首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Effects of cage beddings on microsomal oxidative enzymes in rat liver   总被引:1,自引:0,他引:1  
The purpose of the present studies was to evaluate the effects of some commercially available cage beddings on rat liver microsomal cytochrome P-450-dependent drug-metabolizing enzyme, ethylmorphine N-demethylase, and the carcinogen-metabolizing enzyme, benzo(a)pyrene hydroxylase. Sprague-Dawley rats were housed in cages containing cedar chip, corncob or heat-treated pinewood bedding for 3 weeks. Control rats were housed in cages on wire bottom floors containing no bedding material. Rats housed in cages containing cedar chip showed 18, 46 and 49% increases in liver cytochrome P-450 content, ethylmorphine N-demethylase and benzo(a)pyrene hydroxylase activities, respectively. The liver enzyme activities of rats housed in cages containing corncob bedding were similar to those obtained with control rats. In contrast, the pinewood-bedded rats showed a 21% decrease in ethylmorphine N-demethylase activity without affecting cytochrome P-450 content and benzo(a)pyrene hydroxylase activity. Hexobarbital-induced sleep times of the variously bedded rats were similar to those of control animals. These data suggest that the commercial bedding materials differ in their abilities to affect liver microsomal enzymes. Thus, interlaboratory variability in basal enzyme activities reported in the literature may be partly due to bedding materials used in the animal's cages.  相似文献   

2.
Cytochrome P450 (CYP)-dependent oxidation of lauric acid, p-nitrophenol and ethanol by microsomal fractions of kidney were studied in control rats and in animals given either ethanol, red wine, or alcohol-free red wine for 10 weeks. Ethanol increased the total CYP content and specifically CYP 2E1, as well as p-nitrophenol and ethanol oxidation. The effects of ethanol treatment on the content and activity of CYP 2E1 were attenuated when red wine was administered, while the alcohol-free red wine values were similar to those of the control group. Although lauric acid hydroxylation was decreased by red wine treatment, the content of CYP 4A1 was not influenced by drinking fluids. We conclude that red wine administration attenuates the ethanol-induced enhancement of microsomal activities dependent on CYP 2E1 of rat kidney. Our results suggest that the non-alcoholic constituents of red wine could account for this modulation.  相似文献   

3.
p-Nitrophenol hydroxylation is widely used as a probe for microsomal CYP2E1. Several drugs are known as CYP2E1 inhibitors because of their capability to inhibit p-nitrophenol hydroxylation. Our results suggest further participation of CYP2A6 and CYP2C19 enzymes in p-nitrophenol hydroxylation. Moreover, CYP2A6 and CYP2C19 may be considered as the primary catalysts, whereas CYP2E1 can also contribute to the hydroxylation of p-nitrophenol. Further aim of our study was to evaluate the selectivity of p-nitrophenol hydroxylase inhibitors towards cytochrome P450 enzymes. The effects of antifungals: bifonazole, econazole, clotrimazole, ketoconazole, miconazole; CNS-active drugs: chlorpromazine, desipramine, fluphenazine, thioridazine; and the non-steroidal anti-inflammatory drug: diclofenac were investigated on the enzyme activities selective for CYP2A6, CYP2C9, CYP2C19, CYP2E1 and CYP3A4. None of the drugs could be considered as a potent inhibitor of CYP2E1. Strong inhibition was observed for CYP3A4 by antifungals with IC(50) values in submicromolar range. However, ketoconazole was the only imidazole derivative that could be considered as a selective inhibitor of CYP3A4. The CNS-active drugs investigated were found to be weak inhibitors of CYP2A6, CYP2C9, CYP2C19, CYP2E1 and CYP3A4. Diclofenac efficiently inhibited CYP2C9 and to a less extent CYP3A4 enzyme.  相似文献   

