首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Problems involving thousands of null hypotheses have been addressed by estimating the local false discovery rate (LFDR). A previous LFDR approach to reporting point and interval estimates of an effect-size parameter uses an estimate of the prior distribution of the parameter conditional on the alternative hypothesis. That estimated prior is often unreliable, and yet strongly influences the posterior intervals and point estimates, causing the posterior intervals to differ from fixed-parameter confidence intervals, even for arbitrarily small estimates of the LFDR. That influence of the estimated prior manifests the failure of the conditional posterior intervals, given the truth of the alternative hypothesis, to match the confidence intervals. Those problems are overcome by changing the posterior distribution conditional on the alternative hypothesis from a Bayesian posterior to a confidence posterior. Unlike the Bayesian posterior, the confidence posterior equates the posterior probability that the parameter lies in a fixed interval with the coverage rate of the coinciding confidence interval. The resulting confidence-Bayes hybrid posterior supplies interval and point estimates that shrink toward the null hypothesis value. The confidence intervals tend to be much shorter than their fixed-parameter counterparts, as illustrated with gene expression data. Simulations nonetheless confirm that the shrunken confidence intervals cover the parameter more frequently than stated. Generally applicable sufficient conditions for correct coverage are given. In addition to having those frequentist properties, the hybrid posterior can also be motivated from an objective Bayesian perspective by requiring coherence with some default prior conditional on the alternative hypothesis. That requirement generates a new class of approximate posteriors that supplement Bayes factors modified for improper priors and that dampen the influence of proper priors on the credibility intervals. While that class of posteriors intersects the class of confidence-Bayes posteriors, neither class is a subset of the other. In short, two first principles generate both classes of posteriors: a coherence principle and a relevance principle. The coherence principle requires that all effect size estimates comply with the same probability distribution. The relevance principle means effect size estimates given the truth of an alternative hypothesis cannot depend on whether that truth was known prior to observing the data or whether it was learned from the data.  相似文献   

2.
On the basis of the conditional distribution, given the marginal totals of non-cases fixed for each of independent 2 × 2 tables under inverse sampling, this paper develops the conditional maximum likelihood (CMLE) estimator of the underlying common relative difference (RD) and its asymptotic conditional variance. This paper further provides for the RD an exact interval calculation procedure, of which the coverage probability is always larger than or equal to the desired confidence level and for investigating whether the underlying common RD equals any specified value an exact test procedure, of which Type I error is always less than or equal to the nominal α-level. These exact interval estimation and exact hypothesis testing procedures are especially useful for the situation in which the number of index subjects in a study is small and the asymptotically approximate methods may not be appropriate for use. This paper also notes the condition under which the CMLE of RD uniquely exists and includes a simple example to illustrate use of these techniques.  相似文献   

3.
Chris J. Lloyd 《Biometrics》2010,66(3):975-982
Summary Clinical trials data often come in the form of low‐dimensional tables of small counts. Standard approximate tests such as score and likelihood ratio tests are imperfect in several respects. First, they can give quite different answers from the same data. Second, the actual type‐1 error can differ significantly from nominal, even for quite large sample sizes. Third, exact inferences based on these can be strongly nonmonotonic functions of the null parameter and lead to confidence sets that are discontiguous. There are two modern approaches to small sample inference. One is to use so‐called higher order asymptotics ( Reid, 2003 , Annal of Statistics 31 , 1695–1731) to provide an explicit adjustment to the likelihood ratio statistic. The theory for this is complex but the statistic is quick to compute. The second approach is to perform an exact calculation of significance assuming the nuisance parameters equal their null estimate ( Lee and Young, 2005 , Statistic and Probability Letters 71 , 143–153), which is a kind of parametric bootstrap. The purpose of this article is to explain and evaluate these two methods, for testing whether a difference in probabilities p2? p1 exceeds a prechosen noninferiority margin δ0 . On the basis of an extensive numerical study, we recommend bootstrap P‐values as superior to all other alternatives. First, they produce practically identical answers regardless of the basic test statistic chosen. Second, they have excellent size accuracy and higher power. Third, they vary much less erratically with the null parameter value δ0 .  相似文献   

