共查询到20条相似文献,搜索用时 0 毫秒
1.
Prietzel Jörg Weick Corry Korintenberg Julia Seybold Gabriele Thumerer Thomas Treml Bernd 《Plant and Soil》2001,230(2):287-305
The effect of repeated (NH4)2SO4 applications (3 × 700 kg ha–1 in 1988, 1991, and 1994, respectively) on S pools in soil, soil microbial biomass, and ground vegetation was studied at two Norway spruce (Picea abies L. [Karst.]) sites in the Black Forest/Germany. In both eco-systems, most of the total S pool was located in the soil. The soil also was the predominant compartment for retention of applied SO4
2--S. The fractions of organic and inorganic S forms in the initial soil S content, and the retention of experimentally applied S was different for both sites. In the podzol Schluchsee, organic S accounted for 92% of total S. In the cambisol Villingen, the S pool consisted of 33% organic S and 67% inorganic S. The retention of applied S in various compartments of both ecosystems reflected these proportions. Only minor amounts of fertilized S (<1%) was retained in the spruce trees, ground vegetation, and soil microbial biomass. However, between 51% (Villingen) and 72% (Schluchsee) of the applied S was retained in the soil. In the Schluchsee podzol, 75% of retained fertilizer S was accumulated as ester sulfate, whereas SO4
2-adsorption and precipitation of Al hydroxy sulfates were restricted by dissolved organic matter in the soil solution. In the Villingen cambisol, SO4
2- adsorption was the dominant process of S retention, although 20% of the fertilized S again was retained as ester sulfate. The significant relevance of organic S forms in the retention of fertilizer S in both soils emphasizes the need for models which include the formation and re-mineralization of organic S compounds, especially of ester sulfates, for correctly simulating and predicting the retention and remobilization of S in acid forest soils subject to changing atmospheric N and S deposition. 相似文献
2.
3.
4.
Christian Kampichler Ellen Kandeler† Richard D. Bardgett‡ T. Hefin Jones§ Lindsey J. Thompson§ 《Global Change Biology》1998,4(3):335-346
Although soil organisms play an essential role in the cycling of elements in terrestrial ecosystems, little is known of the impact of increasing atmospheric CO2 concentrations on soil microbial processes. We determined microbial biomass and activity in the soil of multitrophic model ecosystems housed in the Ecotron (NERC Centre for Population Biology, Ascot, UK) under two atmospheric CO2 concentrations (ambient vs. ambient + 200 ppm). The model communities consist of four annual plant species which naturally co-occur in weedy fields and disturbed ground throughout southern England, together with their herbivores, parasitoids and soil biota. At the end of two experimental runs lasting 9 and 4.5 months, respectively, root dry weight and quality showed contradictory responses to elevated CO2 concentrations, probably as a consequence of the different time-periods (and hence number of plant generations) in the two experiments. Despite significant root responses no differences in microbial biomass could be detected. Effects of CO2 concentration on microbial activity were also negligible. Specific enzymes (protease and xylanase) showed a significant decrease in activity in one of the experimental runs. This could be related to the higher C:N ratio of root tissue. We compare the results with data from the literature and conclude that the response of complex communities cannot be predicted on the basis of oversimplified experimental set-ups. 相似文献
5.
Wood-inhabiting chironomid communities were investigated from June 1998 to July 1999 by laboratory rearing of randomly collected submerged branches from a headwater and mid-reach site of a sandy lowland stream, separated by an impoundment used for fishery purposes. Total annual emergence (males and females) from headwater samples was higher (2551 ind m–2 y–1) compared to the mid-reach (1576 ind m–2 y–1), which could be due to disturbances caused by frequent impoundment openings resulting in high discharge events. Chironomid community from branches comprised three subfamilies, with Orthocladiinae (18 species, 2189 ind m–2 y–1) clearly predominating at the headwater (total of 36 species). Mid-reach samples (total of 48 species) showed similar emergent numbers of Orthocladiinae (19 species, 786 ind m–2 y–1) and Chironominae (26 species, 764 ind m–2 y–1). Tanypodinae were caught very rarely in the laboratory emergence (12 ind m–2 y–1 at both sites). Shannon-Wiener diversity index for the mid-reach chironomid community was higher (2.52) than for the headwater community (1.68). Chironomid species composition on woody debris was similar between stream sites, with a Sørensen index of 0.75, but showed different dominance structures indicated by a Wainstein index of 0.26. Total adult biomass (in the manner of dry mass) during the study period was higher for wood-dwelling chironomids from the headwater (158.2 mg m–2 y–1) compared to the mid-reach (123.8 mg m–2 y–1), but individual biomass was higher for mid-reach chironomids (0.079 mg ind–1 vs. 0.062 mg ind–1 at the headwater), indicating the predominance of larger species. Total biomass of wood-inhabiting chironomids in the investigated lowland stream was low compared to other field emergence studies, which could be attributed to the laboratory approach for investigating the emergence from a single substrate type (submerged wood) instead of the integrative field surveys where chironomids from all habitats were caught. Main reason for the lack of chironomid species closely associated to wood in this sandy lowland stream could be infrequent but episodic disurbances caused by the anthropogenic induced highly fluctuating discharge regime of the downstream study site. 相似文献
6.