4.
Kataoka S  Yasui H  Hiromura M  Sakurai H 《Life sciences》2005,77(22):2814-2829
CYP2E1 is known to be induced in streptozotocin (STZ)-treated diabetic rats (STZ rats), and its induction is improved by insulin. We have examined the age-dependent changes of CYP2E1 in the liver microsomes of type 1 diabetic STZ rats, the effects of VOSO4 on the contents of total P450 and CYP2E1, and the activities of CYP2E1 in terms of p-nitrophenol hydroxylation. The contents of P450 and CYP2E1 and CYP2E1 activity were enhanced with the development of diabetes. When the hyperglycemia of STZ rats was improved by daily intraperitoneal injections of VOSO4 for 10 days at the doses of 7 mg/kg body weight for 5 days, 5 mg/kg for the following 3 days, and then 2.5 mg/kg for 2 days, the P450 and CYP2E1 levels and CYP2E1 activity were lowered than those in the untreated STZ rats. To understand the mechanism underlying CYP2E1-dependent hydroxylation activity, the production of reactive oxygen species was examined in the NADPH-liver microsomal systems by ESR spin-trapping. Singlet oxygen (1O2) was detected in all microsomal systems, while superoxide anion radical(*O2-) and hydroxyl radical (*OH) were not. On the basis of these results, we conclude that (1) CYP2E1 level and activity are enhanced in the diabetic state, however, they are improved by VOSO4 treatment, and (2) 1O2 is generated during CYP2E1-dependent substrate oxygenation.  相似文献   

5.
The total content of rat liver microsomal cytochrome P450 (CYP) significantly decreased after repeated i.p. administration of the antiviral agent tenofovir ((R)-9-[2-(phosphonomethoxy)propyl] adenine) and tenofovir disoproxil at a daily dose 25 mg/kg, although the content of liver microsomal protein did not change. The decrease of the CYP content was accompanied by concomitant increase of the amount of inactive CYP form, cytochrome P420. This effect was confirmed by a parallel study of the activities of selected CYP forms, CYP2E1 (p-nitrophenol hydroxylation) and CYP1A2 (7-ethoxyresorufin deethylation). The activity (expressed relatively to the protein content) of both CYP forms decreased significantly following the decrease of the total CYP. On the other hand, the CYP2E1 activity expressed relatively to the decreasing total CYP content remained unchanged. However, CYP1A2 activity also decreased when calculated relatively to the total native CYP content indicating lower stability of this form. Semiquantitative RT-PCR showed no significant changes in expression of major rat liver microsomal CYP forms after tenofovir treatment. In conclusion, repeated administration of tenofovir in higher doses led to significant decrease of the relative proportion of active liver microsomal CYPs accompanied by a conversion of these enzymes to the inactive form (CYP420) maintaining the sum of CYP proteins unchanged.  相似文献   

6.
The objective of this study was to investigate the effects of iodine (I(2)) and/or selenium (Se) deficiency on thyroid hormones and hepatic xenobiotic metabolizing enzyme systems using a triple animal model. Three-week-old male Wistar rats were fed for seven weeks. Se deficiency was introduced by a diet containing <0.005 mg/kg Se, and I(2) deficiency was produced by sodium perchlorate containing drinking water. The levels of plasma thyroid hormones [total T(4) (TT(4)), total T(3) (TT(3))], thyroid stimulating hormone (TSH); total microsomal cytochrome P450 (CYP450) and cytochrome b5 (CYP b5) levels; activities of microsomal NADPH-cytochrome P450 reductase (P450R), microsomal aniline hydroxylase (CYP2E1), microsomal 7-ethoxyresorufin O-deethylase (EROD), microsomal 7-pentoxyresorufin O-depentylase (PROD) and cytosolic glutathione S-transferase (GST) were determined. In I(2) deficiency total CYP450 levels, activities of CYP2E1, EROD and GST decreased, and CYP b5 content increased significantly. In Se-deficient rats, total CYP450 level and CYP2E1 activity increased, and EROD and GST activities and CYP b5 level decreased significantly. In combined I(2) and Se deficiency, except for CYP450 content and CYP2E1 activity, all enzyme activities and CYP b5 content decreased significantly compared to control group. Overall results of this study have suggested that metabolism of xenobiotics as well as endogenous compounds is affected by Se and I(2) status.  相似文献   

