首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Predator‐induced phenotypic plasticity has been widely documented in response to native predators, but studies examining the extent to which prey can respond to exotic invasive predators are scarce. As native prey often do not share a long evolutionary history with invasive predators, they may lack defenses against them. This can lead to population declines and even extinctions, making exotic predators a serious threat to biodiversity. Here, in a community‐wide study, we examined the morphological and life‐history responses of anuran larvae reared with the invasive red swamp crayfish, Procambarus clarkii, feeding on conspecific tadpoles. We reared tadpoles of nine species until metamorphosis and examined responses in terms of larval morphology, growth, and development, as well as their degree of phenotypic integration. These responses were compared with the ones developed in the presence of a native predator, the larval dragonfly Aeshna sp., also feeding on tadpoles. Eight of the nine species altered their morphology or life history when reared with the fed dragonfly, but only four when reared with the fed crayfish, suggesting among‐species variation in the ability to respond to a novel predator. While morphological defenses were generally similar across species (deeper tails) and almost exclusively elicited in the presence of the fed dragonfly, life‐history responses were very variable and commonly elicited in the presence of the invasive crayfish. Phenotypes induced in the presence of dragonfly were more integrated than in crayfish presence. The lack of response to the presence of the fed crayfish in five of the study species suggests higher risk of local extinction and ultimately reduced diversity of the invaded amphibian communities. Understanding how native prey species vary in their responses to invasive predators is important in predicting the impacts caused by newly established predator–prey interactions following biological invasions.  相似文献   

2.
Life history theory and empirical studies suggest that large size or earlier metamorphosis are suitable proxies for increased lifetime fitness. Thus, across a gradient of larval habitat quality, individuals with similar phenotypes for these traits should exhibit similar post-metamorphic performance. Here we examine this paradigm by testing for differences in post-metamorphic growth and survival independent of metamorphic size in a temperate (spring peeper, Pseudacris crucifer) and tropical (red-eyed treefrog, Agalychnis callidryas) anuran reared under differing larval conditions. For spring peepers, increased food in the larval environment increased post-metamorphic growth efficiency more than predicted by metamorphic phenotype and led to increased mass. Similarly, red-eyed treefrogs reared at low larval density ended the experiment at a higher mass than predicted by metamorphic phenotype. These results show that larval environments can have delayed effects not captured by examining only metamorphic phenotype. These delayed effects for the larval environment link larval and juvenile life history stages and could be important in the population dynamics of organisms with complex life cycles.  相似文献   

3.
Many organisms use inducible defenses as protection against predators. In animals, inducible defenses may manifest as changes in behavior, morphology, physiology, or life history, and prey species can adjust their defensive responses based on the dangerousness of predators. Analogously, prey may also change the composition and quantity of defensive chemicals when they coexist with different predators, but such predator‐induced plasticity in chemical defenses remains elusive in vertebrates. In this study, we investigated whether tadpoles of the common toad (Bufo bufo) adjust their chemical defenses to predation risk in general and specifically to the presence of different predator species; furthermore, we assessed the adaptive value of the induced defense. We reared tadpoles in the presence or absence of one of four caged predator species in a mesocosm experiment, analyzed the composition and quantity of their bufadienolide toxins, and exposed them to free‐ranging predators. We found that toad tadpoles did not respond to predation risk by upregulating their bufadienolide synthesis. Fishes and newts consumed only a small percentage of toad tadpoles, suggesting that bufadienolides provided protection against vertebrate predators, irrespective of the rearing environment. Backswimmers consumed toad tadpoles regardless of treatment. Dragonfly larvae were the most voracious predators and consumed more predator‐naïve toad tadpoles than tadpoles raised in the presence of dragonfly cues. These results suggest that tadpoles in our experiment had high enough toxin levels for an effective defense against vertebrate predators even in the absence of predator cues. The lack of predator‐induced phenotypic plasticity in bufadienolide synthesis may be due to local adaptation for constantly high chemical defense against fishes in the study population and/or due to the high density of conspecifics.  相似文献   

