late endosome-lysosome fusion. Affinity-purified antibodies directed against Syntaxin 7 also inhibited lysosome fusion in vitro but had no affect on homotypic early endosome fusion. Previous work suggested that human VAMP-7 (vesicle-associated membrane protein-7) was a SNARE required for late endosome-lysosome fusion. A bacterially expressed human VAMP-7 lacking the transmembrane domain inhibited both late endosome-lysosome fusion and homotypic lysosome fusion in vitro. These studies indicate that: 1) fusion along the endocytic pathway is a highly regulated process, and 2) two SNARE molecules, Syntaxin 7 and human VAMP-7, are involved in fusion of vesicles in the late endocytic pathway in alveolar macrophages.  相似文献   

3.
Both heterotypic and homotypic fusion events are required to deliver endocytosed macromolecules to lysosomes and remodel late endocytic organelles. A trans-SNARE complex consisting of Q-SNAREs syntaxin 7, Vti1b and syntaxin 8 and the R-SNARE VAMP8 has been shown by others to be responsible for homotypic fusion of late endosomes. Using antibody inhibition experiments in rat liver cell-free systems, we confirmed this result, but found that the same Q-SNAREs can combine with an alternative R-SNARE, namely VAMP7, for heterotypic fusion between late endosomes and lysosomes. Co-immunoprecipitation demonstrated separate syntaxin 7 complexes with either VAMP7 or VAMP8 in solubilized rat liver membranes. Additionally, overexpression of the N-terminal domain of VAMP7, in cultured fibroblastic cells, inhibited the mixing of a preloaded lysosomal content marker with a marker delivered to late endosomes. These data show that combinatorial interactions of SNAREs determine whether late endosomes undergo homotypic or heterotypic fusion events.  相似文献   

4.
The endosome-associated protein Hrs inhibits the homotypic fusion of early endosomes. A helical region of Hrs containing a Q-SNARE motif mediates this effect as well as its endosomal membrane association via SNAP-25, an endosomal receptor for Hrs. Hrs inhibits formation of an early endosomal SNARE complex by displacing VAMP-2 from the complex, suggesting a mechanism by which Hrs inhibits early endosome fusion. We examined the regulation of endosomal SNARE complexes to probe how Hrs may function as a negative regulator. We show that although NSF dissociates the VAMP-2.SNAP-25.syntaxin 13 complex, it has no effect on the Hrs-containing complex. Whereas Ca(2+) dissociates the Hrs-containing complex but not the VAMP-2-containing SNARE complex. This is the first demonstration of differential regulation of R/Q-SNARE and all Q-SNARE-containing SNARE complexes. Ca(2+) also reverses the Hrs-induced inhibition of early endosome fusion in a tetanus toxin-sensitive manner and removes Hrs from early endosomal membranes. Moreover, Hrs inhibition of endosome fusion and its endosomal localization are sensitive to bafilomycin, implying a role for luminal Ca(2+). Thus, Hrs may bind a SNARE protein on early endosomal membranes negatively regulating trans-SNARE pairing and endosomal fusion. The release of Ca(2+) from the endosome lumen dissociates Hrs, allowing a VAMP-2-containing complex to form enabling fusion.  相似文献   

5.
In the late endocytic pathway, it has been proposed that endocytosed macromolecules are delivered to a proteolytic environment by 'kiss-and-run' events or direct fusion between late endosomes and lysosomes. To test whether the fusion hypothesis accounts for delivery to lysosomes in living cells, we have used confocal microscopy to examine content mixing between lysosomes loaded with rhodamine-dextran and endosomes subsequently loaded with Oregon-Green-dextran. Both kissing and explosive fusion events were recorded. Data from cell-free content-mixing assays have suggested that fusion is initiated by tethering, which leads to formation of a trans-SNARE (soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptor) protein complex and then release of lumenal Ca(2+), followed by membrane bilayer fusion. We have shown that the R-SNARE (arginine-containing SNARE) protein VAMP (vesicle-associated membrane protein) 7 is necessary for heterotypic fusion between late endosomes and lysosomes, whereas a different R-SNARE, VAMP 8 is required for homotypic fusion of late endosomes. After fusion of lysosomes with late endosomes, lysosomes are re-formed from the resultant hybrid organelles, a process requiring condensation of content and the removal/recycling of some membrane proteins.  相似文献   

