共查询到20条相似文献,搜索用时 0 毫秒
1.
Daston GP 《Birth defects research. Part B, Developmental and reproductive toxicology》2004,71(4):296-302
The developmental toxicity potential of butylparaben (CAS No. 94-26-8) was evaluated in rats. Sprague-Dawley rats were administered butylparaben in 0.5% carboxymethylcellulose by oral gavage at dose levels of 0, 10, 100, or 1,000 mg/kg/day on gestation days (GD) 6-19 (sperm positive day = GD 0). Caesarean sections were performed on GD 20 and fetuses were evaluated for viability, growth, and external, visceral, and skeletal abnormalities. Each group consisted of 25 females, with at least 21 per group being pregnant. The highest dose level caused decreases in maternal weight gain during some of the measurement intervals and was statistically significant during the GD 18-20 interval. Maternal food consumption was significantly decreased in the highest dose group over the dosing period (GD 6-20). There were no differences from control in any of the developmental parameters measured, including embryo/fetal viability, fetal weight, malformations, or variations. Based on the results of this study, the maternal NOAEL for butylparaben was 100 mg/kg/day. Butylparaben does not have the potential to cause developmental toxicity in the Sprague-Dawley rat at oral dosages up to 1000 mg/kg/day. 相似文献
2.
To identify possible effects of horizontally polarized magnetic field (MF) exposure on maintenance of pregnancy and embryo-fetal development, an MF exposure system was designed and constructed and 96 time-mated female Sprague-Dawley (SD) rats (24/group) received continuous exposure to 60 Hz MF at field strengths of 0 (sham control) and 5, 83.3, or 500 microT (50, 833, or 5000 mG). Dams received MF or sham exposures for 22 h/day on gestational day 6-20. MF was monitored continuously throughout the study. There were no evidences of maternal toxicity or developmental toxicity in any MF exposed groups. Mean maternal body weight, organ weights, and hematological and serum biochemical parameters in groups exposed to MF did not differ from those in sham control. No exposure related differences in fetal deaths, fetal body weight, and placental weight were observed between MF exposed groups and sham control. External, visceral, and skeletal examination of fetuses demonstrated no significant differences in the incidence of fetal malformations between MF exposed and sham control groups. In conclusion, exposure of pregnant rats to 60 Hz at MF strengths up to 500 microT during gestation day 6-20 did not produce any biologically significant effect in either dams or fetuses. 相似文献
3.
Azuka C Daston GP 《Birth defects research. Part B, Developmental and reproductive toxicology》2004,71(6):374-379
The developmental toxicity potential of trimethylolpropane caprylate caproate (TMPCC, CAS no. 11138-60-6) was evaluated in rats. Sprague-Dawley rats were administered TMPCC in a corn oil suspension dermally at dose levels of 0, 200, 600, or 2,000 mg/kg/day on gestation days (GD) 6-15 (sperm positive day=GD 0). Caesarean sections were performed on GD 20 and fetuses were evaluated for viability, growth, and external, visceral, and skeletal abnormalities. Each group consisted of 25 females, with at least 22 per group being pregnant. The two highest dose levels caused some local irritation at the site of application, but no decreases in maternal weight gain. There were no differences from control in any of the developmental parameters measured, including embryo/fetal viability, fetal weight, malformations, or variations. TMPCC did not cause any developmental toxicity in the Sprague-Dawley rat at dermal dosages up to 2,000 mg/kg/day. 相似文献
4.
