首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Myocardial mean myoglobin oxygen saturation was determined spectroscopically from isolated guinea pig hearts perfused with red blood cells during increasing hypoxia. These experiments were undertaken to compare intracellular myoglobin oxygen saturation in isolated hearts perfused with a modest concentration of red blood cells (5% hematocrit) with intracellular myoglobin saturation previously reported from traditional buffer-perfused hearts. Studies were performed at 37 degrees C with hearts paced at 240 beats/min and a constant perfusion pressure of 80 cmH2O. It was found that during perfusion with a hematocrit of 5%, baseline mean myoglobin saturation was 93% compared with 72% during buffer perfusion. Mean myoglobin saturation, ventricular function, and oxygen consumption remained fairly constant for arterial perfusate oxygen tensions above 100 mmHg and then decreased precipitously below 100 mmHg. In contrast, mean myoglobin saturation, ventricular function, and oxygen consumption began to decrease even at high oxygen tension with buffer perfusion. The present results demonstrate that perfusion with 5% red blood cells in the perfusate increases the baseline mean myoglobin saturation and better preserves cardiac function at low oxygen tension relative to buffer perfusion. These results suggest that caution should be used in extrapolating intracellular oxygen dynamics from buffer-perfused to blood-perfused hearts.  相似文献   

2.
Previous work from this laboratory using near-infrared optical spectroscopy of myoglobin has shown that approximately 20% of the myocardium is hypoxic in buffer-perfused hearts that are perfused with fully oxygenated buffer at 37 degrees C. The present study was undertaken to determine cardiac myoglobin saturation in buffer-perfused hearts when cardiac contractility was increased with epinephrine and decreased during cardiac arrest with KCl. Infusion of epinephrine to achieve a doubling of contractility, as measured by left ventricular maximum pressure change over time (dP/dt), resulted in a decrease in mean myoglobin saturation from 79% at baseline to 65% and a decrease in coronary venous oxygen tension from 155 mmHg at baseline to 85 mmHg. Cardiac arrest with KCl increased mean myoglobin saturation to 100% and coronary venous oxygen tension to 390 mmHg. A previously developed computer model of oxygen transport in the myocardium was used to calculate the probability distribution of intracellular oxygen tension and the hypoxic fraction of the myocardium with an oxygen tension below 0.5 mmHg. The hypoxic fraction of the myocardium was approximately 15% at baseline, increased to approximately 30% during epinephrine infusion, and fell to approximately 0% during cardiac arrest. The coronary venous adenosine concentration changed in parallel with the hypoxic fraction of the myocardium during epinephrine and KCl. It is concluded that catecholamine stimulation of buffer-perfused hearts increases hypoxia in the myocardium and that the increase in venous adenosine concentration is a reflection of the larger hypoxic fraction of myocardium that is releasing adenosine.  相似文献   

3.
Working rat hearts were perfused with either buffer or with defibrinated, undiluted rat blood dialyzed to remove vasoconstrictor factors. With precautions taken for sterility in the preparation of the perfusate and the apparatus, hearts were obtained which were stable as judged by stroke rate and cardiac output. In these hearts, cardiac output and coronary flow averaged 46.0 and 1.7 ml/g heart per min, respectively. Perfusion with erythrocyte-free buffer depressed cardiac output by 30%, while coronary flow averaged 8.8 ml/g of heart per min. The mean stroke rate of blood-perfused hearts was 300 beats/min but only 240 beats/min during buffer perfusion. In blood-perfused hearts, insulin did not alter stroke rate but significantly lowered coronary flow. The hormone caused a transient increase in cardiac output in hearts perfused with buffer. Insulin did not alter glucose uptake in buffer-perfused hearts but increased lactate release in perfusions with blood. Both serum fatty acids and triacylglycerol fatty acids were significant metabolic fuels in hearts perfused with undiluted blood. The preparation described would appear to be potentially useful for the study of myocardial metabolism in vitro.  相似文献   