6.
《The Journal of cell biology》1993,123(6):1373-1387
We have used an in vitro fusion assay to study the mechanisms of transport from early to late endosomes. Our data show that the late endosomes share with the early endosomes a high capacity to undergo homotypic fusion in vitro. However, direct fusion of early with late endosomes does not occur. We have purified vesicles which are intermediates during transport from early to late endosomes in vivo, and analyzed their protein composition in two-dimensional gels. In contrast to either early or late endosomes, these vesicles do not appear to contain unique proteins. Moreover, these vesicles undergo fusion with late endosomes in vitro, but not with each other or back with early endosomes. In vitro, fusion of these endosomal vesicles with late endosomes is stimulated by polymerized microtubules, consistent with the known role of microtubules during early to late endosome transport in vivo. In contrast, homotypic fusion of early or late endosomes is microtubule-independent. Finally, this stimulation by microtubules depends on microtubule-associated proteins and requires the presence of the minus-end directed motor cytoplasmic dynein, but not the plus-end directed motor kinesin, in agreement with the microtubule organization in vivo. Our data strongly suggest that early and late endosomes are separate, highly dynamic organelles, which are connected by a microtubule-dependent vesicular transport step.  相似文献   

7.
SNARE proteins participate in recognition and fusion of membranes. A SNARE complex consisting of vti1b, syntaxin 8, syntaxin 7, and endobrevin/VAMP-8 which is required for fusion of late endosomes in vitro has been identified recently. Here, we generated mice deficient in vti1b to study the function of this protein in vivo. vti1b-deficient mice had reduced amounts of syntaxin 8 due to degradation of the syntaxin 8 protein, while the amounts of syntaxin 7 and endobrevin did not change. These data indicate that vti1b is specifically required for the stability of a single SNARE partner. vti1b-deficient mice were viable and fertile. Most vti1b-deficient mice were indistinguishable from wild-type mice and did not display defects in transport to the lysosome. However, 20% of the vti1b-deficient mice were smaller. Lysosomal degradation of an endocytosed protein was slightly delayed in hepatocytes derived from these mice. Multivesicular bodies and autophagic vacuoles accumulated in hepatocytes of some smaller vti1b-deficient mice. This suggests that other SNAREs can compensate for the reduction in syntaxin 8 and for the loss of vti1b in most mice even though vti1b shows only 30% amino acid identity with its closest relative.  相似文献   

8.
In the degradative pathway, the progression of cargos through endosomal compartments involves a series of fusion and maturation events. The HOPS (homotypic fusion and protein sorting) complex is part of the machinery that promotes the progression from early to late endosomes and lysosomes by regulating the exchange of small GTPases. We report that an interaction between subunits of the HOPS complex and the ERM (ezrin, radixin, moesin) proteins is required for the delivery of EGF receptor (EGFR) to lysosomes. Inhibiting either ERM proteins or the HOPS complex leads to the accumulation of the EGFR into early endosomes, delaying its degradation. This impairment in EGFR trafficking observed in cells depleted of ERM proteins is due to a delay in the recruitment of Rab7 on endosomes. As a consequence, the maturation of endosomes is perturbed as reflected by an accumulation of hybrid compartments positive for both early and late endosomal markers. Thus, ERM proteins represent novel regulators of the HOPS complex in the early to late endosomal maturation.  相似文献   

9.
To understand molecular mechanisms that regulate the intricate and dynamic organization of the endosomal compartment, it is important to establish the morphology, molecular composition, and functions of the different organelles involved in endosomal trafficking. Syntaxins and vesicle-associated membrane protein (VAMP) families, also known as soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein receptors (SNAREs), have been implicated in mediating membrane fusion and may play a role in determining the specificity of vesicular trafficking. Although several SNAREs, including VAMP3/cellubrevin, VAMP8/endobrevin, syntaxin 13, and syntaxin 7, have been localized to the endosomal membranes, their precise localization, biochemical interactions, and function remain unclear. Furthermore, little is known about SNAREs involved in lysosomal trafficking. So far, only one SNARE, VAMP7, has been localized to late endosomes (LEs), where it is proposed to mediate trafficking of epidermal growth factor receptor to LEs and lysosomes. Here we characterize the localization and function of two additional endosomal syntaxins, syntaxins 7 and 8, and propose that they mediate distinct steps of endosomal protein trafficking. Both syntaxins are found in SNARE complexes that are dissociated by alpha-soluble NSF attachment protein and NSF. Syntaxin 7 is mainly localized to vacuolar early endosomes (EEs) and may be involved in protein trafficking from the plasma membrane to the EE as well as in homotypic fusion of endocytic organelles. In contrast, syntaxin 8 is likely to function in clathrin-independent vesicular transport and membrane fusion events necessary for protein transport from EEs to LEs.  相似文献   