Bendectin, composed of doxylamine succinate and pyridoxine HCl (1:1), is an antinauseant previously prescribed for nausea and vomiting during pregnancy. The present study examined the maternal and developmental effects of Bendectin (0, 200, 500, or 800 mg/kg/day, po) administered to timed-pregnant CD rats (36-41/group) during organogenesis (gestational days [gd] 6-15). At death (gd 20), all live fetuses were examined for external, visceral, and skeletal abnormalities. At 500 and 800 mg/kg/day, maternal toxicity included reduced food consumption during treatment and for the gestation period, increased water consumption in the posttreatment period, reduced weight gain during treatment, and sedation; water consumption was reduced during treatment and for the gestation period, and maternal mortality (17.1%) was observed only at the high dose. Developmental toxicity included reduced prenatal viability (800 mg/kg/day) and reduced fetal body weight/litter (500 and 800 mg/kg/day). In addition, reduced ossification of metacarpals (800 mg/kg/day), phalanges of the forelimbs (500 and 800 mg/kg/day), and of caudal vertebral centra (all doses) was observed. No increase in percent malformed live fetuses/litter was observed. The proportion of litters with one or more malformed fetuses was higher than vehicle controls only at 800 mg/kg/day, with short 13th rib (to which the test species is predisposed) as the predominant observation. By contrast, a positive control agent (nitrofen, 50 mg/kg/day, po, 14 dams) produced 85% malformed fetuses/litter with the predominant malformation being diaphragmatic hernia. In conclusion, the incidence of litters with one or more malformed fetuses was increased only at a dose of Bendectin which produced maternal mortality (17.1%) and other indices of maternal and developmental toxicity (see Discussion). 相似文献
5.
The developmental toxicity of the potent adenosine deaminase (ADA) inhibitor, pentostatin (2'-deoxycoformycin), was investigated in pregnant rats and rabbits administered daily iv doses during organogenesis. Rats received 0, 0.01, 0.10, or 0.75 mg/kg on gestation days 6-15 and rabbits received 0, 0.005, 0.01, or 0.02 mg/kg on gestation days 6-18 and maternal and fetal parameters were evaluated on gestation day 21 (rats) or 30 (rabbits). Live fetuses were examined for external, visceral, and skeletal malformations and variations. In rats, maternal body weight gain and food consumption were significantly suppressed at doses of 0.10 and 0.75 mg/kg during the treatment period but returned to control levels during posttreatment. Increased postimplantation loss and decreased numbers of live fetuses, litter size, and fetal body weight were observed at 0.75 mg/kg. A statistically significant increase in the incidence of vertebral malformations occurred at 0.75 mg/kg. The incidence of certain skeletal variations (extra presacral vertebrae, extra ribs, hypoplastic vertebrae) was also increased at 0.75 mg/kg. Ossification of cervical centra was reduced at 0.75 mg/kg compared with controls. In rabbits, marked maternal toxicity (death, body weight loss, and decreased food consumption) and reproductive toxicity (abortion and premature delivery) occurred in all pentostatin-treated groups. However, there were no significant effects on number of live fetuses, pre- or postimplantation loss, litter size, or fetal body weights in the animals with live litters. There was also no apparent increase in the incidence of malformations or variations in the live fetuses of pentostatin-treated rabbits. Thus, these studies demonstrate developmental toxicity of pentostatin in rats and rabbits, and teratogenicity in rats, at maternally toxic doses. 相似文献
6.
Burdan F 《Birth defects research. Part B, Developmental and reproductive toxicology》2004,71(5):321-330
BACKGROUND: Ibuprofen and tolmetin are popular non-steroidal anti-inflammatory drugs. Previous animal studies taken with single daily doses showed their good prenatal tolerability. However, since both cyclooxygenase (COX) inhibitors have a short half-life, the current report presents drug developmental effects after triple daily doses administration, as they are used in human. METHODS: Drugs were separately, orally dosed to pregnant rats triple daily 8 hr apart from day 8 to 21 (GD=1-plug day). The total daily doses were set at 25.5, 255.0, and 600.0 mg/kg for ibuprofen and 25.5, 255.0, and 2550.0 mg/kg for tolmetin. Fetuses were delivered on GD 21 and routinely examined. Comprehensive clinical and developmental measurements were done. RESULTS: Maternal toxicity and intrauterine growth retardation were found in groups exposed to the highest doses of both drugs. An increase of external variations was reported in groups exposed to the middle and highest dose of ibuprofen and to the highest dose of tolmetin. Skeletal variations were significantly different only in litters treated with the highest doses of the drugs. Pooled statistical analysis showed a higher incidence of midline and ventricular septal (VSD) defect in rat fetuses exposed to COX inhibitors when compared with historical control data. For ibuprofen, the influence on VSD was similar to aspirin. CONCLUSION: Both COX inhibitors were toxic to dams in the highest doses evaluated, which caused a significantly greater incidence of intrauterine growth retardation and developmental variations. 相似文献
7.