4.
The mean brain PO2 of fetal sheep was calculated using equations based on the Krogh cylinder model of O2 diffusion. This analysis took into account the effect of red cell spacing on capillary PO2. Uncompensated changes in arterial O2 tension, the radius of the Krogh cylinder, and metabolic rate of brain tissue were predicted to affect mean brain PO2 more than uncompensated changes in brain blood flow or haemoglobin concentration. Under normal conditions (CaO2 = 7.42 ml/dl), the mean PO2 of the fetal brain was calculated to be about 12 mmHg. Hypoxaemia decreased the predicted mean O2 tension to 7.6 mmHg (CaO2 = 5.19 ml/dl), 5.0 mmHg (CaO2 = 4.11 ml/dl), and 4.3 ml/dl (CaO2 = 3.50 ml/dl). Isovolaemic anaemia reduced mean brain PO2 to 8.7 mmHg (CaO2 = 4.40 ml/dl), 8.3 mmHg (CaO2 = 3.94 ml/dl), and 7.3 mmHg (CaO2 = 3.19 ml/dl). During anaemia the increased distance between red cells was calculated to contribute significantly to brain hypoxaemia. A summary equation is presented which enables the investigator to estimate easily the mean PO2 of the fetal brain when several factors are changed from standard values.  相似文献   

5.
The microvascular effects and hemodynamic events following exposure to normobaric hyperoxia (because of inspiration of 100% O2) were studied in the awake hamster window chamber model and compared with normoxia. Hyperoxia increased arterial blood Po2 to 477.9 +/- 19.9 from 60.0 +/- 1.2 mmHg (P < 0.05). Heart rate and blood pressure were unaltered, whereas cardiac index was reduced from 196 +/- 13 to 144 +/- 31 ml.min-1.kg-1 (P < 0.05) in hyperoxia. Direct measurements in the microcirculation showed there was arteriolar vasoconstriction, reduction of microvascular flow (83% of control, P < 0.05), and functional capillary density (FCD, 74 +/- 16% of control), the latter change being significant (P < 0.05). Calculations of oxygen delivery and oxygen consumption based on the measured changes in microvascular blood flow velocity and diameter and estimates of oxygen saturation corrected for the Bohr effect due to the lowered pH and increased Pco2 showed that oxygen transport in the microvascular network did not change between normal and hyperoxic condition. The congruence of systemic and microvascular hemodynamics events found with hyperoxia suggests that the microvascular findings are common to most tissues in the organism, and that hyperoxia, due to vasoconstriction and the decrease of FCD, causes a maldistribution of perfusion in the microcirculation.  相似文献   

6.
We investigated intestinal oxygen supply and mucosal tissue PO2 during administration of increasing dosages of continuously infused arginine vasopressin (AVP) in an autoperfused, innervated jejunal segments in anesthetized pigs. Mucosal tissue PO2 was measured by employing two Clark-type surface oxygen electrodes. Oxygen saturation of jejunal microvascular hemoglobin was determined by tissue reflectance spectrophotometry. Microvascular blood flow was assessed by laser-Doppler velocimetry. Systemic hemodynamic variables, mesenteric venous and systemic acid-base and blood gas variables, and lactate measurements were recorded. Measurements were performed at baseline and at 20-min intervals during incremental AVP infusion (n = 8; 0.007, 0.014, 0.029, 0.057, 0.114, and 0.229 IU.kg(-1).h(-1), respectively) or infusion of saline (n=8). AVP infusion led to a significant (P < .05), dose-dependent decrease in cardiac index (from 121 +/- 31 to 77 +/- 27 ml.kg(-1).min(-1) at 0.229 IU.kg(-1).h(-1)) and systemic oxygen delivery (from 14 +/- 3 to 9 +/- 3 ml.kg(-1).min(-1) at 0.229 IU.kg(-1).h(-1)) concomitant with an increase in systemic oxygen extraction ratio (from 31 +/- 4 to 48 +/- 10%). AVP decreased microvascular blood flow (from 133 +/- 47 to 82 +/- 35 perfusion units at 0.114 IU.kg(-1).h(-1)), mucosal tissue PO2 (from 26 +/- 7 to 7 +/- 2 mmHg at 0.229 IU.kg(-1).h(-1)), and microvascular hemoglobin oxygen saturation (from 51 +/- 9 to 26 +/- 12% at 0.229 IU.kg(-1).h(-1)) without a significant increase in mesenteric venous lactate concentration (2.3 +/- 0.8 vs. 3.4 +/- 0.7 mmol/l). We conclude that continuously infused AVP decreases intestinal oxygen supply and mucosal tissue PO2 due to a reduction in microvascular blood flow and due to the special vascular supply in the jejunal mucosa in a dose-dependent manner in pigs.  相似文献   