4.
In many amphibian larvae a suite of morphological and behavioural characters varies together in an induced defence against predators, but it remains unclear which features are functionally related to defence. We independently manipulated behaviour and morphology in tadpoles of Hyla versicolor and assessed their consequences for swimming performance and predator escape. Data on burst swimming showed that tadpoles which accelerated rapidly were elongate, with shallow bodies and tails. Predator escape was measured by exposing tadpoles to predators (larval Anax dragonflies or larval Ambystoma salamanders) and recording time until death. Tadpoles were first reared for 30 days in ponds containing either caged Anax or no predators; individuals responded to predators by developing large brightly coloured tails and short bodies. We placed tadpoles of both morphological phenotypes into plastic tubs, and manipulated their behaviour using food and chemical cues from predators. Mortality risk experienced by the predator‐induced phenotype was about half that of the no‐predator phenotype, and risk increased with time spent swimming. An interaction between morphology and behaviour arose because increasing activity caused higher risk for tadpoles with deep tail fins but not shallow tail fins.  相似文献   

5.
1. Behavioural, morphological and coloration plasticity are common responses of prey to predation risk. Theory predicts that prey should respond to the relative magnitude of risk, rather than a single level of response to any risk level. In addition to conspecific and predator densities, prey growth and differentiation rates affect the duration of vulnerability to size- and stage-limited predators and therefore the relative value of defences. 2. We reared tadpoles of the Neotropical treefrog Dendropsophus ebraccatus with or without cues from a predator (Belostoma sp.) in ecologically relevant warm or cool temperatures. To track phenotypic changes, we measured morphology, tail coloration and developmental stage at three points during the larval period. 3. Cues from predators interacted with growth conditions causing tadpoles to alter their phenotype, changing only tail colour in response to predators in warm water, but both morphology and colour in cool growth conditions. Tadpoles with predators in warm water altered coloration early but converged on the morphology of predator-free controls. Water temperature alone had no effect on tadpole phenotype. 4. We demonstrate that seemingly small variation in abiotic environmental conditions can alter the expression of phenotypic plasticity, consistent with predictions about how growth rate affects risk. Predator-induced tadpole phenotypes depended on temperature, with strong expression only in temperatures that slow development. Thermal modulation of plastic responses to predators may be broadly relevant to poikilotherm development. It is important to include a range of realistic growth conditions in experiments to more fully understand the ecological and evolutionary significance of plasticity.  相似文献   

6.
While theoretical studies predict that inducible defences should be fine-tuned according to the qualities of the predator, very few studies have investigated how dangerousness of predators, i.e. the rate at which predators kill prey individuals, affects the strength of phenotypic responses and resulting benefits and costs of induced defences. We performed a comprehensive study on fitness consequences of predator-induced responses by involving four predators (leech, water scorpion, dragonfly larva and newt), evaluating costs and benefits of responses, testing differences in dangerousness between predators and measuring responses in several life history traits of prey. We raised Rana dalmatina tadpoles in the presence of free-ranging predators, in the presence of caged predators, and exposed naive and experienced tadpoles to free-ranging predators. Tadpoles adjusted the intensities of their behavioural and morphological defences to predator dangerousness. Survival was lower in the nonlethal presence of the most dangerous predator, while we could not detect costs of induced defences at or after metamorphosis. When exposed to free-ranging predators, small, but not large, tadpoles benefited from exhibiting an induced phenotype in terms of elevated survival when compared to naive tadpoles, but we did not observe higher survival either in tadpoles exhibiting more extreme phenotypes or in tadpoles exposed to the type of predator they were raised with. These results indicate that while predator-induced defences can mirror dangerousness of predators, costs and benefits do not necessarily scale to the magnitude of plastic responses.  相似文献   

7.
For species with complex life cycles, transitions between life stages result in niche shifts that are often associated with evolutionary trade-offs. When conditions across life stages are unpredictable, plasticity in niche shift timing may be adaptive; however, factors associated with clutch identity (e.g., genetic or maternal) may influence the effects of such plasticity. The red-eyed treefrog (Agalychnis callidryas) is an ideal organism for investigating the effects of genetics and life stage switch point timing because embryos exhibit adaptive phenotypic plasticity in hatching time. In this study, we evaluated the effects of experimentally manipulated hatching time and clutch identity on antipredator behavior of tadpoles and on developmental traits of metamorphs, including larval period, mass, SVL, and jumping ability. We found that in the presence of dragonfly nymph predator cues at 21 days post-oviposition, tadpoles reduced both their activity level and height in the water column. Furthermore, early-hatched tadpoles were less active than late-hatched tadpoles of the same age. This difference in behavior patterns of early- and late-hatched tadpoles may represent an adaptive response due to a longer period of susceptibility to odonate predators for early-hatched tadpoles, or it may be a carry-over effect mediated by early exposure to an environmental stressor (i.e., induction of early hatching). We also found that hatching time affected both behavioral traits and developmental traits, but its effect on developmental traits varied significantly among clutches. This study shows that a single early-life event may influence a suite of factors during subsequent life stages and that some of these effects appear to be dependent on clutch identity. This interaction may represent an evolutionary response to a complex life cycle and unpredictable environments, regardless of whether the clutch differences are due to additive genetic variance or maternal effects.  相似文献   