7.
The mechanisms underlying the decrease in hepatic cytochrome P-450 (CYP) content in ascorbic acid deficiency was investigated in scurvy-prone ODS rats. First, male ODS rats were fed a diet containing sufficient ascorbic acid (control) or a diet without ascorbic acid (deficient) for 18?days, with or without the intraperitoneal injection of phenobarbital. Ascorbic acid deficiency decreased hepatic microsomal total CYP content, CYP2B1/2B2 protein, and mitochondrial cytochrome oxidase (COX) complex IV subunit I protein, and simultaneously increased heme oxygenase-1 protein in microsomes and mitochondria. Next, heme oxygenase-1 inducers, that is lipopolysaccharide and hemin, were administered to phenobaribital-treated ODS rats fed sufficient ascorbic acid. The administration of these inducers decreased hepatic microsomal total CYP content, CYP2B1/2B2 protein, and mitochondrial COX complex IV subunit I protein. These results suggested that the stimulation of hepatic heme oxygenase-1 expression by ascorbic acid deficiency caused the decrease in CYP content in liver.  相似文献   

8.
Rutaecarpine is one of the main alkaloids of an herbal remedy, Evodia rutaecarpa, which has been used for the treatment of gastrointestinal disorder and headache. Effects of rutaecarpine on hepatic and renal cytochrome P450 (CYP)-dependent monooxygenase were studied in C57BL/6J mice. Treatment of mice with rutaecarpine by gastrogavage at 50 mg/kg/day for three days resulted in 57%, 41%, 6-, and 6-fold increases of hepatic microsomal benzo(a)pyrene hydroxylation, 7-ethoxycoumarin O-deethylation, 7-ethoxyresorufin O-deethylation, and 7-methoxyresorufin O-demethylation activities, respectively. However, the treatment had no effects on hepatic oxidation activities toward benzphetamine, N-nitrosodimethylamine, nifedipine, and erythromycin. In the kidney, rutaecarpine-treatment resulted in 2-fold and 42% increases of microsomal benzo(a)pyrene hydroxylation and 7-ethoxycoumarin O-deethylation activities, respectively. The treatment also increased renal 7-ethoxyresorufin O-deethylation activity to a detectable level. Immunoblot analysis of microsomal proteins showed that rutaecarpine-treatment increased the protein levels of CYP1A1 and CYP1A2 in the liver, whereas hepatic level of CYP3A-immunoreacted protein was not affected by rutaecarpine. These CYPs were not detectable in the immunoblot analyses of control and rutaecarpine-treated mouse kidney microsomes. These results indicated that rutaecarpine was a CYP1A inducer and showed potent inductive effects on both CYP1A1 and CYP1A2 in the liver.  相似文献   

9.
1. Various aspects of triacylglycerol metabolism were compared in rats given phenobarbital at a dose of 100mg/kg body wt. per day by intraperitoneal injection; controls were injected with an equal volume of 0.15m-NaCl by the same route. Animals were killed after 5 days of treatment. 2. Rats injected with phenobarbital demonstrated increased liver weight, and increased microsomal protein per g of liver. Other evidence of microsomal enzyme induction was provided by increased activity of aminopyrine N-demethylase and cytochrome P-450 content. Increased hepatic activity of γ-glutamyltransferase (EC 2.3.2.2) occurred in male rats, but not in females, and was not accompanied by any detectable change in the activity of this enzyme in serum. 3. Phenobarbital treatment increased the hepatic content of triacylglycerol after 5 days in starved male and female rats, as well as in non-starved male rats; non-starved females were not tested in this regard. At 5 days after withdrawal of the drug, there was no difference in hepatic triacylglycerol content or in hepatic functions of microsomal enzyme induction between the treated and control rats. 4. After 5 days, phenobarbital increased the synthesis in vitro of glycerolipids in cell-free liver fractions fortified with optimal concentrations of substrates and co-substrates when results were expressed per whole liver. The drug caused a significant increment in the activity of hepatic diacylglycerol acyltransferase (EC 2.3.1.20), but did not affect the activity per liver of phosphatidate phosphohydrolase (EC 3.1.3.4) in cytosolic or washed microsomal fractions. A remarkable sex-dependent difference was observed for this latter enzyme. In female rats, the activity of the microsomal enzyme per liver was 10-fold greater than that of the cytosolic enzyme, whereas in males, the activities of phosphohydrolases per liver from both subcellular fractions were similar. 5. The phenobarbital-mediated increase in hepatic triacylglycerol content could not be explained by a decrease in the hepatic triacylglycerol secretion rate as measured by the Triton WR1339 technique. Since the hepatic triacylglycerol showed significant correlation with microsomal enzyme induction functions, with hepatic glycerolipid synthesis in vitro and with diacylglycerol acyltransferase activity, it is likely to be due to enhanced triacylglycerol synthesis consequent on hepatic microsomal enzyme induction. 6. In contrast with rabbits and guinea pigs, rats injected with phenobarbital showed a decrease in serum triacylglycerol concentration in the starved state; this decrease persisted for up to 5 days after drug administration stopped, and did not occur in non-starved animals. It seems to be independent of the microsomal enzyme-inducing properties of the drug, and may be due to the action of phenobarbital at an extrahepatic site.  相似文献   