7.
Fischer 344 rats with R3230 Ac mammary carcinomas implanted in dorsal flap window chambers served as a model to obtain measurements of perivascular and stromal oxygen tension in normal and tumor tissues using Whalen recessed-tip microelectrodes (3- to 6-microns tip). Perivascular measurements were made adjacent to vessels with continuous blood flow. Thus the measurements and models provided are reflective of conditions leading to chronic hypoxia. Perivascular oxygen tensions averaged 72 +/- 13 mmHg in normal tissue vessels adjacent to tumor, 26 +/- 5 mmHg in tumor periphery, and 12 +/- 3 mmHg in tumor central vessels. There was a significant trend toward lower perivascular oxygen tensions in the tumor center (Kruskal-Wallis test, P = 0.002). A similar tendency was seen with a limited number of stromal measurements. Krogh cylinder models, which incorporate these data for perivascular oxygen tension, along with morphometric data obtained from the same tumor model suggest that hypoxic regions will exist between tumor vessels in the tumor center unless O2 consumption rates are well below 0.6 ml/100 g/min. The low perivascular measurements observed near the tumor center combined with the theoretical considerations suggest, for this model at least, that tissue oxygenation may best be improved by increasing red cell velocity and input pO2 and reducing oxygen consumption. The low perivascular oxygen tensions observed near the center also suggest that conditions conducive to increased red cell rigidity exist, that drugs which can decrease red cell rigidity could improve tumor blood flow and oxygenation, and that the endothelium of those vessels may be susceptible to hypoxia-reoxygenation injury.  相似文献   

8.
Chronic heart failure is most commonly due to ischemic cardiomyopathy after a previous myocardial infarction (MI). Rebuilding lost myocardium to prevent heart failure mandates a neovasculature able to nourish new cardiomyocytes. Previously we have used a series of novel techniques to directly measure the ability of the scar neovasculature to deliver and exchange oxygen at 1-4 wk after MI in rats following left coronary artery ligation. In this study, we have developed a morphologically realistic mathematical model of oxygen transport in cardiac tissue to help in deciding what angiogenic strategies should be used to rebuild the vasculature. The model utilizes microvascular morphology of cardiac tissue based on available morphometric images and is used to simulate experimentally measured oxygen levels after MI. Model simulations of relative oxygenation match experimental measurements closely and can be used to simulate distributions of oxygen concentration in normal and infarcted rat hearts. Our findings indicate that both vascular density and vascular spatial distribution play important roles in cardiac tissue oxygenation after MI. Furthermore, the model can simulate relative changes in tissue oxygen levels in infarcted tissue treated with proangiogenic compounds such as losartan. From the minimum oxygen concentration myocytes need to maintain their normal function, we estimate that 2 wk after MI 29% of the myocardium is severely hypoxic and that the vascular density of the infarcted tissue should reach 75% of normal tissue to ensure that no areas of the myocardium are critically hypoxic.  相似文献   

9.
Inherent in the inflammatory response to sepsis is abnormal microvascular perfusion. Maldistribution of capillary red blood cell (RBC) flow in rat skeletal muscle has been characterized by increased 1) stopped-flow capillaries, 2) capillary oxygen extraction, and 3) ratio of fast-flow to normal-flow capillaries. On the basis of experimental data for functional capillary density (FCD), RBC velocity, and hemoglobin O2 saturation during sepsis, a mathematical model was used to calculate tissue O2 consumption (Vo2), tissue Po2 (Pt) profiles, and O2 delivery by fast-flow capillaries, which could not be measured experimentally. The model describes coupled capillary and tissue O2 transport using realistic blood and tissue biophysics and three-dimensional arrays of heterogeneously spaced capillaries and was solved numerically using a previously validated scheme. While total blood flow was maintained, capillary flow distribution was varied from 60/30/10% (normal/fast/stopped) in control to 33/33/33% (normal/fast/stopped) in average sepsis (AS) and 25/25/50% (normal/fast/stopped) in extreme sepsis (ES). Simulations found approximately two- and fourfold increases in tissue Vo2 in AS and ES, respectively. Average (minimum) Pt decreased from 43 (40) mmHg in control to 34 (27) and 26 (15) mmHg in AS and ES, respectively, and clustering fast-flow capillaries (increased flow heterogeneity) reduced minimum Pt to 14.5 mmHg. Thus, although fast capillaries prevented tissue dysoxia, they did not prevent increased hypoxia as the degree of microvascular injury increased. The model predicts that decreased FCD, increased fast flow, and increased Vo2 in sepsis expose skeletal muscle to significant regions of hypoxia, which could affect local cellular and organ function.  相似文献   