Soman (GD; phosphonofluoridic acid, methyl-,1,2,2-trimethylpropyl ester) is an organophosphate compound with potent anticholinesterase activity. To determine developmental toxicity, soman was administered orally to CD rats on days 6 through 15 of gestation at dose levels of 0, 37.5, 75, 150, or 165 micrograms/kg/day and to New Zealand White (NZW) rabbits on days 6 through 19 of gestation at dose levels of 0, 2.5, 5, 10, or 15 micrograms/kg/day. At sacrifice, gravid uteri were weighed and examined for number and status of implants. Individual fetal body weights and external, visceral, and skeletal malformations were recorded. Mean maternal weight changes, fetal implantation status/litter, fetal weight, and fetal malformations/litter were compared between dose groups. Monitors for maternal toxicity were net body weight change, treatment weight change, mortality, and clinical signs of toxicity such as lethargy, ataxia, and tremors. Maternal rats and rabbits in the high-dose groups exhibited statistically significant increases in toxicity and mortality when compared to controls. There were no significant dose-related effects among dose groups in the prevalence of postimplantation loss, malformations, or in average body weight of live fetuses per litter. There was no evidence of increased prenatal mortality or fetal toxicity in the CD rat or NZW rabbit following exposure to soman, even at a dose that produced significant maternal toxicity. 相似文献
8.
Malathion is a well known pesticide and is commonly used in many agricultural and non-agricultural settings. Its toxicity has been attributed primarily to the accumulation of acetylcholine (Ach) at nerve junctions, due to the inhibition of acetylcholinesterase (AChE), and consequently overstimulation of the nicotinic and muscarinic receptors. However, the genotoxicity of malathion has not been adequately studied; published studies suggest a weak interaction with the genetic material. In the present study, we investigated the genotoxic potential of malathion in bone marrow cells and peripheral blood obtained from Sprague-Dawley rats using chromosomal aberrations (CAs), mitotic index (MI), and DNA damage as toxicological endpoints. Four groups of four male rats, each weighing approximately 60 ± 2g, were injected intraperitoneally (i.p.) once a day for five days with doses of 2.5, 5, 10, and 20mg/kg body weight (BW) of malathion dissolved in 1% DMSO. The control group was made up of four animals injected with 1% DMSO. All the animals were sacrificed 24h after the fifth day treatment. Chromosome preparations were obtained from bone marrow cells following standard protocols. DNA damage in peripheral blood leukocytes was determined using alkaline single-cell gel electrophoresis (comet assay). Malathion exposure significantly increased the number of structural chromosomal aberrations (CAs) and the percentages of DNA damage, and decreased the mitotic index (MI) in treated groups when compared with the control group. Our results demonstrate that malathion has a clastogenic/genotoxic potential as measured by the bone marrow CA and comet assay in Sprague-Dawley rats. 相似文献
9.
Farag AT Karkour TA El Okazy A 《Birth defects research. Part B, Developmental and reproductive toxicology》2006,77(1):40-46
BACKGROUND: Dimethoate (O,O-dimethyl-S-(N-methylcarbamoyl-methyl) phosphorodithioate), an organophosphate insecticide, was examined for its potential to produce developmental toxicity in rats after oral administration. METHODS: Pregnant Fischer 344 rats were given sublethal doses of 0 (corn oil), 7, 15, and 28 mg/kg/day dimethoate by gavage on gestation days (GD) 6-15. Maternal effects in 15 and 28 mg/kg/day dose groups included cholinergic signs such as tremors, diarrhea, weakness, and salivation, and depression in the maternal and fetal brain acetylcholinesterase (AChE) activities. Other maternal toxicity that included reduction in body weight and feed consumption was observed only in the treated group of 28 mg/kg/day. No maternal toxicity was apparent in the 7 mg/kg/day dose group. RESULTS: Maternal exposure to dimethoate during organogenesis significantly affected the number of live fetuses, early resorption, and mean fetal weight in the 28 mg/kg/day dose group. No external, visceral, and skeletal abnormalities were observed in any of the treated groups compared to the control. CONCLUSIONS: On the basis of the present results dimethoate can produce clinical signs of toxicity and significant inhibition of the maternal and fetal AChE activities in dose groups of 15 and 28 mg/kg/day and showed fetotoxicity without teratogenic effects at 28 mg/kg/day. 相似文献
10.
