首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Exposure of rabbit pulmonary arterial smooth muscle cells to 10 M of the calcium ionophore A23187 dramatically stimulates cell membrane-associated phospholipase A2 activity and arachidonic acid release. In addition, A23187 also enhances cell membrane-associated serine esterase activity. Serine esterase inhibitors phenylmethylsulfonylfuoride and diisopropyl fluorophosphate prevent the increase in serine esterase and phospholipase A2 activities and arachidonic acid release caused by A23187. A23187 still stimulated serine esterase and phospholipase A2 activities and arachidonic acid release in cells pretreated with nominal Ca2+ free buffer. Treatment of the cell membrane with A23187 does not cause any appreciable change in serine esterase and phospholipase A2 activities. Pretreatment of the cells with actinomycin D or cycloheximide did not prevent the increase in the cell membrane associated serine esterase and phospholipase A2 activities, and arachidonic acid release caused by A23187. These results suggest that (i) a membrane-associated serine esterase plays an important role in stimulating the smooth muscle cell membrane associated phospholipase A2 activity (ii) in addition to the presence of extracellular Ca2+, release of Ca2+ from intracellular storage site(s) by A23187 also appears to play a role in stimulating the cell membrane-associated serine esterase and phospholipase A2 activities, and (iii) the increase in the cell membrane-associated serine esterase and phospholipase A2 activities does not appear to require new RNA or protein synthesis.Abbreviations A23187 calcium ionophore - AA arachidonic acid - PMSF phenylmethyl sulfonylfuoride - DFP diisopropyl-fluorophosphate - DMEM Dulbecco's modified Eagles medium - FCS fetal calf serum - PBS phosphate buffered saline - HBPS Hank's buffered physiological saline - PLA2 phospholipase A2  相似文献   

2.
Summary The influence of the asymmetric addition of various divalent cations and protons on the properties of active Ca2+ transport have been examined in intact human red blood cells. Active Ca2+ efflux was determined from the initial rate of45Ca2+ loss after CoCl2 was added to block Ca2+ loading via the ionophore A23187. Ca2+-ATPase activity was measured as phosphate production over 5 min in cells equilibrated with EGTA-buffered free Ca2+ in the presence of A23187. The apparent Ca affinity of active Ca2+ efflux (K 0.5=30–40 mol/liter cells) was significantly lower than that measured by the Ca2+-ATPase assay (K 0.5=0.4 m). Possible reasons for this apparent difference are considered. Both active Ca2+ efflux and Ca2+-ATPase activity were reduced to less than 5% of maximal levels (20 mmol/liter cells · hr) in Mg2+-depleted cells, and completely restored by reintroduction of intracellular Mg2+. Active Ca2+ efflux was inhibited almost completely by raising external CaCl2 (but not MgCl2) to 20mm, probably by interaction of Ca2+ at the externally oriented E2P conformation of the pump. Cd2+ was more potent than Ca2+ in this inhibition, while Mn2+ was less potent and 10mm Ba2+ was without effect. A Ca2+: proton exchange mechanism for active Ca2+ efflux was supported by the results, as external protons (pH 6–6.5) stimulated active Ca2+ efflux at least twofold above the efflux rate at pH 7.8 Ca2+ transport was not affected by decreasing the membrane potential across the red cell.  相似文献   

3.
Microsomal membrane vesicles isolated from goat spermatozoa contain Ca2+-ATPase, and exhibit Ca2+ transport activities that do not require exogenous Mg2+ .The enzyme activity is inhibited by calcium-channel inhibitors,e.g. verapamil and diltiazem, like the well known Ca2+ , Mg2+-ATPase. The uptake of calcium is ATP (energy)-dependent and the accumulated Ca2+ can be completely released by the Ca2+ ionophore A23187, suggesting that a significant fraction of the vesicles are oriented inside out  相似文献   

4.
The dependence of the Ca2+-ATPase activity of sarcoplasmic reticulum vesicles upon the intravesicular concentration of calcium accumulated after active uptake was studied. The internal calcium concentration was modified by addition of the ionophore A23187 at the steady state of accumulation. About half of the calcium accumulated could be released at low ionophore concentration without any concomitant activation of the Ca2+-ATPase. This population of calcium might consist of calcium free in the lumen of the vesicles or bound to the bilayer at sites which do not interact with the ATPase activity. At higher concentrations of ionophore (above 1.75 nmol A23187/mg protein) the release of calcium activated this enzyme. This phenomenon was independent of the extravesicular calcium concentration and might be explained by assuming second species of calcium ions bound to the inner side of the membrane and in close functional interaction with the Ca2+-ATPase.  相似文献   