10.
Increases in cardiac activity induce autoregulatory coronary vasodilation. The intermediate steps which trigger this process are thought to be myocardial hypoxia which induces the release of vasodilator mediator(s). The present study examines the relationships between mechanical activity, oxygen tension, and release of vasodilator material in isolated perfused hearts. Guinea-pig isolated hearts were perfused in series, the effluent from donor hearts being regassed prior to entry to recipient hearts. Histamine (1 microgram) and isoproterenol (10 ng) increased the rate and tension of donor hearts and produced predominant coronary vasodilator responses which were followed by the appearance of vasodilator material in the recipient (falls in perfusion pressure, 9.8 +/- 1.1 and 9.1 +/- 2.5 mmHg) (1 mmHg = 133.322 Pa). Exposure of donor hearts to hypoxia also caused vasodilatation and release of vasodilator material (fall in pressure, 11.4 +/- 1.6 mmHg). Pacing-induced tachycardia (6 Hz) of donor hearts promoted the release of vasodilator material, the fall in recipient heart pressure being 11.5 +/- 1.8 mmHg. This was abolished by beta-adrenoceptor blockade and when donor hearts were from reserpine-pretreated guinea pigs. In was concluded that pacing released endogenous catecholamines which in turn released the vasodilator material. Pacing per se did not cause vasodilatation or release of the vasodilator. The Po2 of perfusates from donor hearts was reduced by pacing at 5 Hz (25.7 +/- 5.2 mmHg) and by isoproterenol (10 ng, 32.0 +/- 3.7 mmHg), indicative of an elevated oxygen extraction. The isoproterenol-induced falls in Po2 were abolished by beta-adrenoceptor blockade. However, the pacing-induced falls in Po2 persisted, the values occurring before (25.7 +/- 5.2 mmHg) and after propranolol (45.7 +/- 4.5 mmHg) and before (32.1 +/- 1.1 mmHg) and after practolol (27.3 +/- 4.1 mmHg) not differing significantly (p greater than 0.05). These falls in perfusate Po2 were not accompanied by coronary vasodilatation or release of vasoactive material. Perfusate Po2 changes could therefore be dissociated from the coronary vasodilatation and vasoactive material release, suggesting that hypoxia may not be a prerequisite for the metabolic autoregulatory vasodilatation in response to myocardial hyperactivity induced by cardiac stimulants.  相似文献   

11.
It was previously shown that red blood cells release ATP when blood oxygen tension decreases. ATP acts on microvascular endothelial cells to produce a retrograde conducted vasodilation (presumably via gap junctions) to the upstream arteriole. These observations form the basis for an ATP hypothesis of local metabolic control of coronary blood flow due to vasodilation in microvascular units where myocardial oxygen extraction is high. Dogs (n = 10) were instrumented with catheters in the aorta and coronary sinus, and a flow transducer was placed around the circumflex coronary artery. Arterial and coronary venous plasma ATP concentrations were measured at rest and during three levels of treadmill exercise by using a luciferin-luciferase assay. During exercise, myocardial oxygen consumption increased approximately 3.2-fold, coronary blood flow increased approximately 2.7-fold, and coronary venous oxygen tension decreased from 19 to 12.9 mmHg. Coronary venous plasma ATP concentration increased significantly from 31.1 to 51.2 nM (P < 0.01) during exercise. Coronary blood flow increased linearly with coronary venous ATP concentration (P < 0.01). Coronary venous-arterial plasma ATP concentration difference increased significantly during exercise (P < 0.05). The data support the hypothesis that ATP is one of the factors controlling coronary blood flow during exercise.  相似文献   