10.
This investigation was designed to determine whether St. John's wort (SJW)(435 mg/kg/d), a readily available antidepressant, or its purported active constituents hypericin (1 mg/kg/d) and hyperforin (10 mg/kg/d) were able to induce various hepatic cytochrome P450 (CYP450) isoforms. SJW, hypericin and hyperforin were administered to male Swiss Webster mice for four consecutive days and hepatic microsomes were prepared on day 5. None of the three treatments resulted in a statistical change in total hepatic CYP450 (SJW treated 0.95 +/- 0.09 nmol/mg vs control 1.09 +/- 0.14 nmol/mg). Furthermore, the catalytic activities of CYP1A2. CYP2E1 and CYP3A were unchanged from control following all three treatments as determined by ethoxyresorufin O-deethylation, p-nitrophenol hydroxylation and erythromycin N-demethylation respectively. Additionally, western immunoblotting demonstrated that there was no significant change in the polypeptide levels of any of the three isoforms. These results indicate that four days of treatment with moderate to high doses of SJW, hyperforin or hypericin fails to induce these CYP450 isoforms in the male Swiss Webster mouse.  相似文献   

11.
In work environments with laboratory animals, the bedding of animals binds the excreta as well as other compounds originating from the animals and their environment. These may be generated into the ambient air when the personnel handle bedding in different procedures. This study compares the dustiness of different types of six clean and four soiled beddings from rat or mouse cages. The dust generation of clean bedding varied from <1 to 25 mg/m(3). When used in the cages of rats or mice for 4 days, the dust concentration of the beddings decreased, increased or stayed the same, depending on the type of bedding and animal species. A decrease in dustiness was, however, more common. The levels in the soiled beddings varied from <1 to 8.6 mg/m(3). In the case of the aspen chip bedding, the contents of bedding used in mouse, rat or rabbit cages were analysed for mesophilic bacteria and fungi, mycobacteria and endotoxins. All of these contaminants were variably found in the bedding samples, the maximal concentrations for bacteria were >6 500 000 colony-forming units (cfu)/g, for fungi 212 000 cfu/g, and for endotoxins 6500 ng/g (81 000 EU/g). The results showed that the bedding of laboratory animals may contain biologically effective compounds, and that these may be distributed into the ambient air depending on the characteristics of the bedding material. The dustiness of different bedding types is an important factor affecting the amount and quality of the occupational exposure of the personnel to airborne contaminants.  相似文献   

12.
Cytochrome P450-dependent oxidation of lauric acid, p-nitrophenol and ethanol by liver microsomal fractions were studied in control rats and in animals given either ethanol, red wine, or alcohol-free red wine for 10 weeks. Ethanol increased the total cytochrome P450 and the isoenzyme 2E1 content, as well as the p-nitrophenol hydroxylation and ethanol oxidation. These effects of ethanol treatment were attenuated by red wine administration. Red wine increased the total antioxidant capacity of plasma, whereas the alcohol-free red wine decreased the cytochrome P450 content and decreased the oxidation of lauric acid, p-nitrophenol and ethanol to values lower than control. It is concluded that red wine administration attenuates the ethanol-induced enhancement in liver microsomal parameters dependent on cytochrome P450 2E1 activity, an affect that seems to be accomplished by the non-alcoholic constituents of red wine known to have antioxidant properties.  相似文献   