Applicability and limitations of optimal biomass allocation models: a test of two species from fertile and infertile habitats 总被引:2,自引:0,他引:2
BACKGROUND AND AIMS: The practical applicability of optimal biomass allocation models is not clear. Plants may have constraints in the plasticity of their root : leaf ratio that prevent them from regulating their root : leaf ratio in the optimal manner predicted by the models. The aim of this study was to examine the applicability and limitations of optimal biomass allocation models and to test the assumption that regulation of the root : leaf ratio enables maximization of the relative growth rate (RGR). METHODS: Polygonum cuspidatum from an infertile habitat and Chenopodium album from a fertile habitat were grown under a range of nitrogen availabilities. The biomass allocation, leaf nitrogen concentration (LNC), RGR, net assimilation rate (NAR), and leaf area ratio (LAR) of each species were compared with optimal values determined using an optimal biomass allocation model. KEY RESULTS: The root : leaf ratio of C. album was smaller than the optimal ratio in the low-nitrogen treatment, while it was almost optimal in the high-nitrogen treatment. In contrast, the root : leaf ratio of P. cuspidatum was close to the optimum under both high- and low-nitrogen conditions. Owing to the optimal regulation of the root : leaf ratio, C. album in the high-nitrogen treatment and P. cuspidatum in both treatments had LNC and RGR (with its two components, NAR and LAR) close to their optima. However, in the low-nitrogen treatment, the suboptimal root : leaf ratio of C. album led to a smaller LNC than the optimum, which in turn resulted in a smaller NAR than the optimum and RGR than the theoretical maximum RGR. CONCLUSIONS: The applicability of optimal biomass allocation models is fairly high, although constraints in the plasticity of biomass allocation could prevent optimal regulation of the root : leaf ratio in some species. The assumption that regulation of the root : leaf ratio enables maximization of RGR was supported. 相似文献
7.
The bioavailability of zinc and manganese from diets used for very low birthweight infants was investigated in a rat pup model
using radioisotopes. The effect of protein source and content and of pasteurization was evaluated, and two different approaches
for evaluation of zinc and manganese bioavailability in the rat pup model were compared. Zinc and manganese bioavailability
from the studied human milk and infant formula for very low birthweight infants was high. Liver uptake of65Zn from labeled premature infant diets in sucklings rat pups was 26–29%, and absorption calculated as the difference between
administered dose and nonabsorbed activity 6 h after oral intubation was 93–95%. Retention of manganese calculated as the
sum of54Mn retained by organs and carcass was 85–95% from human milk and premature infant formula and absorption calculated from nonabsorbed
activity was 83–88% after 6 h. Fortification of early human milk significantly increased the bioavailability of zinc. No effect
of pasteurization of human milk was found on zinc or manganese bioavailability. Liver zinc uptake was found to be a more sensitive
parameter than absorption for evaluation of diets with a high zinc bioavailability. Measurement of retained activity of manganese
in carcass and organs was judged to be the preferred parameter for evaluation of diets with high manganese availability. 相似文献
8.
9.
The effects of irrigation on fine root biomass, root production and litterfall were measured at the community level, in a
semideciduous lowland forest in Panama. Biomass of roots less than 2 mm in dia. in the first 10 cm of the soil (measured with
soil cores), was higher in irrigated (1.80 Mg ha-1) than in non-irrigated plots (1.24 Mg ha-1). During the dry season, productivity of roots (measured with ingrowth cylinders filled with root-free soil), was higher
in irrigated (1.6 g m-2 day-1) than in control plots (0.3 g m-2 day-1). In control plots, root productivity was highly seasonal. Maximum root growth into the root-free soil, occurred during the
transitions from dry to wet, and from wet to dry season, possibly as a response to water and/or nutrient pulses. Litterfall
was not significantly different between irrigated (3.8 g m-2 day-1) and control plots (3.7 g m-2 day-1). The results of this study show that root-productivity is limited by the water supply during the dry season, and that water
by itself, is not a limiting factor for community-level litter production.