4.
For clinical trials with interim analyses conditional rejection probabilities play an important role when stochastic curtailment or design adaptations are performed. The conditional rejection probability gives the conditional probability to finally reject the null hypothesis given the interim data. It is computed either under the null or the alternative hypothesis. We investigate the properties of the conditional rejection probability for the one sided, one sample t‐test and show that it can be non monotone in the interim mean of the data and non monotone in the non‐centrality parameter for the alternative. We give several proposals how to implement design adaptations (that are based on the conditional rejection probability) for the t‐test and give a numerical example. Additionally, the conditional rejection probability given the interim t‐statistic is investigated. It does not depend on the unknown σ and can be used in stochastic curtailment procedures. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

5.
Exact tests for one sample correlated binary data   总被引:1,自引:0,他引:1  
In this paper we developed exact tests for one sample correlated binary data whose cluster sizes are at most two. Although significant progress has been made in the development and implementation of the exact tests for uncorrelated data, exact tests for correlated data are rare. Lack of a tractable likelihood function has made it difficult to develop exact tests for correlated binary data. However, when cluster sizes of binary data are at most two, only three parameters are needed to characterize the problem. One parameter is fixed under the null hypothesis, while the other two parameters can be removed by both conditional and unconditional approaches, respectively, to construct exact tests. We compared the exact and asymptotic p-values in several cases. The proposed method is applied to real-life data.  相似文献   

6.
Scherag et al. [Hum Hered 2002;54:210-217] recently proposed point estimates and asymptotic as well as exact confidence intervals for genotype relative risks (GRRs) and the attributable risk (AR) in case parent trio designs using single nucleotide polymorphism (SNP) data. The aim of this study was the investigation of coverage probabilities and bias in estimates if the marker locus is not identical to the disease locus. Using a variety of parameter constellations, including marker allele frequencies identical to and different from the SNP at the disease locus, we performed an analytical study to quantify the bias and a Monte-Carlo simulation study for quantifying both bias and coverage probabilities. No bias was observed if marker and trait locus coincided. Two parameters had a strong impact on coverage probabilities of confidence intervals and bias in point estimates if they did not coincide: the linkage disequilibrium (LD) parameter delta and the allele frequency at the marker SNP. If marker allele frequencies were different from the allele frequencies at the functional SNP, substantial biases occurred. Further, if delta between the marker and the disease locus was lower than the maximum possible delta, estimates were also biased. In general, biases were towards the null hypothesis for both GRRs and AR. If one GRR was not increased, as e.g. in a recessive genetic model, biases away from the null could be observed. If both GRRs were in identical directions and if both were substantially larger than 1, the bias always was towards the null. When applying point estimates and confidence intervals for GRRs and AR in candidate gene studies, great care is needed. Effect estimates are substantially biased towards the null if either the allele frequencies at the marker SNP and the true disease locus are different or if the LD between the marker SNP and the disease locus is not at its maximum. A bias away from the null occurs only in uncommon study situations; it is small and can therefore be ignored for applications.  相似文献   

7.
Thall PF  Simon RM  Shen Y 《Biometrics》2000,56(1):213-219
We propose an approximate Bayesian method for comparing an experimental treatment to a control based on a randomized clinical trial with multivariate patient outcomes. Overall treatment effect is characterized by a vector of parameters corresponding to effects on the individual patient outcomes. We partition the parameter space into four sets where, respectively, the experimental treatment is superior to the control, the control is superior to the experimental, the two treatments are equivalent, and the treatment effects are discordant. We compute posterior probabilities of the parameter sets by treating an estimator of the parameter vector like a random variable in the Bayesian paradigm. The approximation may be used in any setting where a consistent, asymptotically normal estimator of the parameter vector is available. The method is illustrated by application to a breast cancer data set consisting of multiple time-to-event outcomes with covariates and to count data arising from a cross-classification of response, infection, and treatment in an acute leukemia trial.  相似文献   