13.
Administration of the antineoplastic doxorubicin to rodents causes depression of hepatic cytochrome P450 (CYP) dependent biotransformation, an effect that has been partially attributed to the ability of doxorubicin to stimulate microsomal lipid peroxidation. Since doxorubicin can be bioactivated by the CYP/NADPH-CYP reductase system to products that bind covalently to microsomal protein, we hypothesized that doxorubicin functions as a mechanism-based inactivator of hepatic microsomal CYPs and (or) NADPH-CYP reductase under conditions in which doxorubicin-stimulated NADPH-dependent lipid peroxidation is minimized. In vitro studies were conducted with hepatic microsomes isolated from untreated and phenobarbital-treated male rats. Unlike the positive control carbon tetrachloride, doxorubicin (10 microM) did not stimulate NADPH-dependent lipid peroxidation in microsomal incubations containing EDTA (1.5 mM). Doxorubicin did not cause NADPH-dependent loss of microsomal CYP, heme, or steroid hydroxylation activities selective for CYP2A, CYP2B, CYP2C11, and CYP3A. The positive control 1-aminobenzotriazole caused marked NADPH-dependent decreases in all of these parameters. Neither doxorubicin nor 1-aminobenzotriazole caused NADPH-dependent loss of NADPH-CYP reductase activity, and neither compound altered the immunoreactive protein levels of CYP2B, CYP2C11, CYP3A, and NADPH-CYP reductase. These results indicate that a pharmacologically relevant concentration of doxorubicin does not cause direct mechanism-based inactivation of hepatic microsomal CYPs or NADPH-CYP reductase, suggesting that the ability of doxorubicin to depress hepatic CYP-mediated biotransformation in vivo is due to lipid peroxidation mediated heme destruction, altered heme metabolism, and (or) decreased expression of selected CYP enzymes.  相似文献   

14.
We studied the long-term effects of streptozotocin-induced diabetes on tissue-specific cytochrome P450 (CYP) and glutathione-dependent (GSH-dependent) xenobiotic metabolism in rats. In addition, we also studied the effect of antidiabetic Momordica charantia (karela) fruit-extract feeding on the modulation of xenobiotic metabolism and oxidative stress in rats with diabetes. Our results have indicated an increase (35-50%) in CYP4A-dependent lauric acid hydroxylation in liver, kidney, and brain of diabetic rats. About a two-fold increase in CYP2E-dependent hepatic aniline hydroxylation and a 90-100% increase in CYP1A-dependent ethoxycoumarin-O-deethylase activities in kidney and brain were also observed. A significant increase (80%) in aminopyrene N-demethylase activity was observed only in rat kidney, and a decrease was observed in the liver and brain of diabetic rats. A significant increase (77%) in NADPH-dependent lipid peroxidation (LPO) in kidney of diabetic rats was also observed. On the other hand, a decrease in hepatic LPO was seen during chronic diabetes. During diabetes an increased expression of CYP1A1, CYP2E1, and CYP4A1 isoenzymes was also seen by Western blot analysis. Karela-juice feeding modulates the enzyme expression and catalytic activities in a tissue- and isoenzyme-specific manner. A marked decrease (65%) in hepatic GSH content and glutathione S-transferase (GST) activity and an increase (about two-fold) in brain GSH and GST activity was observed in diabetic rats. On the other hand, renal GST was markedly reduced, and GSH content was moderately higher than that of control rats. Western blot analyses using specific antibodies have confirmed the tissue-specific alterations in the expression of GST isoenzymes. Karela-juice feeding, in general, reversed the effect of chronic diabetes on the modulation of both P450-dependent monooxygenase activities and GSH-dependent oxidative stress related LPO and GST activities. These results have suggested that the modulation of xenobiotic metabolism and oxidative stress in various tissues may be related to altered metabolism of endogenous substrates and hormonal status during diabetes. The findings may have significant implications in elucidating the therapeutic use of antidiabetic drugs and management of Type 1 diabetes in chronic diabetic patients.  相似文献   