12.
In isolated rat hearts perfused with HEPES and red blood cell-enriched buffers, we examined changes in left ventricular pressure induced by increases in heart rate or infusion of adenosine to investigate whether the negative force-frequency relation and the positive inotropic effect of adenosine are related to an inadequate oxygen supply provided by crystalloid perfusates. Hearts perfused with HEPES buffer at a constant flow demonstrated a negative force-frequency relation, whereas hearts perfused with red blood cell-enriched buffer exhibited a positive force-frequency relation. In contrast, HEPES buffer-perfused hearts showed a concentration-dependent increase in left ventricular systolic pressure [EC50 = 7.0 +/- 1.2 nM, maximal effect (Emax) = 104 +/- 2 and 84 +/- 2 mmHg at 0.1 microM and baseline, respectively] in response to adenosine, whereas hearts perfused with red blood cell-enriched buffer showed no change in left ventricular pressure. The positive inotropic effect of adenosine correlated with the simultaneous reduction in heart rate (r = 0.67, P < 0.01; EC50 = 3.8 +/- 1.4 nM, baseline 228 +/- 21 beats/min to a minimum of 183 +/- 22 beats/min at 0.1 microM) and was abolished in isolated hearts paced to suppress the adenosine-induced bradycardia. In conclusion, these results indicate that the negative force-frequency relation and the positive inotropic effect of adenosine in the isolated rat heart are related to myocardial hypoxia, rather than functional peculiarities of the rat heart.  相似文献   

13.
The aim of this study was to test whether oxygenation in acutely ischemic, collateralized tissue may be improved by normovolemic hemodilution with a solution containing liposome-encapsulated human Hb (HbV). A skin flap model in anesthetized hamsters was used, which consisted of two parts receiving either anatomic or collateral perfusion. Microhemodynamics were investigated with intravital microscopy. Partial tissue oxygen tension was measured with a Clark-type microprobe. Hemodilution was obtained by exchanging 50% of the total blood volume with HbV suspended in 8% human serum albumin (HSA8) or 6% Dextran 70 (Dx70). The size of the vesicles was 276 nm, the P(50) was 22 mmHg, and the Hb concentration of the solutions was 7.5 g/dl. Colloid osmotic pressure and viscosity were 49.9 mmHg and 8.7 cP for HbV-Dx70 and 40.0 mmHg and 2.9 cP for HbV-HSA8, respectively. Hemodilution with HbV-Dx70 led to an increase in microvascular blood flow in the ischemic microvessels to maximally 158% (median, P < 0.01), whereas blood flow remained virtually unchanged after hemodilution with HbV-HSA8. In the ischemic tissue, oxygen tension was improved from 11.9 to 17.0 mmHg (P < 0.01) after hemodilution with HbV-Dx70 but remained virtually unchanged after hemodilution with HbV-HSA8. Our study suggests that the oxygenation in acutely ischemic, collateralized tissue may be improved by normovolemic hemodilution with HbV suspended in Dx70. The effect was achieved by an increase in microcirculatory blood flow related to the rheological properties of the suspending medium.  相似文献   

14.
Summary An important role of myoglobin in red muscle is to facilitate the diffusion of oxygen for metabolism. We consider a model for muscle respiration in which the oxygen consumption is of a MichaelisMenten form. The resulting mathematical model is solved in two different ways with two different boundary conditions. The first uses the singular perturbation method of Murray (1974), while the second, which gives another justication of the simpler procedure, is a direct numerical computation of the full problem.The oxygen tension and saturation are often small. For realistic values of the Michaelis-Menten constant the oxygen tension, the saturation and the radius of the region in which the oxygen tension is negligibly small can be calculated using the constant consumption model of Murray (1974), with corrected boundary conditions (those for a Stefan problem), which in certain circumstances markedly affect the solution.B. A. T. would like to thank the Science Research Council of the United Kingdom for their financial support.  相似文献   