8.
More than 80% of animals have complex life cycles and undergo distinct changes in ecology and morphology during development. The strength and type of factors regulating each life-stage may differ as an organism may occupy different niches during ontogeny. We examined the functional distance at larval and adult life-stages of two non-native anurans (Green Tree Frog [Hyla cinerea] and Bullfrog [Lithobates catesbeianus]) that have established in a Chihuahuan Desert anuran assemblage in Big Bend National Park. Both life stages of both non-native species occupied niche space outside of the native assemblage. At the larval stage, the ability of the tadpoles to utilize permanent aquatic habitats and coexist with predatory fishes differentiated the non-native species from the majority of the native species that are restricted to temporary pools. At the post-metamorphic life stage, each species appears to have established by exploiting unoccupied habitat and trophic niches in the recipient community. The arboreal habits of H. cinerea may enable it to utilize resources in microhabitats that are otherwise not used by native species because arboreal frogs are absent from this native assemblage. The large body size of post-metamorphic L. catesbeianus may enable it to utilize larger food resources that are otherwise unavailable to the smaller-bodied natives. Separate comparison of larval and adult functional traits between non-natives and the native community may help predict their potential establishment or invasion success as well as aid in the development of stage-specific control or eradication efforts.  相似文献   

9.
J. C. Touchon  K. M. Warkentin 《Oikos》2008,117(4):634-640
Many prey species, including amphibian larvae, can adaptively alter coloration and morphology to become more or less conspicuous to predators. Despite abundant research on predator-induced plasticity in tadpoles, the combination of color and morphological responses to predators remains largely unexplored. We measured predator-induced morphological and color plasticity in tadpoles. We reared tadpoles of the neotropical treefrog Dendropsophus ebraccatus with dragonfly nymph or fish predators, or in a predator-free control. After 10 days, we digitally photographed tadpoles and measured eight morphometric variables and five tail color variables. Tadpoles reared with nymphs developed the largest and reddest tails, but incurred a developmental cost, being the smallest overall. Cues from fish induced an opposite tail phenotype in tadpoles, causing shallow achromatic tails. Control tadpoles developed intermediate tail phenotypes. This provides the first experimental evidence that tadpoles can shift both color and morphology in opposite, predator-specific directions in response to a fish and an odonate predator. Despite mean differences, however, there was substantial variation in the degree of phenotype induction across treatments. Tail redness was correlated with tail spot size, but not perfectly, indicating that color and morphology may be partially decoupled in D. ebraccatus . Balancing selection from multiple conflicting predators may result in genetic variation for developmental plasticity.  相似文献   

10.
Models suggest that phenotypic plasticity is maintained in situations where the optimal phenotype differs through time or space, so that selection acts in different directions in different environments. Some empirical work supports the general premise of this prediction because phenotypes induced by a particular environment sometimes perform better than other phenotypes when tested in that environment. We have extended these results by estimating the targets of selection in Pseudacris triseriata tadpoles in environments without predators and with larval Anax dragonflies. Tadpoles displayed significant behavioral and morphological plasticity when reared in the presence and absence of nonlethal dragonflies for 32 days in cattle tanks. We measured selection in the absence of free predators by regressing growth and survival in the tanks against activity and several measures of tail and body shape. We measured selection in the presence of predators by exposing groups of 10 tadpoles to Anax in overnight predation trials and regressing the average phenotype of survivors against the number of tadpoles killed. Selection in the two environments acted in opposite directions on both tail and body shape, although the affected fitness components were different. In the presence of Anax, tadpoles with shallow and narrow body, deep tail fin, and wide tail muscle survived best. In the absence of free predators, tadpoles with narrow tail muscle grew significantly faster, and those with shallow tail fin and deep body grew somewhat faster. Activity was unrelated to survival or growth in either environment. Developmental plasticity in tail shape closely paralleled selection, because tail fin depth increased after long-term exposure to Anax and tail muscle width tended to increase. In contrast, there was no plasticity in body shape in spite of strong selection for decreasing body depth. Thus, when confronted with a dragonfly predator, P. triseriata tadpoles adjusted their tail shape (but not body shape) almost exactly in the direction of selection imposed by Anax. These results suggest that phenotypic plasticity in some morphological traits, such as tail depth and tail muscle width, has evolved under intermittent selection by dragonflies. Other traits that undergo selection by dragonflies, such as body morphology, appear developmentally rigid, perhaps because of historically strong opposing selection in nature or other constraints.  相似文献   