This revised version was published online in June 2006 with corrections to the Cover Date. 相似文献
10.
Growth and enzymatic activity of Leucoagaricus gongylophorus,a mutualistic fungus isolated from the leaf‐cutting ant Atta mexicana,on cellulose and lignocellulosic biomass
下载免费PDF全文

G. Vigueras D. Paredes‐Hernández S. Revah J. Valenzuela R. Olivares‐Hernández S. Le Borgne 《Letters in applied microbiology》2017,65(2):173-181
11.
Sebastian Dittrich Markus HauckDaniel Schweigatz Inken DörflerRobert Hühne Claudia BadeMascha Jacob Christoph Leuschner 《Flora》2013
Forest continuity has been identified as an important factor influencing the structure and diversity of forest vegetation. Primary forests with centuries of continuity are usually more diverse than young secondary forests as forest are colonized only slowly and because the former are richer in old tree individuals. In the present study, performed in unmanaged high-elevation spruce forests of the Harz Mountains, Germany, we had the unique opportunity to separate the effects of forest continuity and tree age on plant diversity. We compared an old-growth spruce forest with century-long habitat continuity with an adjacent secondary spruce forest, which had naturally established on a former bog after 1796 when peat exploitation halted. Comparative analysis of the ground and epiphyte vegetation showed that the plant diversity of the old-growth forest was not higher than that of the secondary forest with a similar tree age of >200 years. Our results suggest that a period of >200 years was sufficient for the secondary forest to be colonized by the whole regional species pool of herbaceous and cryptogam forest plants and epiphytes. Therefore, it is likely that habitat structure, including the presence of old and decaying trees, was more important for determining plant diversity than the independent effect of forest continuity. Our results are probably not transferrable to spruce forests younger than 200 years and highly fragmented woodlands with long distances between new stands and old-growth forests that serve as diaspore sources. In addition, our results might be not transferable to remote areas without notable air pollution, as the epiphyte vegetation of the study area was influenced by SO2 pollution in the second half of the 20th century. 相似文献
12.
Although some nymphalid butterflies have been intensively used to study mechanisms of the colour pattern formation on butterfly wings, lycaenid butterflies are equally attractive, having easily identifiable distinct spot patterns and highly diverse colour patterns among species. To establish a lycaenid model system for physiological and genetic experiments, we here describe a series of methods for rearing the Japanese pale grass blue Zizeeria maha (Kollar) (Lepidoptera, Lycaenidae) in a small laboratory space with an artificial diet for generations. Adult individuals readily mated and oviposited in a small cage with sufficient light, flowers, and host plants. Eggs were harvested in the cage, and larvae were successfully reared to normal adults with an artificial diet made from fresh leaves (AD‐F), although they were smaller than those reared with a natural diet. Feeding an artificial diet made from dried leaves (AD‐D) frequently produced adult individuals with aberrant wing colour patterns. Using our rearing methods, it is now possible to rear this species in a laboratory and to establish specific strains for physiological and genetic experiments on the wing colour pattern development, diversity, and evolution. 相似文献
13.
The hydrodynamic consequences of large coastal engineering (barrier-construction) works in the Oosterschelde were: prolonged residence times of the water, increased sinking of particulate material, and higher water transparencies. This strongly influenced the phytoplankton (Bakker et al., 1990; 1994) and phytoplankton biomass increased in the shallow Eastern compartment of the Oosterschelde (Bakker & Vink, 1994) while phytoplankton concentration of the seston rose.Zooplankton biomass, especially of copepods (Temora) and meroplankton (barnacle larvae) increased during the post-barrier period in the eastern compartment. It is hypothesized that this is caused by the improved feeding conditions and the increased retention times in this area.The barrier years 1985 and 1986 were characterized by low current velocities. In the Eastern compartment, this may have favoured the development of the rotifer Synchaeta (Bakker, 1994) and of the important copepod predator Pleurobrachia (Ctenophora).In the Western compartment, zooplankton developments in the post-barrier years were rather similar to those in the pre-barrier period. This led to the disappearance of the previously existing biomass gradients West-East (maxima in West). At present a trend in the opposite direction (maxima in East) is observed. 相似文献
14.