Acute exposure to arsenic trioxide has been reported to induce death and/or multiple organ damage with symptoms including nausea, vomiting, diarrhea, gastrointestinal hemorrhage, cerebral edema, tachycardia, dysrhythmias and hypovolemic shock. Its toxic effects are due to its ability to bind to sulfhydryl groups of proteins and to inhibit energy production. Although the chronic exposure to arsenic trioxide has been linked to various types of cancer, such as skin, liver, lung, bladder and kidney neoplasms, studies of its carcinogenic potential in animals have not been conclusive. In this study, we investigated the genotoxic potential of arsenic trioxide in bone-marrow cells obtained from Sprague-Dawley rats; using chromosomal aberrations (CA), mitotic index (MI) and micronuclei (MN) formation as the toxicological endpoints. Four groups of six male rats each, weighing approximately 60+/-2 g per rat, were injected intraperitoneally, once a day for 5 days with doses of 5, 10, 15 and 20 mg/kg body weight (BW) of arsenic trioxide dissolved in distilled water. A control group was also made of six animals injected with distilled water without chemical. All the animals were sacrificed at the end of the treatment period. Chromosome and micronuclei preparation was obtained from bone-marrow cells following standard protocols. Arsenic trioxide exposure significantly increased the number of structural chromosomal aberrations, the frequency of micronucleated cells and decreased the mitotic index in treated groups when compared with the control group. Our results demonstrate that arsenic trioxide has a clastogenic/genotoxic potential as measured by the bone-marrow CA and MN tests in Sprague-Dawley rats. 相似文献
11.
BACKGROUND: 1,6-Hexamethylene diisocyanate (HDI), a widely used chemical in commercial polyurethane manufacture, has been shown to affect the respiratory tract of experimental animals. However, its potential to affect neonatal development, particularly after inhalation exposure, is less well described. The present study was conducted to assess the developmental toxicity of HDI. METHODS: Gravid Sprague-Dawley rats were exposed to concentrations of 0, 0. 005, 0.050, or 0.300 ppm HDI via inhalation (whole-body exposure) on days 0-19 of gestation. Maternal toxicity, as demonstrated by clinical signs and changes in body weight gain during gestation, was characterized. Dams were sacrificed on gestation day 20, at which time fetuses were removed by cesarean section, the uterus was examined, and a gross maternal necropsy was performed. Maternal evaluation also included lung weight and a detailed histopathologic assessment of the nasal turbinates, larynx, trachea, and lungs. All fetuses were evaluated for external anomalies. Approximately one-half of each litter was examined for visceral effects, the other half underwent a skeletal (bone and cartilage) examination. RESULTS: Maternal toxicity was demonstrated in the 0.300- and, to a lesser extent, in the 0.050-ppm exposure groups. No maternal effects were noted in the 0.005-ppm group. Test compound-related maternal effects were restricted to histopathological findings and included acanthosis, hyperkeratosis, inflammation of the nasal turbinates, and, more seriously, degeneration of the olfactory epithelium. No pathological alterations were noted in the larynx, trachea, or lungs in any dose group. No test compound-related effects were observed on any reproductive parameters, or any embryonic endpoints, including pre/postimplantation loss and resorption. There were no effects on litter size or the number of fetuses per implantation site and no effects on fetal or placental weights were observed. No test compound-related fetal external, visceral, or skeletal findings were observed. No effect on the fetal or litter incidence of total malformations or variations was observed, and there was no difference in the incidence of malformations between males and females. CONCLUSIONS: Administered as described in this study, 1, 6-HDI produced maternal effects (nasal turbinate histopathology) at concentrations of 0.050 and 0.300 ppm with no developmental toxicity observed at any concentration. 相似文献
12.