11.
Tradeoffs between time to and size at metamorphosis occur in many organisms with complex life histories. The ability to accelerate metamorphosis can increase survival to the next life stage, but the resulting smaller size at metamorphosis is often associated with lower post-metamorphic survival or reduced fecundity of adults. Reduced fecundity is thought to be because of reduced energy reserves, longer time to maturity, or reduced capacity to carry eggs or compete for mates. This pattern could also be explained by a shift in allocation to somatic growth that further retards the growth or development of reproductive tissues. The main goal of this study was to determine if the relationship between growth and development of somatic and gonadal tissues depends on environmental conditions. We address this question through two experiments in which we quantify the development and growth of the body and gonads of Xenopus laevis reared in different resource environments. First, tadpoles were reared communally and development and growth were evaluated over time. Restricted food reduced somatic and gonadal growth rate, but did not affect the developmental rate of either tissue type. Second, tadpoles were reared individually and evaluated at metamorphosis. Restricted food reduced somatic development and growth, but only influenced size, and not developmental stage of testes at metamorphosis. This work demonstrates that environmental conditions influence tradeoffs between growth and development of somatic and gonadal tissues, apparently in a sex-specific manner. These tradeoffs may contribute to phenotypic correlations between small size and reduced fitness.  相似文献   

12.
Summary Differences in maternal investment and initial offspring size can have important consequences for offspring growth and development. To examine the effects of initial size variability in the frogBombina orientalis, we reared larvae (N=360) in one of two treatments representing different levels of environmental quality. We used snout-vent length at the feeding stage (stage 25, Gosner 1960) as a measure of maternal investment. In a “low quality” treatment, larvae were reared with two conspecific tadpoles and food was limited, whereas in a “high quality” treatment, larvae were reared individually and were fed ad libitum. Among tadpoles reared in the low quality treatment, individuals that were initially small had smaller body sizes through metamorphosis and longer larval periods than individuals that were initially large. Among tadpoles reared in the high quality treatment, initial size had only a weak influence on later larval size, and did not significantly affect metamorphic size of the duration of the larval period. This interaction between maternal investment and rearing conditions suggests that production of initially small offspring could be advantageous if these offspring develop in relatively benign environments, but disadvantageous if environments are more severe. These findings are discussed in light of previous studies that have demonstrated such interactions in organisms with complex life cycles.  相似文献   

13.
Vonesh JR 《Oecologia》2005,143(2):280-290
While theoretical studies of the timing of key switch points in complex life cycles such as hatching and metamorphosis have stressed the importance of considering multiple stages, most empirical work has focused on a single life stage. However, the relationship between the fitness components of different life stages may be complex. Ontogenetic switch points such as hatching and metamorphosis do not represent new beginnings—carryover effects across stages can arise when environmental effects on the density and/or traits of early ontogenetic stages subsequently alter mortality or growth in later stages. In this study, I examine the effects of egg- and larval-stage predators on larval performance, size at metamorphosis, and post-metamorphic predation in the African tree frog Hyperolius spinigularis. I monitored the density and survival of arboreal H. spinigularis clutches in the field to estimate how much egg-stage predation reduced the input of tadpoles into the pond. I then conducted experiments to determine: (1) how reductions in initial larval density due to egg predators affect larval survival and mass and age at metamorphosis in the presence and absence of aquatic larval predators, dragonfly larvae, and (2) how differences in mass or age at metamorphosis arising from predation in the embryonic and larval environments affect encounters with post-metamorphic predators, fishing spiders. Reduction in larval densities due to egg predation tended to increase per capita larval survival, decrease larval duration and increase mass at metamorphosis. Larval predators decreased larval survival and had density-dependent effects on larval duration and mass at metamorphosis. The combined effects of embryonic and larval-stage predators increased mass at metamorphosis of survivors by 91%. Larger mass at metamorphosis may have immediate fitness benefits, as larger metamorphs had higher survival in encounters with fishing spiders. Thus, the effects of predators early in ontogeny can alter predation risk even two life stages later.  相似文献   