5.
Soil salinization in arid zones is a major factor that resulted in the reduction in the yield and quality of many important crops in Northwestern China. In this study, the potential mechanism of flue gas desulfurization gypsum by-product (FGDB) mediated amendment of alkaline soils was investigated in an oil sunflower model by accessing the Ca2+ distribution and Ca2+-ATPase activity in leaf cells. Our results demonstrated an increased calcium concentration, as well as intact chloroplast structure with increasing calcium precipitates in the cell wall, intercellular space, and vacuole of leaf cells in the plants grown in alkaline soils supplied with FGDB or CaSO4. Additionally, a dose-dependent Ca2+-ATPase activity was detected in the plasma membrane and tonoplast of leaf cells from the plants grown in FGDB or CaSO4 supplemented soils. These results implied that the Ca2+-ATPase activity cause cytosolic Ca2+ efflux. The Ca2+ influx is through the Ca2+-channels, and increasing cytosolic Ca2+ concentration might benefit the stability and integrity of cell membrane and cell wall, sequentially alleviated the injury of oil sunflower against alkali stress.  相似文献   

6.
Summary Recently Plieth et al. [Protoplasma (1997) 198: 107–124; 199: 223] gave a quantitative picture of the Ca2+ and H+ buffers in green algae which we would like to comment. In that paper a mechanistic model was derived which describes the relationship between cytosolic Ca2+ and H+ assuming that Ca2+ and H+ interact with the same binding site of a Ca2+-H+-exchange buffer. But the increase of the cytosolic free Ca2+ concentration observed upon acidification can alternatively be described by a co-operative (n=2) protonation of a Ca2+/H+-binding buffer pointing to an allosteric mechanism of Ca2+ liberation. Furthermore we present evidences that the cytosolic buffer capacities for H+ (90 mM/pH) and Ca2+ (20 mM/pCa) given for Eremosphaera viridis were overestimated by a factor of three and three orders of magnitude, respectively.Abbreviations [Ca2+]c free cytosolic - Ca2+ concentration  相似文献   

7.
The divalent cation selective ionophores A23187 and ionomycin were compared for their effects on the Ca2+ contents, nucleotide contents, and protein synthetic rates of several types of cultured cells. Both ionophores reduced amino acid incorporation by approximately 85% at low concentrations (50–300 nmol/L) in cultured mammalian cells without reducing ATP or GTP contents. At these concentrations A23187 and ionomycin each promoted substantial Ca2+ efflux, whereas at higher concentrations a large influx of the cation was observed. Ca2+ influx occurred at lower ionophore concentrations and to greater extents in C6 glioma and P3X63Ag8 myeloma than in GH3 pituitary cells. The ATP and GTP contents of the cells and their ability to adhere to growth surfaces declined sharply at ionophore concentrations producing increased Ca2+ influx. Prominent reductions of nucleotide contents occurred in EGTA-containing media that were further accentuated by extracellular Ca2+. Ionomycin produced more Ca2+ influx and nucleotide decline than comparable concentrations of A23187. The inhibition of amino acid incorporation and mobilization of cell-associated Ca2+ by ionomycin were readily reversed in GH3 cells by fatty acid-free bovine serum albumin, whereas the effects of A23187 were only partially reversed. Amino acid incorporation was further suppressed by ionophore concentrations depleting nucleotide contents. Mitochondrial uncouplers potentiated Ca2+ accumulation in response to both ionophores. At cytotoxic concentrations Lubrol PX abolished protein synthesis but did not cause Ca2+ influx. Nucleotide depletion at high ionophore concentrations is proposed to result from increased plasmalemmal Ca2+-ATPase activity and dissipation of mitochondrial proton gradients and to cause intracellular Ca2+ accumulation. Increased Ca2+ contents in response to Ca2+ ionophores are proposed as an indicator of ionophore-induced cytotoxicity.Abbreviations BSA bovine serum albumin - EGTA [ethylenebis(oxyethylenenitrilo)]tetraacetic acid - PKR double-stranded RNA-regulated protein kinase - ER endoplasmic reticulum - eIF eukaryotic initiation factor  相似文献   