10.
The lysosome functions are ensured by accurate membrane trafficking in the cell. We found that mouse syntaxin 7 could complement yeast vam3 and pep12 mutants defective in docking/fusion to vacuolar and prevacuolar membranes, respectively. Immunohistochemical studies showed that syntaxin 7 is localized to late endosomes, but not to early endosomes. Induced expression of mutant syntaxin 7 blocked endocytic transport from early to late endosomes but did not block the transport of cathepsin D and lamp-2 from the trans-Golgi network to lysosomes. Thus, syntaxin 7 mediates the endocytic trafficking from early endosomes to late endosomes and lysosomes. These results also suggest that the biosynthetic pathway utilizes a different machinery from that of the endocytic pathway in the docking/fusion to late endosomes.  相似文献   

11.
We exploit the ease with which highly motile early endosomes are distinguished from static late endosomes in order to study Aspergillus nidulans endosomal traffic. RabS(Rab7) mediates homotypic fusion of late endosomes/vacuoles in a homotypic fusion- and vacuole protein sorting/Vps41-dependent manner. Progression across the endocytic pathway involves endosomal maturation because the end products of the pathway in the absence of RabS(Rab7) are minivacuoles that are competent in multivesicular body sorting and cargo degradation but retain early endosomal features, such as the ability to undergo long-distance movement and propensity to accumulate in the tip region if dynein function is impaired. Without RabS(Rab7), early endosomal Rab5s-RabA and RabB-reach minivacuoles, in agreement with the view that Rab7 homologues facilitate the release of Rab5 homologues from endosomes. RabS(Rab7) is recruited to membranes already at the stage of late endosomes still lacking vacuolar morphology, but the transition between early and late endosomes is sharp, as only in a minor proportion of examples are RabA/RabB and RabS(Rab7) detectable in the same-frequently the less motile-structures. This early-to-late endosome/vacuole transition is coupled to dynein-dependent movement away from the tip, resembling the periphery-to-center traffic of endosomes accompanying mammalian cell endosomal maturation. Genetic studies establish that endosomal maturation is essential, whereas homotypic vacuolar fusion is not.  相似文献   

12.
Many enveloped viruses invade cells via endocytosis and use different environmental factors as triggers for virus-endosome fusion that delivers viral genome into cytosol. Intriguingly, dengue virus (DEN), the most prevalent mosquito-borne virus that infects up to 100 million people each year, fuses only in late endosomes, while activation of DEN protein fusogen glycoprotein E is triggered already at pH characteristic for early endosomes. Are there any cofactors that time DEN fusion to virion entry into late endosomes? Here we show that DEN utilizes bis(monoacylglycero)phosphate, a lipid specific to late endosomes, as a co-factor for its endosomal acidification-dependent fusion machinery. Effective virus fusion to plasma- and intracellular- membranes, as well as to protein-free liposomes, requires the target membrane to contain anionic lipids such as bis(monoacylglycero)phosphate and phosphatidylserine. Anionic lipids act downstream of low-pH-dependent fusion stages and promote the advance from the earliest hemifusion intermediates to the fusion pore opening. To reach anionic lipid-enriched late endosomes, DEN travels through acidified early endosomes, but we found that low pH-dependent loss of fusogenic properties of DEN is relatively slow in the presence of anionic lipid-free target membranes. We propose that anionic lipid-dependence of DEN fusion machinery protects it against premature irreversible restructuring and inactivation and ensures viral fusion in late endosomes, where the virus encounters anionic lipids for the first time during entry. Currently there are neither vaccines nor effective therapies for DEN, and the essential role of the newly identified DEN-bis(monoacylglycero)phosphate interactions in viral genome escape from the endosome suggests a novel target for drug design.  相似文献   