UV-B radiation is absorbed effectively by nucleic acids and other sensitive targets, potentially causing harmful photochemical effects. Protection against UV-B radiation may be afforded by flavonoids and other phenolics, which absorb strongly in the UV region, but little is known about the role played by other compounds, such as terpenes. Grindelia chiloensis, native of Patagonia (Argentina), can accumulate as much as 25% resin (terpenes) in its leaves. The present investigation was carried out to test the effect of solar UV-B radiation on the allocation of photoassimilates to biomass and terpenes. Exposure to UV-B radiation reduced whole plant biomass, plant height and leaf area, and increased leaf thickness and resin accumulation in Grindelia chiloensis. Higher absorbance was found for refined resin in the UV-B waveband from plants grown under solar UV-B radiation than plants without UV-B radiation. These chemical and structural changes could protect the plant from UV radiation, and may help elucidate the importance of epicuticular resins for a species as G. chiloensis native to an environment with maximum daily integrated values of solar UV-B irradiance. 相似文献
15.
Maria De Los Angeles La Torre-Cuadros Gerald A. Islebe 《Biodiversity and Conservation》2003,12(12):2455-2476
In order to assess traditional ecological knowledge of the Maya people in southeastern Mexico, we interviewed local people in Quintana Roo and estimated a number of vegetation variables in two different types of forest which are currently locally exploited, namely Monte alto (medium statured forest) and Sakal che' (low forest). We employed the Use Value index for each plant species (UVs) to quantify the importance of each plant for each inhabitant. The results showed that this Maya community classify the different forest types by species associations and size, and according to soil appearance. A total of nine categories of use were defined for three plant forms (tree, palm and vine). Manilkara zapota (zapote), Thrinax radiata (chiit) and Macfadyena uncata (bilin kok) showed the highest use values for each plant form. The most common uses were construction (35.5%), medicine (19.0%), craft (17.9%) and edibility (10.3%). There was a weak relationship between the cultural importance of plant species, expressed by the UVs, and their availability in the medium statured forest and the medium statured–low forest transition expressed by the Importance Value index (IVI). The medium statured forest was the most used forest type, as it provides many species for construction due to external demands rather than to local needs. 相似文献
16.
Raymond F. Genovese Bernard J. Benton John L. Oubre Patrick J. Fleming E. Michael Jakubowski Robert J. Mioduszewski 《Journal of medical primatology》2010,39(5):318-327
Background Relatively little is known about the effects of very low‐level exposures to nerve agents where few signs or symptoms are present. Methods African green monkeys (Chlorocebus sabeus) (n = 8) were exposed for 10 min, whole‐body, to a single concentration of soman (0.028–0.891 mg/m3). Results EC50 values for miosis were determined to be 0.055 mg/m3 and 0.132 mg/m3 when defined as a 50 percent reduction in pupil area and diameter, respectively. In general, performance on a serial probe recognition task remained unchanged at lower concentrations, but responding was suppressed at the largest concentration tested. Soman produced concentration‐dependent inhibition of acetylcholinesterase activity and, to a lesser extent, butyrylcholinesterase activity. Conclusions These results characterize threshold soman exposure concentrations that produce miosis in the absence of other overt signs of toxicity and extend previous studies indicating that miosis is a valuable early indicator for the detection of soman vapor exposure. 相似文献
17.
H. Sinoquet X. Le Roux B. Adam T. Ameglio & F. A. Daudet 《Plant, cell & environment》2001,24(4):395-406
The model RATP (radiation absorption, transpiration and photosynthesis) is presented. The model was designed to simulate the spatial distribution of radiation and leaf-gas exchanges within vegetation canopies as a function of canopy structure, canopy microclimate within the canopy and physical and physiological leaf properties. The model uses a three-dimensional (3D) representation of the canopy (i.e. an array of 3D cells, each characterized by a leaf area density). Radiation transfer is computed by a turbid medium analogy, transpiration by the leaf energy budget approach, and photosynthesis by the Farquhar model, each applied for sunlit and shaded leaves at the individual 3D cell-scale. The model typically operates at a 20–30 min time step. The RATP model was applied to an isolated, 20-year-old walnut tree grown in the field. The spatial distribution of wind speed, stomatal response to environmental variables, and light acclimation of leaf photosynthetic properties were taken into account. Model outputs were compared with data acquired in the field. The model was shown to simulate satisfactorily the intracrown distribution of radiation regime, transpiration and photosynthetic rates, at shoot or branch scales. 相似文献
18.