8.
Enhanced elongation of coleoptile cells has been proposed to be related to a rise in secretory activity. Therefore, to obtain a direct measurement of exocytotic events in maize (Zea mays L.) coleoptile protoplasts we used the patch-clamp method to record changes in membrane capacitance (Cm) as a parameter proportional to fluctuations of the membrane surface area. The secretory activity of protoplasts was correlated with the cytosolic free Ca2+ concentration ([Ca2+]cyt): dialyzing protoplasts with 1 M [Ca2+]cyt caused a steady rise in Cm of 3.3 ± pF·s–1. In contrast, dialysis with a solution containing <20 nM Ca2+ produced a small and persistent decrease in Cm. This demonstrates that secretory activity in coleoptile cells can be controlled by factors which modulate [Ca2+]cyt.Abbreviation Cm membrane capacitance This work was made possible by a visiting grant from the Research Council of Slovenia and financial support of the Deutsche Forschungsgemeinschaft to G.T. We are grateful to Dr. W. Diekmann (University of Göttingen) for teaching us the preparation of coleoptile protoplasts.  相似文献   

9.
10.
Evoking of action potentials (APs) in the trap of Dionaea muscipula Ellis at intervals shorter than 20 s caused a gradual decrease in the amplitude of the APs. At longer intervals the amplitude was constant. The calcium ionophore A23187 (1 μM) caused a considerable decrease of AP amplitude. Pretreatment of a segment of the Dionaea trap with cyclopiazonic acid (CPA), which is a specific inhibitor of the Ca2+-ATPase in the sarcoplasmic seticulum of animal cells and in ER vesicles isolated from plant cells, only slightly affected the amplitude when APs were evoked every 10 min; however, it caused a considerable decrease in the amplitude when the stimulation was repeated every 2 min. Assuming that APs increase the concentration of cytosolic Ca2+ and the amplitude of AP depends on the gradient of Ca2+ across the plasma membrane, the effect of CPA on the AP amplitude indicates that CPA inhibits the sequestration of Ca2+ in Dionaea cells.  相似文献   

11.
The relationship between the increase of intracellular Ca2+ and the release of arachidonic acid by bradykinin and pyrophosphonucleotides was studied in cultured mammary tumour cells, MMT060562. Bradykinin, ATP, UTP and UDP induced an increase of intracellular Ca2+ and the release of arachidonic acid from phospholipids into the extracellular fluid. Release of arachidonic acid was also induced by the application of the Ca2+ ionophore, A23187. Liberation of arachidonic acid by bradykinin and ATP was reduced by mepacrine, a blocker of phospholipase A2 and W-7, a calmodulin antagonist. It is suggested that the increase in cytosolic Ca2+-induced release of arachidonic acid occurs through activation of calmodulin-dependent phospholipase A2.  相似文献   