Carney EW Thorsrud BA Dugard PH Zablotny CL 《Birth defects research. Part B, Developmental and reproductive toxicology》2006,77(5):405-412
The potential for trichloroethylene (TCE) and perchloroethylene (PERC) to induce developmental toxicity was investigated in Crl:CD (SD) rats whole-body exposed to target concentrations of 0, 50, 150 or 600 ppm TCE or 0, 75, 250 or 600 ppm PERC for six hours/day, seven days/week on gestation day (GD) 6-20 and 6-19, respectively. Actual chamber concentrations were essentially identical to target with the exception of the low PERC exposure level, which was 65 ppm. The highest exposure levels exceeded the limit concentration (2 mg/L) specified in the applicable test guidelines. Maternal necropsies were performed the day following the last exposure. Dams exposed to 600 ppm TCE exhibited maternal toxicity, as evidenced by decreased body weight gain (22% less than control) during GD 6-9. There were no maternal effects at 50 or 150 ppm TCE and no indications of developmental toxicity (including heart defects or other terata) at any exposure level tested. Therefore, the TCE NOEC for maternal toxicity was 150 ppm, whereas the embryo/fetal NOEC was 600 ppm. Maternal responses to PERC were limited to slight, but statistically significant reductions in body weight gain and feed consumption during the first 3 days of exposure to 600 ppm, resulting in a maternal NOEC of 250 ppm. Developmental effects at 600 ppm consisted of reduced gravid uterus, placental and fetal body weights, and decreased ossification of thoracic vertebral centra. Developmental effects at 250 ppm were of minimal toxicological significance, being limited to minor decreases in fetal and placental weight. There were no developmental effects at 65 ppm. 相似文献
13.
Robert L. Clark Maureen Youreneff Anthony M. DeLise 《Birth defects research. Part B, Developmental and reproductive toxicology》2016,107(6):243-257
The combination of artemether plus lumefantrine is a type of artemisinin‐based combination therapy (ACT) recommended by the World Health Organization for uncomplicated falciparum malaria except in the first trimester of pregnancy. The first trimester restriction was based on the marked embryotoxicity in animals (including embryo death and cardiac and skeletal malformations) of artemisinins such as artesunate, dihydroartemisinin, and artemether. Before recommending ACTs for use in the first trimester, the World Health Organization has requested that all information relevant to the assessment of risk of ACTs to the embryo be made available to the public. This report describes the results of embryo‐fetal development studies of artemether alone, lumefantrine alone, and the combination in rats and rabbits as well as toxicokinetic studies of lumefantrine in pregnant rabbits. The developmental no‐effect levels for lumefantrine were 300 mg/kg/day in rats (based on a 25% decrease in litter size at 1000 mg/kg/day) and 1000 mg/kg/day in rabbits. The calculated safety margins based on human equivalent dose and plasma Cmax and AUC values were in the range of 2.5‐ to 17‐fold. The developmental no‐effect levels for artemether were 3 mg/kg/day in rats and 25 mg/kg/day in rabbits. Lumefantrine caused no teratogenicity and was not a potent embryotoxin in rats and rabbits. Expected artemisinin‐like findings were seen with artemether alone and with artemether/lumefantrine combined except that no malformations were observed. There were no findings in pregnant rats and rabbits that would cause increased concern for the use of artemether–lumefantrine in the first trimester compared to other ACTs. 相似文献
14.
15.