15.
A theoretical two-dimensional model is used to investigate oxygen gradients in a red skeletal muscle fiber. The model describes the steady state, free and myoglobin-facilitated diffusion of oxygen into a respiring cylindrical muscle fiber cross section. The oxygen tension at the sarcolemma is assumed to vary along the sarcolemma as an approximation to the discrete capillary oxygen supply around the fiber. Maximal oxygen gradients are studied by considering parameters relevant to a maximally-respiring red muscle fiber. The model predicts that angular variations in the oxygen tension imposed at the sarcolemma due to the discrete capillary sources do not penetrate deeply into the fiber over a range of physiological values for myoglobin concentration, diffusion coefficients, number of surrounding capillaries, and oxygen tension level at the sarcolemma. Also, the oxygen tension in the core of the fiber is determined by the average oxygen tension at the sarcolemma. The drop in oxygen tension from fiber periphery to core, however, does depend significantly on the myoglobin concentration, the oxygen tension level at the sarcolemma, and the oxygen and myoglobin diffusivities. This dependence is summarized by calculating the minimum average sarcolemmal oxygen tension for maximal respiration without the development of an intracellular anoxic region. For a myoglobin-rich muscle fiber (0.5 mM myoglobin), the model predicts that maximal oxygen consumption can proceed with a relatively flat (less than 5 mm Hg) oxygen tension drop from fiber periphery to core over a large range for diffusion coefficients.  相似文献   

16.
Summary In an attempt to study the metabolic role of adenosine in the amphibian heart, we perfusedRana ridibunda hearts under conditions of decreased oxygen supply or increased oxygen demand and measured the rate of adenosine appearance as well as the concentrations of adenine nucleotides. Anoxia was associated with a significant increase in the myocardial and perfusate concentration of adenosine and its degradation products, inosine and hypoxanthine, while changes were also observed in the concentrations of adenine nucleotides and creatine phosphate. Furthermore, adenosine production inRana ridibunda hearts was enhanced under conditions of increased cardiac work induced by perfusion pressure elevation. Adenosine production was inversely proportional to the energy charge value calculated from the tissue content of adenine nucleotides under conditions of anoxia and increased heart work. The results are in accordance with the proposed role of adenosine as a physiological metabolic vasodilator in the coronary circulation of the mammalian heart and support the hypothesis that adenosine can be involved in regulating blood vessel resistance inRana ridibunda heart under conditions of low myocardial oxygen tension. Thus it appears that adenosine could act as a vasodilatory substance inRana ridibunda heart.  相似文献   

17.
This work represents a culmination of research on oxygen transport to muscle tissue, which takes into account oxygen transport due to convection, diffusion, and the kinetics of simultaneous reactions between oxygen and hemoglobin and myoglobin. The effect of adding hemoglobin-based oxygen carriers (HBOCs) to the plasma layer of blood in a single capillary surrounded by muscle tissue based on the geometry of the Krogh tissue cylinder is examined for a range of HBOC oxygen affinity, HBOC concentration, capillary inlet oxygen tension (pO(2)), and hematocrit. The full capillary length of the hamster retractor muscle was modeled under resting (V(max) = 1.57 x 10(-4) mLO(2) mL(-1) s(-1), cell velocity (v(c)) = 0.015 cm/s) and working (V(max) = 1.57 x 10(-3) mLO(2) mL(-1) s(-1), v(c) = 0.075 cm/s) conditions. Two spacings between the red blood cell (RBC) and the capillary wall were examined, corresponding to a capillary with and without an endothelial surface layer. Simulations led to the following conclusions, which lend physiological insight into oxygen transport to muscle tissue in the presence of HBOCs: (1) The reaction kinetics between oxygen and myoglobin in the tissue region, oxygen and HBOCs in the plasma, and oxygen and RBCs in the capillary lumen should not be neglected. (2) Simulation results yielded new insight into possible mechanisms of oxygen transport in the presence of HBOCs. (3) HBOCs may act as a source or sink for oxygen in the capillary and may compete with RBCs for oxygen. (4) HBOCs return oxygen delivery to muscle tissue to normal for varying degrees of hypoxia (inlet capillary pO(2) < 30 mmHg) and anemia (hematocrit < 46%) for the hamster model.  相似文献   