12.
U. Russ  F. Grolig  G. Wagner 《Planta》1991,184(1):105-112
The fluorescent calcium-sensitive dye 1-[2-amino-5-(6-carboxyindol-2-yl)-phenoxy]-2-(2-amino-5-methylphenoxy)-ethane-N,N,N,N-tetraacetic acid (indo-1) was loaded by a transplasmalemma pH gradient into filamentous cells and protoplasts of Mougeotia scalaris, such that most of the indo-1 fluorescence originated from the cytoplasm. Incubation of M. scalaris filaments in ethylene glycol-bis(-aminoethyl ether)-N,N,N,N-tetraacetic acid (EGTA)-buffered media (-log [Ca2+] (=pCa) 8 versus pCa 3) caused a consistent and significant decrease in the cytoplasmic free [Ca2+]. Pulses of the fluorescence excitation light (UV-A 365 nm, 0.7 s) caused an increase in cytoplasmic free [Ca2+] in M. scalaris that was nearly independent of the external [Ca2+] and of chloroplast dislocation by centrifugation. This calcium flux, highest in UV-A light, compared with blue or red light, probably resulted from a release of Ca2+ from intracellular stores. Increased cytoplasmic [Ca2+] may affect the velocity of chloroplast rotation since UV-A-light-mediated chloroplast movement was faster than in blue or red light. Consistently, the calcium ionophore A23187 and the calcium-channel agonist Bay-K8644 both increased the velocity of the red-light-mediated chloroplast rotation. Based on these and other observations, a Ca2+-induced decrease in cytoplasmic viscosity in Mougeotia is presumed to occur.Abbreviations EGTA ethylene glycol-bis-(-aminoethyl ether)N,N,N,N-tetraacetic acid - indo-1 1-[2-amino-5-(6-carboxyindol-2-yl)-phenoxy]-2-(2-amino-5-methylphenoxy)-ethane-N,N,N,Ntetraacetic acid - pCa log [Ca2+] - Pfr far-red-absorbing form of phytochrome - Pr red-absorbing form of phytochrome - xG geometric mean Dedicated to Professor Wolfgang Haupt on the occasion of his 70th birthdayThis paper is part of the Ph.D. thesis of U. Russ at the Justus-Liebig-Universitat Giessen (FRG). Part of this work has been presented at a meeting on Calcium and intracellular signalling in plants in Plymouth, UK, Dec. 1990We are indebted to Dr. G. Seibold and Dipl. Phys. H. Weintraut for their advice on the technique of microspectrofluorometry and for allowing access to the microspectrophotometric facilities in the Strahlenzentrum der Justus-Liebig-Universität, Giessen, FRG. We thank Mrs. A. Quanz for reliable culture of the algae and evaluation of the videotapes. Bay-K8644 was a generous gift of Bayer AG, Wuppertal, FRG. U. russ was supported by a scholarship according to the Hessisches Graduierten Förderungsgesetz. This work was supported by the Deutsche Forschungsgemeinschaft.  相似文献   

13.
A yeast-mycelium (Y-M) transition of Candida albicans (3153A) was induced by 1.5 mM CaCl2 · 2H2O in defined liquid medium, pH 7, at 25 °C. Germ tube formation was detected after approximately 8 h and peaks of maximum germination occurred at approximately 20 h in all experimental treatments. Non-toxic concentrations of the calmodulin inhibitor R24571 almost completely suppressed germ tube formation whereas trifluoperazine (TFP) and the Ca2+ ionophore A23187 were only about half as effective. Further Ca2+ addition failed to reverse the inhibitory effect of R24571 and induced only about 10% of the cells inhibited by TFP or A23187 to germinate.  相似文献   

14.
The role of a transmembrane Ca2+ gradient in anion transport by Band 3 of human resealed erythrocyte ghosts has been studied. The results show that a transmembrane Ca2+ gradient is essential for the conformation of erythrocyte Band 3 with higher anion transport activity. The dissipation of the transmembrane Ca2+ gradient by the ionophore A23187 inhibits the anion transport activity. The extent of this inhibition approaches 90% as the Ca2+ concentration on both sides of the ghost membrane is increased to 1.0 mM and half-maximum inhibition is observed at 0.25 mM Ca2+. Addition of ATP (0.4 mM) to the resealing medium can partly reestablish the transmembrane Ca2+ gradient by activation of Ca2+-ATPase and alleviate the inhibition to some extent. N-ethylmaleimide, an inhibitor of erythrocyte Ca2+-ATPase, prevents such restoration. Electron micrographs reveal that numerous larger intramembranous particles can be observed on the P-faces of freeze-fractured resealed ghosts in the absence of a transmembrane Ca2+ gradient.Abbreviations DPA dipicolinic acid - EITC eosin 5-isothiocyanate - DIDS 4,4-diisothiocyanostilbene-2,2-disulfonate - TES N-Tris-(hydroxymethyl)methyl-2-aminoethane sulfonic acid - PMSF phenylmethyl-sulfonylfluoride - NEM N-ethylamaleimide - BSA bovine serum albumin - EGTA ethyleneglycol-bis (aminoethylether)-tetra-acetic acid - EITC-Band 3 Band 3 labeled with EITC - Cai Ca2+ inside resealed ghosts - Cao Ca2+ outside resealed ghosts  相似文献   