14.
Species with a wide distribution over latitudinal gradients often exhibit increasing growth and development rates towards higher latitudes. Ecological theory predicts that these fast-growing genotypes are, in the absence of trade-offs with fast growth, better competitors than low-latitude conspecifics. While knowledge on key ecological traits along latitudinal clines is important for understanding how these clines are maintained, the relative competitive ability of high latitude individuals against low latitude conspecifics has not been tested. Growth and development rates of the common frog Rana temporaria increase along the latitudinal gradient across Scandinavia. Here we investigated larval competition over food resources within and between two R. temporaria populations originating from southern and northern Sweden in an outdoor common garden experiment. We used a factorial design, where southern and northern tadpoles were reared either as single populations or as mixes of the two populations at two densities and predator treatments (absence and non-lethal presence of Aeshna dragonfly larvae). Tadpoles from the high latitude population grew and developed faster and in the beginning of the experiment they hid less and were more active than tadpoles from the low latitude population. When raised together with high latitude tadpoles the southern tadpoles had a longer larval period, however, the response of high latitude tadpoles to the competition by low latitude tadpoles did not differ from their response to intra-population competition. This result was not significantly affected by density or predator treatments. Our results support the hypothesis that high latitude populations are better competitors than their low latitude conspecifics, and suggest that in R. temporaria fast growth and development trade off with other fitness components along the latitudinal gradient across Scandinavia.  相似文献   

15.
16.
While deploying immune defences early in ontogeny can trade‐off with the production and maintenance of other important traits across the entire life cycle, it remains largely unexplored how features of the environment shape the magnitude or presence of these lifetime costs. Greater predation risk during the juvenile stage may particularly influence such costs by (1) magnifying the survival costs that arise from any handicap of juvenile avoidance traits and/or (2) intensifying allocation trade‐offs with important adult traits. Here, we tested for predator‐dependent costs of immune deployment within and across life stages using the dragonfly, Pachydiplax longipennis. We first examined how larval immune deployment affected two traits associated with larval vulnerability to predators: escape distance and foraging under predation risk. Larvae that were induced to mount an immune response had shorter escape distances but lower foraging activity in the presence of predator cues. We also induced immune responses in larvae and reared them through emergence in mesocosms that differed in the presence of large predatory dragonfly larvae (Aeshnidae spp.). Immune‐challenged larvae had later emergence overall and lower survival in pools with predators. Immune‐challenged males were also smaller at emergence and developed less sexually selected melanin wing coloration, but these effects were independent of predator treatment. Overall, these results highlight how mounting an immune defence early in ontogeny can have substantial ecological and physiological costs that manifest both within and across life stages.  相似文献   

17.
Abstract We tested the phenotypic responses of larval striped marsh frogs (Limnodynastes peronii) to the odonate nymph predator, Aeshna brevistyla. When reared in the presence of dragonfly nymphs feeding upon conspecifics of L. peronii larvae the tadpoles showed a strong change in morphology. Morphological changes included an increase in total tail height, but also an unexpected marked change in head‐body shape. In addition, we examined how tadpole development, as well as mass and length at metamorphosis, was affected by exposure to dragonfly nymphs. Larval development of L. peronii was strongly influenced by exposure to the predatory behaviour of dragonfly nymphs. Predator‐induced tadpoles had significantly slower developmental rates than control larvae. Although metamorphs of non‐exposed L. peronii were approximately 33% lighter than predator‐exposed metamorphs and possessed lower jump distances, after adjusting for mass there was no difference in jump distance. The newly described morphological response may assist in more accurately relating morphological plasticity to fitness.  相似文献   