18.
The lack of a satisfactory method for long-term preservation of hearts during transport limits the source of human hearts for transplant to the geographic vicinity of the transplant center. Experimentally, reduction of myocardial oxygen requirements with hypothermia and cardioplegia prolong storage time to 48 h, but always with some evidence of myocardial damage. In this study, the combination of hypothermia with a procedure known to increase oxygen tension in cardiac muscle, gas perfusion, preserved contractile activity in guinea pig hearts for 24 h and did not cause edema. Cardioplegia or gas perfusion at temperatures below 10 degrees C or above 20 degrees C resulted in failure of hearts to contract upon rewarming. Contracture, dehydration, elevation of tissue calcium, reduced perfusate flow, and elevated creatine kinase levels occurred if liquid reperfusion was begun at 15 degrees C but not 25 degrees C. The results suggest that under the appropriate conditions, hypothermic gas perfusion is a potentially useful means of extending storage time of hearts for transplant.  相似文献   

19.
Using a fine-tip oxygen microelectrodes the longitudinal gradients of oxygen tension (pO2) have been studied in small arterioles (with lumen diameter in control of 5 +/- 20 microm) and in capillaries of the rat brain cortex during stepwise decrease of the blood haemoglobin concentration [Hb] from control [Hb]--14.4 +/- 0.3 g/dl to 10.1 +/- 0.2 g/dl (step 1), 7.0 +/- 0.2 g/dl (step 2) and 3.7 +/- 0.2 g/dl (step 3). All data are presented as "mean +/- standard error". Oxygen tension was measured in arteriolar segments in two locations distanced deltaL = 265 +/- 34 microm, n = 30. Mean diameter of studied arterioles was 10.7 +/- 0.5 microm, n = 71. Length of studied capillary segments was about deltaL = 201 +/- 45 Mm, n = 18. The measured longitudinal pO2 gradient (deltapO2/deltaL) in arterioles amounted 0.03 +/- 0.01 mmHg/microm, n = 15 in control; 0.06 +/- 0.01 mmHg/microm, n = 16 (step 1); 0.07 +/- +/- 0.01 mmHg/microm, n = 14 (step 2); 0.1 +/- 0.01 mmHg/microm, n = 30 (step 3). In the capillaries, the deltapO2/deltaL amounted to: 0.07 +/- 0.01 mmHg/microm, n = 17 (control); 0.09 +/- 0.02 mmHg/microm, n = 16 (step 1); 0.08 +/- 0.01 mmHg/microm, n = 15 (step 2); 0.1 +/- 0.02 mmHg/microm, n = 18 (step 3). An over threefold decrease in the system blood oxygen capacity did not result in significant changes (p > 0.05) of the deltapO2/deltaL in capillaries that might result in relatively homogeneous oxygen flux from blood to tissue in acute anaemia. The longitudinal gradients of blood O2 saturation (deltaSO2/deltaL) in studied arterioles and capillaries were obtained using oxygen dissociation curve (ODC) of haemoglobin in the system blood. The gradients deltaSO2/deltaL in capillaries was shown to be threefold higher than the corresponding gradients in arterioles. The data show that anatomic capillaries are the main source of oxygen to brain tissue as in control and in hypoxic conditions. Sufficient oxygen delivery to brain tissue in acute anaemia is maintained by compensatory mechanisms of cardiovascular and respiratory systems. The data presented are the first measurements of the longitudinal pO, gradients in capillaries and minute cortical arterioles at acute anaemia.  相似文献   

20.
 The equations governing oxygen transport from blood to tissue are presented for a cylindrical tissue compartment, with blood flowing along a co–axial cylindrical capillary inside the tissue. These governing equations take account of: (i) the non–linear reactions between oxygen and haemoglobin in blood and between oxygen and myoglobin in tissue; (ii) diffusion of oxygen in both the axial and radial directions; and (iii) convection of haemoglobin and plasma in the capillary. A non–dimensional analysis is carried out to assess some assumptions made in previous studies. It is predicted that: (i) there is a boundary layer for oxygen partial pressure but not for haemoglobin or myoglobin oxygen saturation close to the inflow boundary in the capillary; (ii) axial diffusion may not be neglected everywhere in the model; (iii) the reaction between oxygen and both haemoglobin and myoglobin may be assumed to be instantaneous in nearly all cases; and (iv) the effect of myoglobin is only significant for tissue with a low oxygen partial pressure. These predictions are validated by solving the full equations numerically and are then interpreted physically. Received: 13 October 2000 / Revised version: 12 June 2001 / Published online: 17 May 2002  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号