15.
Biphasic responses of amino[14C]pyrine accumulation and oxygen consumption were registered by gastrin stimulation in dispersed parietal cells from guinea pig gastric mucosa, and this was mimicked with the calcium ionophore A23187. The characteristics of these phases (first phase and second phase) were distinguished by the differences in the requirements of extracellular Ca2+. The first phase evoked by gastrin or ionophore A23187 was independent of extracellular Ca2+, whereas the second phase was not. In the first phase, fluorescence of a cytosolic Ca2+ indicator (quin2-AM) increased with the stimulation of ionophore A23187 and carbamylcholine chloride in the presence of extracellular Ca2+. In addition, an increase in cytosolic Ca2+ induced by ionophore A23187, but not by carbamylcholine chloride was also observed in the absence of extracellular Ca2+, suggesting that Ca2+ pool(s) in parietal cells might be present in the intracellular organelle. Cytochalasin B and colchicine, but not oligomycin, could eliminate this cytosolic Ca2+ increase induced by A23187 in a Ca2+-free medium. On the other hand, in a Ca2+-free medium, addition of ATP after pretreatment with digitonin could diminish the cytosolic Ca2+ increase brought about by A23187. This was also observed with oligomycin-treated cells, but not with cytochalasin B-treated cells. Similarly, subcellular fractionation of a parietal cell which had been pretreated with cytochalasin B or colchicine in an intact cell system reduced the rate of ATP-dependent Ca2+ uptake. These observations indicate that intracellular Ca2+ transport in dispersed parietal cells may be regulated by the microtubular-microfilamentous system. In conclusion, this study demonstrates the possibility of the existence of intracellular Ca2+ transport mediated by gastrin or ionophore A23187 and regulated by the microtubular-microfilamentous system in parietal cells.  相似文献   

16.
In Arabidopsis thaliana cell suspension,abscisic acid (aBa) induces changes in cytosolic calcium concentration ([Ca2+]cyt) which are the trigger for aBa-induced plasma membrane anion current activation, H+-aTPase inhibition, and subsequent plasma membrane depolarization. In the present study, we took advantage of this model to analyze the implication of intracellular Ca2+ stores in aBa signal transduction through electrophysiological current measurements, cytosolic Ca2+ activity measurements with the apoaequorin Ca2+ reporter protein and external pH measurement. Intracellular Ca2+ stores involvement was determined by using specific inhibitors of CICR channels: the cADP-ribose/ryanodine receptor (Br-cADPR and dantrolene) and of the inositol trisphosphate receptor (U73122). In addition experiments were performed on epidermal strips of A. thaliana leaves to monitor stomatal closure in response to ABA in presence of the same pharmacology. Our data provide evidence that ryanodine receptor and inositol trisphosphate receptor could be involved in ABA-induced (1) Ca2+ release in the cytosol, (2) anion channel activation and H+-ATPase inhibition leading to plasma membrane depolarization and (3) stomatal closure. Intracellular Ca2+ release could thus contribute to the control of early events in the ABA signal transduction pathway in A. thaliana.  相似文献   

17.
A subcellular fraction enriched in plasma membranes was obtained from gypsy moth (Lymantria dispar) larval midgut tissue. Using [45Ca]2+ as a tracer, Ca2+ transport activity by membrane vesicles in the enriched fraction was measured and shown to be ATP-dependent, with a very high affinity for Ca2+ (apparent Km for [Ca2+ free]
  • 1 Abbreviations used: [Ca2+free] = concentration of free (unbound) calcium ion;CaM = calmodulin; F = fraction; IOV = inside-out membrane vesicles; W-5 = N-(6-aminohexyl)-1-naphthalenesulfonamide; W-7 = N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide.
  • = 22 nM). Ca2+ transport was abolished upon addition of the calcium ionophore, A23187. Ca2+-stimulated, Mg2+-dependent ATPase activity peaked between 100 and 200 nM Ca2+free. Ca2+-Mg2+-ATPase activity was inhibited by vanadate, 2 phenothiazine drugs (trifluoperazine and chlorpromazine), and the naphthalene sulfonamide, W-7; the related compound, W-5, and ouabain had a negligible effect. These results suggest the presence of a high affinity plasma membrane Ca2+ pump in gypsy moth larval midgut cells and are discussed in light of earlier work involving calcium transport in isolated midguts of larval Hyalophora cecropia. Ionic and other conditions that characterize the midgut physiology of larval Lepidoptera (e.g., luminal pH; electrochemical gradient for Ca2+; effect of certain ions and inhibitors on Ca2+ transport) contrast significantly with those found in adult Diptera. The implications that these differences may have for calcium regulation are discussed. © 1992 Wiley-Liss, Inc.  相似文献   