8.
Haplotype reconstruction from SNP alignment.   总被引:4,自引:0,他引:4  
In this paper, we describe a method for statistical reconstruction of haplotypes from a set of aligned SNP fragments. We consider the case of a pair of homologous human chromosomes, one from the mother and the other from the father. After fragment assembly, we wish to reconstruct the two haplotypes of the parents. Given a set of potential SNP sites inferred from the assembly alignment, we wish to divide the fragment set into two subsets, each of which represents one chromosome. Our method is based on a statistical model of sequencing errors, compositional information, and haplotype memberships. We calculate probabilities of different haplotypes conditional on the alignment. Due to computational complexity, we first determine phases for neighboring SNPs. Then we connect them and construct haplotype segments. Also, we compute the accuracy or confidence of the reconstructed haplotypes. We discuss other issues, such as alternative methods, parameter estimation, computational efficiency, and relaxation of assumptions.  相似文献   

9.
Problems of establishing equivalence or noninferiority between two medical diagnostic procedures involve comparisons of the response rates between correlated proportions. When the sample size is small, the asymptotic tests may not be reliable. This article proposes an unconditional exact test procedure to assess equivalence or noninferiority. Two statistics, a sample-based test statistic and a restricted maximum likelihood estimation (RMLE)-based test statistic, to define the rejection region of the exact test are considered. We show the p-value of the proposed unconditional exact tests can be attained at the boundary point of the null hypothesis. Assessment of equivalence is often based on a comparison of the confidence limits with the equivalence limits. We also derive the unconditional exact confidence intervals on the difference of the two proportion means for the two test statistics. A typical data set of comparing two diagnostic procedures is analyzed using the proposed unconditional exact and asymptotic methods. The p-value from the unconditional exact tests is generally larger than the p-value from the asymptotic tests. In other words, an exact confidence interval is generally wider than the confidence interval obtained from an asymptotic test.  相似文献   

10.
The classical χ2‐procedure for the assessment of Hardy–Weinberg equilibrium (HWE) is tailored for detecting violations of HWE. However, many applications in genetic epidemiology require approximate compatibility with HWE. In a previous contribution to the field (Wellek, S. (2004). Biometrics, 60 , 694–703), the methodology of statistical equivalence testing was exploited for the construction of tests for problems in which the assumption of approximate compatibility of a given genotype distribution with HWE plays the role of the alternative hypothesis one aims to establish. In this article, we propose a procedure serving the same purpose but relying on confidence limits rather than critical bounds of a significance test. Interval estimation relates to essentially the same parametric function that was previously chosen as the target parameter for constructing an exact conditional UMPU test for equivalence with a HWE conforming genotype distribution. This population parameter is shown to have a direct genetic interpretation as a measure of relative excess heterozygosity. Confidence limits are constructed using both asymptotic and exact methods. The new approach is illustrated by reanalyzing genotype distributions obtained from published genetic association studies, and detailed guidance for choosing the equivalence margin is provided. The methods have been implemented in freely available SAS macros.  相似文献   

11.
Mehrotra DV  Chan IS  Berger RL 《Biometrics》2003,59(2):441-450
Fisher's exact test for comparing response proportions in a randomized experiment can be overly conservative when the group sizes are small or when the response proportions are close to zero or one. This is primarily because the null distribution of the test statistic becomes too discrete, a partial consequence of the inference being conditional on the total number of responders. Accordingly, exact unconditional procedures have gained in popularity, on the premise that power will increase because the null distribution of the test statistic will presumably be less discrete. However, we caution researchers that a poor choice of test statistic for exact unconditional inference can actually result in a substantially less powerful analysis than Fisher's conditional test. To illustrate, we study a real example and provide exact test size and power results for several competing tests, for both balanced and unbalanced designs. Our results reveal that Fisher's test generally outperforms exact unconditional tests based on using as the test statistic either the observed difference in proportions, or the observed difference divided by its estimated standard error under the alternative hypothesis, the latter for unbalanced designs only. On the other hand, the exact unconditional test based on the observed difference divided by its estimated standard error under the null hypothesis (score statistic) outperforms Fisher's test, and is recommended. Boschloo's test, in which the p-value from Fisher's test is used as the test statistic in an exact unconditional test, is uniformly more powerful than Fisher's test, and is also recommended.  相似文献   