15.
1. Formation of catechols from benzene and nitrobenzene have been implicated in the carcinogenic activity of these chemicals. In liver, p-nitrophenol, an intermediate of p-nitrobenzene is enzymatically converted to 4-nitrocatechol. 2. For the first time in this study, the presence of a highly active enzyme catalyzing the formation of 4-nitrocatechol from p-nitrophenol was detected in lung microsomes. The average specific activity of lung p-nitrophenol hydroxylase was found to be 0.494 nmol 4-nitrocatechol formed mg prot-1 min-1. 3. The optimum conditions for sheep lung microsomal p-nitrophenol hydroxylase were established. The maximal activity was noted at pH 6.8. The rate of p-nitrophenol hydroxylation was linear up to 2 mg prot/ml of incubation mixture. The maximal rate of 4-nitrocatechol formation was observed with 0.25 mM p-nitrophenol. 4. The Lineweaver-Burk and Eadie-Hofstee plots were found to be curve-linear. Two different Km values were calculated as 11.6 and 71.4 microM from the Lineweaver-Burk plot and as 10.7 and 74.5 microM from the Eadie-Hofstee plot. This suggested that there were either two forms of enzyme or two different enzymes participating in ortho hydroxylation of p-nitrophenol in lung microsomes. 5. Lung microsomal p-nitrophenol hydroxylase activity of sheep was reconstituted in the presence of purified lung microsomal cytochrome P-450, NADPH dependent cytochrome P-450 reductase and synthetic lipid, phosphatidylcholine dilauroyl.  相似文献   

16.
C C Stewart  A Strother 《Life sciences》1999,64(23):2163-2172
Although glucose is a ubiquitous nutrient, increased consumption of glucose decreases the metabolism of numerous drugs in humans and animals. To understand the mechanisms involved that cause decreased drug metabolism in rats that consume glucose in their water, enzyme activity and expression as well as determining the contribution of the lipids toward decreasing in vitro metabolic activity were investigated. Enzyme assays of hepatic CYP1A2, 2C6, 2C11 and 3A2 showed significant decreases in activity from glucose-treated rats compared to control. While immunodetection of CYP1A1, 2B1/2, 2C11, and 3A1/2 showed no significant difference in protein expression. Hepatic fatty acid synthase activity increased in the glucose-treated rats compared to controls. Studies with glucose-treated microsomal lipids reconstituted with microsomal proteins from control rats caused a significant decrease in benzyloxyresorufin O-dealkylase activity. The results presented here support the hypothesis that the activities of cytochrome P450 proteins are altered by modulating their catalytic activity as a result of the lipid environment rather than changing the level of expression of the individual enzymes.  相似文献   

17.
Feeding of vitamin A-deficient diet to male weanling rats for 10 weeks resulted in significant decrease in the body weight and marked reduction in the hepatic vitamin A content. The levels of hepatic phase I microsomal enzymes cytochrome P-450, cytochrome b5, aminopyrine N-demethylase and arylhydrocarbon hydroxylase were found to be substantially reduced by vitamin A-deficiency. Also, the activity of phase II microsomal UDP - glucuronyl transferase enzyme was significantly decreased in deficient animals. Following repeated oral administration of DDT (15 mg/kg/body wt/day) for 21 days, the phase I microsomal enzymes were induced to a greater extent in controls as compared to deficient animals. UDP - glucuronyltransferase remained insensitive to DDT induction. The results imply that the capacity for induction of the hepatic mixed-function oxidase enzyme system is impaired in deficient animals concurrently exposed to DDT.  相似文献   