18.
McIntyre PB  Baldwin S  Flecker AS 《Oecologia》2004,141(1):130-138
Predator-induced phenotypic plasticity is widespread among aquatic animals, however the relative contributions of behavioral and morphological shifts to reducing risk of predation remain uncertain. We tested the phenotypic plasticity of a Neotropical tadpole (Rana palmipes) in response to chemical cues from predatory Belostoma water bugs, and how phenotype affects risk of predation. Behavior, morphology, and pigmentation all were plastic, resulting in a predator-induced phenotype with lower activity, deeper tail fin and muscle, and darker pigmentation. Tadpoles in the predator cue treatment also grew more rapidly, possibly as a result of the nutrient subsidy from feeding the caged predator. For comparison to phenotypes induced in the experiment, we quantified the phenotype of tadpoles from a natural pool. Wild-caught tadpoles did not match either experimentally induced phenotype; their morphology was more similar to that produced in the control treatment, but their low swimming activity was similar to that induced by predator cues. Exposure of tadpoles from both experimental treatments and the natural pool to a free-ranging predator confirmed that predator-induced phenotypic plasticity reduces risk of predation. Risk of predation was comparable among wild-caught and predator-induced tadpoles, indicating that behavioral shifts can substantially alleviate risk in tadpoles that lack the typical suite of predator-induced morphological traits. The morphology observed in wild-caught tadpoles is associated with rapid growth and high competition in other tadpole species, suggesting that tadpoles may profitably combine a morphology suited to competition for food with behaviors that minimize risk of predation.  相似文献   

19.
1. Natural selection favours females who can correctly assess the predation risk and hence avoid high‐risk oviposition sites and reduce the mortality rate of their offspring. In spite of the potential significance of such behaviour, relatively few studies have assessed the relationship between oviposition behaviour and predation risk. 2. The present study aimed to determine the sublethal effects of predators on oviposition site selection by gravid females, the foraging activity of larvae, and the life history traits of two mosquito species that breed in different habitats, Aedes albopictus Skuse (container breeder) and Culex tritaeniorhynchus Giles (wetland breeder). 3. Female C. tritaeniorhynchus avoided laying eggs at oviposition sites in the presence of a predator cue. In contrast, female A. albopictus laid eggs in both the absence and presence of the predator cue. 4. To examine the effects of predator cues on larval behaviour, experiments were conducted in the absence and presence of a predator cue. Although larval activity was lower in the presence of the predator cue than that in its absence in both species, C. tritaeniorhynchus responded to the predator cue more strongly than A. albopictus. Female A. albopictus that had been reared with caged predators exhibited an extended larval development period, whereas the adult C. tritaeniorhynchus reared in the presence of predators were smaller than those reared in their absence. 5. This finding might explain why C. tritaeniorhynchus avoid laying eggs in predator‐conditioned water, for example to increase the fitness of their offspring, but A. albopictus either cannot detect predator cues or are not sensitive to them.  相似文献   

20.
Selection for phenotypic plasticity in Rana sylvatica tadpoles   总被引:1,自引:0,他引:1  
The hypothesis that phenotypic plasticity is an adaptation to environmental variation rests on the two assumptions that plasticity improves the performance of individuals that possess it, and that it evolved in response to selection imposed in heterogeneous environments. The first assumption has been upheld by studies showing the beneficial nature of plasticity. The second assumption is difficult to test since it requires knowing about selection acting in the past. However, it can be tested in its general form by asking whether natural selection currently acts to maintain phenotypic plasticity. We adopted this approach in a study of plastic morphological traits in larvae of the wood frog, Rana sybatica. First we reared tadpoles in artificial ponds for 18 days, in either the presence or absence of Anax dragonfly larvae (confined within cages to prevent them from killing the tadpoles). These conditioning treatments produced dramatic differences in size and shape: tadpoles from ponds with predators were smaller and had relatively short bodies and deep tail fins. We estimated selection by Anax on the two kinds of tadpoles by testing for non-random mortality in overnight predation trials. Dragonflies imposed strong selection by preferentially killing individuals with relatively shallow and short tail fins, and narrow tail muscles. The same traits that exhibited the strongest plasticity were under the strongest selection, except that tail muscle width exhibited no plasticity but experienced strong increasing selection. A laboratory competition experiment, testing for selection in the absence of predators, showed that tadpoles with deep tail fins grew relatively slowly. In the cattle tanks, where there were also no free predators, the predator-induced phenotype survived more poorly and developed slowly, but this cost was apparently not associated with particular morphological traits. These results indicate that selection is currently promoting morphological plasticity in R. sylvatica, and support the hypothesis that plasticity represents an adaptation to variable predator environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号