12.
Parameter inference and model selection are very important for mathematical modeling in systems biology. Bayesian statistics can be used to conduct both parameter inference and model selection. Especially, the framework named approximate Bayesian computation is often used for parameter inference and model selection in systems biology. However, Monte Carlo methods needs to be used to compute Bayesian posterior distributions. In addition, the posterior distributions of parameters are sometimes almost uniform or very similar to their prior distributions. In such cases, it is difficult to choose one specific value of parameter with high credibility as the representative value of the distribution. To overcome the problems, we introduced one of the population Monte Carlo algorithms, population annealing. Although population annealing is usually used in statistical mechanics, we showed that population annealing can be used to compute Bayesian posterior distributions in the approximate Bayesian computation framework. To deal with un-identifiability of the representative values of parameters, we proposed to run the simulations with the parameter ensemble sampled from the posterior distribution, named “posterior parameter ensemble”. We showed that population annealing is an efficient and convenient algorithm to generate posterior parameter ensemble. We also showed that the simulations with the posterior parameter ensemble can, not only reproduce the data used for parameter inference, but also capture and predict the data which was not used for parameter inference. Lastly, we introduced the marginal likelihood in the approximate Bayesian computation framework for Bayesian model selection. We showed that population annealing enables us to compute the marginal likelihood in the approximate Bayesian computation framework and conduct model selection depending on the Bayes factor.  相似文献   

13.
J J Lee 《Biometrics》1991,47(4):1573-1580
In the calibration problem, the need to construct a confidence interval to estimate the unknown chi 0 arises when the null hypothesis of zero slope is rejected. Otherwise, the resulting confidence interval will be infinite to reflect the fact that the slope of the regression line may be zero. Under the condition of rejecting the hypothesis of zero slope, we study the properties of the conditional coverage rate of the calibration confidence interval. The conditional coverage rate (P1) is a function of the slope, distance between chi 0 and the mean of the trailing sample means, the sum of squares of chi, and n. When the true slope is close to 0 and chi 0 is away from means, P1 can go down to 0. On the other hand, as the power of testing zero slope reaches 1, with or without chi 0 close to means, P1 will tend to the desired nominal coverage rate. In summary, one should choose a reasonably small alpha in testing zero slope to avoid constructing a confidence interval for chi 0 when the true slope is 0. In addition, it is desirable to have high power in testing zero slope so that the resulting confidence interval will maintain the desired coverage rate when using the conditional approach in the calibration problem.  相似文献   

14.
The purpose of this work is the development of a family-based association test that allows for random genotyping errors and missing data and makes use of information on affected and unaffected pedigree members. We derive the conditional likelihood functions of the general nuclear family for the following scenarios: complete parental genotype data and no genotyping errors; only one genotyped parent and no genotyping errors; no parental genotype data and no genotyping errors; and no parental genotype data with genotyping errors. We find maximum likelihood estimates of the marker locus parameters, including the penetrances and population genotype frequencies under the null hypothesis that all penetrance values are equal and under the alternative hypothesis. We then compute the likelihood ratio test. We perform simulations to assess the adequacy of the central chi-square distribution approximation when the null hypothesis is true. We also perform simulations to compare the power of the TDT and this likelihood-based method. Finally, we apply our method to 23 SNPs genotyped in nuclear families from a recently published study of idiopathic scoliosis (IS). Our simulations suggest that this likelihood ratio test statistic follows a central chi-square distribution with 1 degree of freedom under the null hypothesis, even in the presence of missing data and genotyping errors. The power comparison shows that this likelihood ratio test is more powerful than the original TDT for the simulations considered. For the IS data, the marker rs7843033 shows the most significant evidence for our method (p = 0.0003), which is consistent with a previous report, which found rs7843033 to be the 2nd most significant TDTae p value among a set of 23 SNPs.  相似文献   