In-mouth volatile release from flavoured water was followed using atmospheric pressure chemical ionization-mass spectrometry (APCI-MS) or using a hand-held, computer-controlled device based on sequential trapping of flavours on Tenax traps. The present results verify recent in vitro data obtained with a sophisticated, fully computerized mouth model apparatus and confirm its validity for the simulation of in-mouth dynamic volatile release. In-nose APCI-MS measurements showed considerable person-to-person variability in non-trained individuals during drinking due to subconscious control of muscles during swallowing and subsequent breathing. Data showed a 'swallow breath' volume reaching the nasal cavity from the throat, not from the mouth cavity. Flavour enriched air from the mouth was shown to be transported to the nose (via exhalation) immediately after the swallowing event, but the dynamic process of volatile equilibration between residuals of the swallowed liquid and the exhaled air predominantly determined volatile in-nose concentration. Owing to its dynamic character, the process of volatile equilibration and release in the throat upon exhalation should be similar to the in-mouth process studied in the present work. A full mechanical simulation of retronasal volatile transport, however, will remain difficult. 相似文献
19.
Jií Kop
ek Josef Hejzlar Jií Kaa Stephen A. Norton Petr Porcal Jan Turek 《Journal of inorganic biochemistry》2009,103(11):1439-1448
We reconstructed the history of terrestrial export of aluminium (Al) to Plešné Lake (Czech Republic) since the lake origin 12,600 year BC, and predicted Al export for 2010–2050 on the basis of previously published and new data on mass budget studies, palaeolimnological data, and MAGIC modelling. We focused on three major Al forms; ionic Al (Ali), organically-bound Al (Alo), and particulate Al hydroxide [Al(OH)3]. In early post-glacial time, Plešné Lake received high terrestrial export of Al, but with a minor proportion of Al(OH)3 (4–25 μM), and concentrations of Ali and Alo were negligible. Since the forest and soil development (9900–9000 year BC), erosion has declined and soil organic acids increased export of Alo from soils. The terrestrial Alo leaching (7.5 μM) persisted throughout the Holocene until the industrial period. Then, Ali concentrations continuously increased (up to 28 μM in the mid-1980s) due to atmospheric acidification; the Ali leaching was mostly associated with sulphate. The proportion of Ali associated with nitrate has been increasing since the beginning of lake recovery from acidification after 1990 due to reduction in sulphur deposition and nitrogen-saturation of the catchment, leading to persistent nitrate leaching. Currently, nitrate has become the dominant strong acid anion and the major Ali carrier. Alo (5.5 μM) is predicted to dominate Al concentrations around 2050, but the predicted Ali concentrations (4 μM) are uncertain because of uncertainty associated with the future nitrate leaching and its effect on soils. 相似文献
20.
Schmidt A 《Zoology (Jena, Germany)》2011,114(3):155-164
Mammalian locomotion is characterized by the frequent use of in-phase gaits in which the footfalls of the left and right fore- or hindlimbs are unevenly spaced in time. Although previous studies have identified a functional differentiation between the first limb (trailing limb) and the second limb (leading limb) to touch the ground during terrestrial locomotion, the influence of a horizontal branch on limb function has never been explored. To determine the functional differences between trailing and leading forelimbs during locomotion on the ground and on a horizontal branch, X-ray motion analysis and force measurements were carried out in two European red squirrels (Sciurus vulgaris, Rodentia). The differences observed between trailing and leading forelimbs were minimal during terrestrial locomotion, where both limbs fulfill two functions and go through a shock-absorbing phase followed by a generating phase. During locomotion on a horizontal branch, European red squirrels reduce speed and all substrate reaction forces transmitted may be due to the reduction of vertical oscillation of the center of mass. Further adjustments during locomotion on a horizontal branch differ significantly between trailing and leading forelimbs and include limb flexion, lead intervals, limb protraction and vertical displacement of the scapular pivot. Consequently, trailing and leading forelimbs perform different functions. Trailing forelimbs function primarily as shock-absorbing elements, whereas leading forelimbs are characterized by a high level of stiffness. This functional differentiation indicates that European red squirrels ‘test’ the substrate for stability with the trailing forelimb, while the leading forelimb responds to or counteracts swinging or snapping branches. 相似文献