13.
Late endosomes, which have the morphological characteristics of multivesicular bodies, have received relatively little attention in comparison with early endosomes and lysosomes. Recent work in mammalian and yeast cells has given insights into their structure and function, including the generation of their multivesicular morphology. Lipid partitioning to create microdomains enriched in specific lipids is observed in late endosomes, with some lumenal vesicles enriched in lysobisphosphatidic acid and others in phosphatidylinositol 3-phosphate. Sorting of membrane proteins into the lumenal vesicles may occur because of the properties of their trans-membrane domains, or as a result of tagging with ubiquitin. Yeast class E Vps proteins and their mammalian orthologs are the best candidates to make up the protein machinery that controls inward budding, a process that starts in early endosomes. Late endosomes are able to undergo homotypic fusion events and also heterotypic fusion with lysosomes, a process that delivers endocytosed macromolecules for proteolytic degradation.  相似文献   

14.
The molecular mechanisms ensuring directionality of endocytic membrane trafficking between transport vesicles and target organelles still remain poorly characterized. We have been investigating the function of the small GTPase Rab5 in early endocytic transport. In vitro studies have demonstrated a role of Rab5 in two membrane fusion events: the heterotypic fusion between plasma membrane-derived clathrin-coated vesicles (CCVs) and early endosomes and in the homotypic fusion between early endosomes. Several Rab5 effectors are required in homotypic endosome fusion, including EEA1, which mediates endosome membrane docking, as well as Rabaptin-5 x Rabex-5 complex and phosphatidylinositol 3-kinase hVPS34. In this study we have examined the localization and function of Rab5 and its effectors in heterotypic fusion in vitro. We report that the presence of active Rab5 is necessary on both CCVs and early endosomes for a heterotypic fusion event to occur. This process requires EEA1 in addition to the Rabaptin-5 complex. However, whereas Rab5 and Rabaptin-5 are symmetrically distributed between CCVs and early endosomes, EEA1 is recruited selectively onto the membrane of early endosomes. Our results suggest that EEA1 is a tethering molecule that provides directionality to vesicular transport from the plasma membrane to the early endosomes.  相似文献   

15.
A more complete picture of the molecules that are critical for the organization of membrane compartments is beginning to emerge through the characterization of proteins in the vesicle-associated membrane protein (also called synaptobrevin) family of membrane trafficking proteins. To better understand the mechanisms of membrane trafficking within the endocytic pathway, we generated a series of monoclonal and polyclonal antibodies against the cytoplasmic domain of vesicle-associated membrane protein 7 (VAMP-7). The antibodies recognize a 25-kD membrane-associated protein in multiple tissues and cell lines. Immunohistochemical analysis reveals colocalization with a marker of late endosomes and lysosomes, lysosome-associated membrane protein 1 (LAMP-1), but not with other membrane markers, including p115 and transferrin receptor. Treatment with nocodozole or brefeldin A does not disrupt the colocalization of VAMP-7 and LAMP-1. Immunoelectron microscopy analysis shows that VAMP-7 is most concentrated in the trans-Golgi network region of the cell as well as late endosomes and transport vesicles that do not contain the mannose-6 phosphate receptor. In streptolysin- O-permeabilized cells, antibodies against VAMP-7 inhibit the breakdown of epidermal growth factor but not the recycling of transferrin. These data are consistent with a role for VAMP-7 in the vesicular transport of proteins from the early endosome to the lysosome.  相似文献   

16.
Rab conversion as a mechanism of progression from early to late endosomes   总被引:38,自引:0,他引:38  
Rink J  Ghigo E  Kalaidzidis Y  Zerial M 《Cell》2005,122(5):735-749
The mechanisms of endosome biogenesis and maintenance are largely unknown. The small GTPases Rab 5 and Rab 7 are key determinants of early and late endosomes, organizing effector proteins into specific membrane subdomains. Whether such Rab machineries are indefinitely maintained on membranes or can disassemble in the course of cargo transport is an open question. Here, we combined novel image-analysis algorithms with fast live-cell imaging. We found that the level of Rab 5 dynamically fluctuates on individual early endosomes, linked by fusion and fission events into a network in time. Within it, degradative cargo concentrates in progressively fewer and larger endosomes that migrate from the cell periphery to the center where Rab 5 is rapidly replaced with Rab 7. The class C VPS/HOPS complex, an established GEF for Rab 7, interacts with Rab 5 and is required for Rab 5-to-Rab 7 conversion. Our results reveal unexpected dynamics of Rab domains and suggest Rab conversion as the mechanism of cargo progression between early and late endosomes.  相似文献   