    18.
    In microsomes from 24-hour-old radish (Raphanus sativus L.) seedlings ATP-dependent Ca2+ uptake occurs only in inside-out plasma membrane vesicles (F Rasi-Caldogno, MC Pugliarello, MI De Michelis [1987] Plant Physiol 83: 994-1000). A Ca2+-dependent ATPase activity can be shown in the same microsomes, when assays are performed at pH 7.5. The Ca2+-dependent ATPase is stimulated by the Ca2+ ionophore A23187 and is localized at the plasma membrane. Ca2+-dependent ATPase activity and ATP-dependent Ca2+ uptake present very similar saturation kinetics with erythrosin B (50% inhibition at about 0.1 micromolar), free Ca2+ (half-maximal rate at about 70 nanomolar), and MgATP (Km 15-20 micromolar). Ca2+ uptake can be sustained by GTP or ITP at about 60% the rate measured in the presence of ATP; only very low Ca2+ uptake is sustained by CTP or UTP and none by ADP. These results indicate that the Ca2+-ATPase described in this paper is the enzyme which drives active transport of Ca2+ at the plasma membrane of higher plants.  相似文献   

    19.
    The changes in cytosolic Ca2+ levels play important roles in the signal transduction pathways of many environmental and developmental stimuli in plants and animals. We demonstrated that the increase in cytosolic free Ca2+ concentration ([Ca2+]cyt) of Arabidopsis thaliana leaf cells was induced by exogenous application of jasmonic acid (JA). The elevation of [Ca2+]cyt was detected within 1 min after JA treatment by the fluorescence intensity using laser scanning confocal microscopy, and the elevated level of fluorescence was maintained during measuring time. With pretreatment of nifedipine (Nif), a nonpermeable L-type channel blocker, the fluorescence of [Ca2+]cyt induced by JA was inhibited in a dose-dependent manner. In contrast, verapamil, another L-type channel blocker, had no significant effect. Furthermore, Nif repressed JA-induced gene expression of JR1 but verapamil did not. JA-induced gene expression could be mimicked by higher concentration of extracellular Ca2+. W-7 [N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide], an antagonist of calmodulin (CaM), blocked the JA induction of JR1 expression while W-5 [N-(6-aminohexyl)-1-naphthalenesulfonamide], its inactive antagonist, had no apparent effect. These data provide the evidence that the influx of extracellular Ca2+ through Nif sensitive plasma membrane Ca2+ channel may be responsible for JA-induced elevation of [Ca2+]cyt and downstream gene expression, CaM may be also involved in JA signaling pathway.  相似文献   

    20.
    Astroglial excitability operates through increases in Ca2+cyt (cytosolic Ca2+), which can lead to glutamatergic gliotransmission. In parallel fluctuations in astrocytic Na+cyt (cytosolic Na+) control metabolic neuronal-glial signalling, most notably through stimulation of lactate production, which on release from astrocytes can be taken up and utilized by nearby neurons, a process referred to as lactate shuttle. Both gliotransmission and lactate shuttle play a role in modulation of synaptic transmission and plasticity. Consequently, we studied the role of the PMCA (plasma membrane Ca2+-ATPase), NCX (plasma membrane Na+/Ca2+ exchanger) and NKA (Na+/K+-ATPase) in complex and coordinated regulation of Ca2+cyt and Na+cyt in astrocytes at rest and upon mechanical stimulation. Our data support the notion that NKA and PMCA are the major Na+ and Ca2+ extruders in resting astrocytes. Surprisingly, the blockade of NKA or PMCA appeared less important during times of Ca2+ and Na+ cytosolic loads caused by mechanical stimulation. Unexpectedly, NCX in reverse mode appeared as a major contributor to overall Ca2+ and Na+ homoeostasis in astrocytes both at rest and when these glial cells were mechanically stimulated. In addition, NCX facilitated mechanically induced Ca2+-dependent exocytotic release of glutamate from astrocytes. These findings help better understanding of astrocyte-neuron bidirectional signalling at the tripartite synapse and/or microvasculature. We propose that NCX operating in reverse mode could be involved in fast and spatially localized Ca2+-dependent gliotransmission, that would operate in parallel to a slower and more widely distributed gliotransmission pathway that requires metabotropically controlled Ca2+ release from the ER (endoplasmic reticulum).  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号