Developmental toxicity evaluation of berberine in rats and mice 总被引:1,自引:0,他引:1
Jahnke GD Price CJ Marr MC Myers CB George JD 《Birth defects research. Part B, Developmental and reproductive toxicology》2006,77(3):195-206
BACKGROUND: Berberine, a plant alkaloid, is found in some herbal teas and health-related products. It is a component of goldenseal, an herbal supplement. Berberine chloride dihydrate (BCD) was evaluated for developmental toxicity in rats and mice. METHODS: Berberine chloride dihydrate was administered in the feed to timed-mated Sprague-Dawley (CD) rats (0, 3,625, 7,250, or 14,500 ppm; on gestational days [GD] 6-20), and Swiss Albino (CD-1) mice (0, 3,500, 5,250, or 7,000 ppm; on GD 6-17). Ingested doses were 0, 282, 531, and 1,313 mg/kg/day (rats) and 0, 569, 841, and 1,155 mg/kg/day (mice). RESULTS: There were no maternal deaths. The rat maternal lowest observed adverse effect level (LOAEL), based on reduced maternal weight gain, was 7,250 ppm. The rat developmental toxicity LOAEL, based on reduced fetal body weight per litter, was 14,500 ppm. In the mouse study, equivocal maternal and developmental toxicity LOAELs were 5,250 ppm. Due to scattering of feed in the high dose groups, a gavage study at 1,000 mg/kg/day was conducted in both species. CONCLUSIONS: In rats, maternal, but not fetal adverse effects were noted. The maternal toxicity LOAEL remained at 7,250 ppm (531 mg/kg/day) based on the feed study and the developmental toxicity NOAEL was raised to 1,000 mg/kg/day BCD based on the gavage study. In the mouse, 33% of the treated females died. Surviving animals had increased relative water intake, and average fetal body weight per litter decreased 5-6% with no change in live litter size. The maternal toxicity LOAEL remained at 5,250 ppm (841 mg/kg/day) BCD, based on increased water consumption. The developmental toxicity LOAEL was raised to 1,000 mg/kg/day BCD based on decreased fetal body weight. 相似文献
16.
Lorenz M Fechner M Kalkowski J Fröhlich K Trautmann A Böhm V Liebisch G Lehneis S Schmitz G Ludwig A Baumann G Stangl K Stangl V 《PloS one》2012,7(1):e30808
Background
Lycopene is the main carotenoid in tomatoes, where it is found in high concentrations. Strong epidemiological evidence suggests that lycopene may provide protection against cardiovascular diseases. We therefore studied the effects of lycopene on diet-induced increase in serum lipid levels and the initiation of atherosclerosis in New Zealand White (NZW) rabbits.Methodology/Principal Findings
The animals, divided into four groups of 9 animals each, were fed either a standard diet, a high-cholesterol diet containing 0.5% cholesterol, a high-cholesterol diet containing placebo beadlets, or a high-cholesterol diet plus 5 mg/kg body weight/day of lycopene (in the form of lycopene beadlets), for a period of 4 weeks. We found significantly elevated lycopene plasma levels in the animal group treated with lycopene beadlets. Compared to the high-cholesterol and the placebo group, this was associated with a significant reduction of 50% in total cholesterol and LDL cholesterol serum levels in the lycopene group. The amount of cholesteryl ester in the aorta was significantly decreased by lycopene. However, we did not observe a significant decrease in the extent of aortic surface lipid accumulation in the lycopene group. In addition, no differences in the intima-media thickness among groups were observed. Endothelial-dependent and endothelial-independent vasodilation in isolated rabbit aortic and carotid rings did not differ among any of the animal groups.Conclusions
Lycopene supplementation for 4 weeks increased lycopene plasma levels in the animals. Although we found strongly reduced total and LDL cholesterol serum levels as well as significantly lower amounts of cholesteryl ester in the aortae in the lycopene-treated group, no significant differences in initial lesions in the aortae were detected. 相似文献17.
18.