18.
Qualitative and quantitative differences of purified hepatic 3 alpha-hydroxysteroid UDP-glucuronosyltransferase were investigated in Wistar and Sprague-Dawley rats. Individual differences in the glucuronidation rate of androsterone and chenodeoxycholic acid were observed in hepatic microsomal fractions from Wistar but not Sprague-Dawley rats. No individual variation was observed in the glucuronidation of testosterone, p-nitrophenol or oestrone. The 3 alpha-hydroxysteroid UDP-glucuronosyltransferases from livers of Wistar and Sprague-Dawley rats were isolated and highly purified by using Chromatofocusing and affinity chromatography. The amount of 3 alpha-hydroxysteroid UDP-glucuronosyltransferase in the liver of Wistar rats exhibiting low rates for androsterone glucuronidation is about 10% or less than that found in hepatic microsomal fractions obtained from Wistar rats having high rates for androsterone glucuronidation. The apparent Km for androsterone with purified 3 alpha-hydroxysteroid UDP-glucuronosyltransferase from Wistar rats with high glucuronidation activity (6 microM) was not different from that observed for the enzyme purified from Sprague-Dawley animals, whereas that for the enzyme purified from Wistar rats with low glucuronidation activity was substantially higher (120 microM). Despite the differences in apparent Km values for androsterone, the apparent Km for UDP-glucuronic acid (0.3 mM) was not different in the different populations of rats.  相似文献   

19.
A low protein diet affects amounts of linoleic and arachidonic acids in hepatic microsomal phospholipids of growing rats. Are the changes related to modifications in microsomal delta 6- and delta 5- linoleic acid desaturase activities? Two groups of Wistar rats weighing 80 +/- 5 g at the beginning of the experiment were used: Control group (T) was fed on a 16% gluten + 4% casein diet for 53 days; Experimental group (E) was fed on a 4% gluten + 1% casein diet for 26 days (MP) then Control diet for 27 days (RE). After 2, 14 and 26 days of MP and 2, 15 and 27 days of RE, rats of each group were sacrificed. Protein and water contents of liver, quantitative fatty acid, composition of total lipids in liver and hepatic microsomes were determined. delta 6- and delta 5- linoleic acid desaturase activities were estimated from incubation of liver microsomes with [1-14C] C 18: 2 n-6 or [2(14)C] C 20: 3 n-6 respectively. The low protein diet stops practically ponderal growth. The fatty-acid compositions of microsomal total lipids of E rats were affected in comparison with values of T rats. These modifications persist after 27 days of RE. The C 20: 4 n-6/C 18: 2 n-6 ratio in microsomal total lipids was slightly different between T and E rats but increased strongly during refeeding. Same modifications take place in the fatty-acid composition of hepatic total lipids. After two days of MP, delta 6- and delta 5- desaturase activities were depressed, phenomenon that not persist in the course of MP. These enzyme activities increase to higher values than those of the T after two days of RE.  相似文献   

20.
The constitutive and Aroclor 1254-induced activities of hepatic microsomal benzo[a]pyrene hydroxylases in male and female rats were determined in animals from ages 11 to 120 days. In 11-day-old noninduced male rats, benzo[a]pyrenediones and 9-hydroxybenzo[a]pyrene were the major microsomal metabolites; in 21-day-old males benzo[a]pyrene-diones and benzo[a]pyrene-9,10-dihydrodiol were predominant. In 60- and 120-day-old animals 3-hydroxybenzo[a]pyrene was the major microsomal metabolite. A similar trend was observed for the development of benzo[a]pyrene hydroxylase activities in female rats. With the exception of 4,5-dihydrodiol formation, the highest induction of individual and total benzo[a]pyrene hydroxylase activities by Aroclor 1254 was observed in the 21-day-old immature male rats, in which there was a 330- and 4.5-fold increase in the formation of 3-hydroxybenzo[a]pyrene and quinone metabolites, respectively. The induction of benzo[a]pyrene total metabolite formation by Aroclor 1254 in female rats from 11 to 120 days of age was relatively constant (i.e., 13.3- to 10.1-fold induction); however, the relative induction of the individual benzo[a]pyrene hydroxylases was highly variable. In a second set of experiments, male and female rats were neonatally exposed to phenobarbital (600 mumol/kg) or Aroclor 1254 (100 mumol/kg), and the effects of these xenobiotics on neonatal imprinting of hepatic microsomal benzo[a]pyrene hydroxylase activities were determined in the 120-day-old animals.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号