17.
Rab2 is a conserved Rab GTPase with a well-established role in secretory pathway function and phagocytosis. Here we demonstrate that Drosophila Rab2 is recruited to late endosomal membranes, where it controls the fusion of LAMP-containing biosynthetic carriers and lysosomes to late endosomes. In contrast, the lysosomal GTPase Gie/Arl8 is only required for late endosome-lysosome fusion, but not for the delivery of LAMP to the endocytic pathway. We also find that Rab2 is required for the fusion of autophagosomes to the endolysosomal pathway, but not for the biogenesis of lysosome-related organelles. Surprisingly, Rab2 does not rely on HOPS-mediated vesicular fusion for recruitment to late endosomal membranes. Our work suggests that Drosophila Rab2 is a central regulator of the endolysosomal and macroautophagic/autophagic pathways by controlling the major heterotypic fusion processes at the late endosome.  相似文献   

18.
《Autophagy》2013,9(1):182-184
Autophagosomes are formed by double-membraned structures, which engulf portions of cytoplasm. Autophagosomes ultimately fuse with lysosomes, where their contents are degraded. The origin of the autophagosome membrane may involve different sources, such as mitochondria, Golgi, endoplasmic reticulum, plasma membrane, and recycling endosomes. We recently observed that ATG9 localizes on the plasma membrane in clathrin-coated structures and is internalized following a classical endocytic pathway through early and then recycling endosomes. By contrast, ATG16L1 is also internalized by clathrin-mediated endocytosis but via different clathrin-coated pits, and appears to follow a different route to the recycling endosomes. The R-SNARE VAMP3 mediates the coalescence of the 2 different pools of vesicles (containing ATG16L1 or ATG9) in recycling endosomes. The heterotypic fusion between ATG16L1- and ATG9-containing vesicles strongly correlates with subsequent autophagosome formation. Thus, ATG9 and ATG16L1 both traffic from the plasma membrane to autophagic precursor structures and provide 2 routes from the plasma membrane to autophagosomes.  相似文献   

19.
We evaluated the role of VAMP-2/synaptobrevin, VAMP-7/TI-VAMP, and VAMP-8/endobrevin in exocytic pathways of HSY cells, a human parotid epithelial cell line, by coexpressing these VAMP proteins tagged with green fluorescent protein (GFP) and human growth hormone (hGH) as a secretory cargo. Exocytosis of hGH was constitutive and the fluorescent signal of hGH–GFP was observed in the Golgi area and small vesicles quickly moving throughout the cytoplasm. The cytoplasmic vesicles containing hGH overlapped well with VAMP-7-GFP, but did so scarcely with VAMP-2-GFP or VAMP-8-GFP. However, when the vesicle transport from the trans-Golgi network to the plasma membrane was arrested by incubation at 20°C for 2 h and then released by warming up to 37°C; VAMP-2-GFP and hGH were clearly colocalized together in small cytoplasmic vesicles. Neither VAMP-7-GFP nor hGH–GFP was colocalized with LAMP-1, a marker for lysosomes and late endosomes. These results suggest that (1) VAMP-2 can be one of the v-SNAREs for constitutive exocytosis; (2) VAMP-7 is involved in the constitutive exocytosis as a slow, minor v-SNARE, but not in the lysosomal transport; and (3) VAMP-8 is unlikely to be a v-SNARE for constitutive exocytosis in HSY cells.  相似文献   

20.
Rab5 is a small GTPase that plays roles in the homotypic fusion of early endosomes and regulation of intracellular vesicle transport. We show here that expression of GFP-tagged GTPase-deficient form of Rab5b (Rab5bQ79L) in NRK cells results in the sequential formation of three morphologically and functionally distinct types of endosomes. Expression of GFP-Rab5bQ79L initially caused a homotypic fusion of early endosomes accompanying a redistribution of the TGN-resident cargo molecules, and subsequent fusion with late endosomes/lysosomes, leading to the formation of giant hybrid organelles with features of early endosomes and late endosomes/lysosomes. Surprisingly, the giant endosomes gradually fragmented and shrunk, leading to the accumulation of early endosome clusters and concurrent reformation of late endosomes/lysosomes, a process accelerated by treatment with a phosphatidylinositol-3-kinase (PI(3)K) inhibitor, wortmannin. We postulate that such sequential processes reflect the biogenesis and maintenance of late endosomes/lysosomes, presumably via direct fusion with early endosomes and subsequent fission from hybrid organelles. Thus, our findings suggest a regulatory role for Rab5 in not only the early endocytic pathway, but also the late endocytic pathway, of membrane trafficking in coordination with PI(3)K activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号