Jahnke GD Price CJ Marr MC Myers CB George JD 《Birth defects research. Part B, Developmental and reproductive toxicology》2004,71(2):89-101
BACKGROUND: Emodin, a widely available herbal remedy, was evaluated for potential effects on pregnancy outcome. METHODS: Emodin was administered in feed to timed-mated Sprague-Dawley (CD) rats (0, 425, 850, and 1700 ppm; gestational day [GD] 6-20), and Swiss Albino (CD-1) mice (0, 600, 2500 or 6000 ppm; GD 6-17). Ingested dose was 0, 31, 57, and approximately 80-144 mg emodin/kg/day (rats) and 0, 94, 391, and 1005 mg emodin/kg/day (mice). Timed-mated animals (23-25/group) were monitored for body weight, feed/water consumption, and clinical signs. At termination (rats: GD 20; mice: GD 17), confirmed pregnant dams (21-25/group) were evaluated for clinical signs: body, liver, kidney, and gravid uterine weights, uterine contents, and number of corpora lutea. Fetuses were weighed, sexed, and examined for external, visceral, and skeletal malformations/variations. RESULTS: There were no maternal deaths. In rats, maternal body weight, weight gain during treatment, and corrected weight gain exhibited a decreasing trend. Maternal body weight gain during treatment was significantly reduced at the high dose. In mice, maternal body weight and weight gain was decreased at the high dose. CONCLUSIONS: Prenatal mortality, live litter size, fetal sex ratio, and morphological development were unaffected in both rats and mice. At the high dose, rat average fetal body weight per litter was unaffected, but was significantly reduced in mice. The rat maternal lowest observed adverse effect level (LOAEL) was 1700 ppm; the no observed adverse effect level (NOAEL) was 850 ppm. The rat developmental toxicity NOAEL was > or =1700 ppm. A LOAEL was not established. In mice, the maternal toxicity LOAEL was 6000 ppm and the NOAEL was 2500 ppm. The developmental toxicity LOAEL was 6000 ppm (reduced fetal body weight) and the NOAEL was 2500 ppm. 相似文献
19.
Sexual exhaustion was studied in hybrid White New Zealand rabbits of different ages, for this purpose six young rabbits from 6 to 12 months of age, and six adult rabbits of 14-20 months of age were selected. Sexually receptive females were taken to the male's cage, for a period of 4 min, if copulation was not performed, the observation was then considered finished. If the male mounted within this period of time, the mounted female was immediately replaced by another female and 4 min of exposure time to the male were reinitiated, and repetitions were conducted until the male that was being studied refused to mount a new female at which time the male was considered to be sexually exhausted. Young rabbits mounted and ejaculated 9-10 times before sexual exhaustion. Adult rabbits showed a fluctuation of between 6 and 8 mounts per ejaculations before refusing another mount. The statistical analysis with a Mann-Whitney U-test, showed that the Rank sum for group A was 57, while for group B was 21. The U-value was 0.0 and the adjusted Z -2.9943. A significant difference was observed between groups with a value of P=0.00275. In the present study it was demonstrated that there is an influence of age on sexual behavior of rabbits. 相似文献
20.
Ethylene glycol (EG), a chemical which causes skeletal malformations in rats, was administered by gavage to sperm positive CD rats on gestational days (gd) 6 through 15 at doses of 0 or 2,500 mg/kg/day to assess its effects on the pre- and postnatal skeletal development. Dams and fetuses/pups were killed on gd 18, 20, postnatal day (pnd) 1, 4, 14, 21, or 63, and offspring were double-stained for examination of skeletal malformations and degree of ossification of rapidly developing skeletal districts. No difference in gestational day of delivery between controls and the EG-treated dams was seen. Fetal weights per litter were significantly decreased with EG treatment in both the gd 18 and 20 groups. Pup body weight on pnd 1 was significantly below controls; however, EG had no effect on pup body weight on pnd 4-63. The percentage of fetuses/pups with skeletal malformations per litter was significantly increased after EG exposure for all time points except at pnd 63, with a predominance of axial skeletal defects. The percentages of total ossification, of sternabrae ossified, and of vertebral centra ossified were significantly reduced in the EG groups on gd 20 and on pnd 1-21, but not on gd 18 or on pnd 63. When the ossification data were subjected to statistical analysis with fetal/pup weights as a covariate, the values for EG-exposed pups on gd 20 were not statistically significantly different from the control values. The reduced ossification values for EG-exposed pups on pnd 1-21 retained statistical significance even after covariate analysis. There was no effect of dose or body weight on ossification of fore- or hindlimb digits. In conclusion, the differences in incidence of skeletal alterations observed prenatally and through pnd 21 were not evident by pnd 63, suggesting that perinatal skeletal abnormalities may not always be permanent. 相似文献