15.
Ryman N  Jorde PE 《Molecular ecology》2001,10(10):2361-2373
A variety of statistical procedures are commonly employed when testing for genetic differentiation. In a typical situation two or more samples of individuals have been genotyped at several gene loci by molecular or biochemical means, and in a first step a statistical test for allele frequency homogeneity is performed at each locus separately, using, e.g. the contingency chi-square test, Fisher's exact test, or some modification thereof. In a second step the results from the separate tests are combined for evaluation of the joint null hypothesis that there is no allele frequency difference at any locus, corresponding to the important case where the samples would be regarded as drawn from the same statistical and, hence, biological population. Presently, there are two conceptually different strategies in use for testing the joint null hypothesis of no difference at any locus. One approach is based on the summation of chi-square statistics over loci. Another method is employed by investigators applying the Bonferroni technique (adjusting the P-value required for rejection to account for the elevated alpha errors when performing multiple tests simultaneously) to test if the heterogeneity observed at any particular locus can be regarded significant when considered separately. Under this approach the joint null hypothesis is rejected if one or more of the component single locus tests is considered significant under the Bonferroni criterion. We used computer simulations to evaluate the statistical power and realized alpha errors of these strategies when evaluating the joint hypothesis after scoring multiple loci. We find that the 'extended' Bonferroni approach generally is associated with low statistical power and should not be applied in the current setting. Further, and contrary to what might be expected, we find that 'exact' tests typically behave poorly when combined in existing procedures for joint hypothesis testing. Thus, while exact tests are generally to be preferred over approximate ones when testing each particular locus, approximate tests such as the traditional chi-square seem preferable when addressing the joint hypothesis.  相似文献   

16.
Although RANSAC is proven to be robust, the original RANSAC algorithm selects hypothesis sets at random, generating numerous iterations and high computational costs because many hypothesis sets are contaminated with outliers. This paper presents a conditional sampling method, multiBaySAC (Bayes SAmple Consensus), that fuses the BaySAC algorithm with candidate model parameters statistical testing for unorganized 3D point clouds to fit multiple primitives. This paper first presents a statistical testing algorithm for a candidate model parameter histogram to detect potential primitives. As the detected initial primitives were optimized using a parallel strategy rather than a sequential one, every data point in the multiBaySAC algorithm was assigned to multiple prior inlier probabilities for initial multiple primitives. Each prior inlier probability determined the probability that a point belongs to the corresponding primitive. We then implemented in parallel a conditional sampling method: BaySAC. With each iteration of the hypothesis testing process, hypothesis sets with the highest inlier probabilities were selected and verified for the existence of multiple primitives, revealing the fitting for multiple primitives. Moreover, the updated version of the initial probability was implemented based on a memorable form of Bayes’ Theorem, which describes the relationship between prior and posterior probabilities of a data point by determining whether the hypothesis set to which a data point belongs is correct. The proposed approach was tested using real and synthetic point clouds. The results show that the proposed multiBaySAC algorithm can achieve a high computational efficiency (averaging 34% higher than the efficiency of the sequential RANSAC method) and fitting accuracy (exhibiting good performance in the intersection of two primitives), whereas the sequential RANSAC framework clearly suffers from over- and under-segmentation problems. Future work will aim at further optimizing this strategy through its application to other problems such as multiple point cloud co-registration and multiple image matching.  相似文献   

17.
Despite major methodological developments, Bayesian inference in Gaussian graphical models remains challenging in high dimension due to the tremendous size of the model space. This article proposes a method to infer the marginal and conditional independence structures between variables by multiple testing, which bypasses the exploration of the model space. Specifically, we introduce closed‐form Bayes factors under the Gaussian conjugate model to evaluate the null hypotheses of marginal and conditional independence between variables. Their computation for all pairs of variables is shown to be extremely efficient, thereby allowing us to address large problems with thousands of nodes as required by modern applications. Moreover, we derive exact tail probabilities from the null distributions of the Bayes factors. These allow the use of any multiplicity correction procedure to control error rates for incorrect edge inclusion. We demonstrate the proposed approach on various simulated examples as well as on a large gene expression data set from The Cancer Genome Atlas.  相似文献   

18.
DiRienzo AG 《Biometrics》2003,59(3):497-504
When testing the null hypothesis that treatment arm-specific survival-time distributions are equal, the log-rank test is asymptotically valid when the distribution of time to censoring is conditionally independent of randomized treatment group given survival time. We introduce a test of the null hypothesis for use when the distribution of time to censoring depends on treatment group and survival time. This test does not make any assumptions regarding independence of censoring time and survival time. Asymptotic validity of this test only requires a consistent estimate of the conditional probability that the survival event is observed given both treatment group and that the survival event occurred before the time of analysis. However, by not making unverifiable assumptions about the data-generating mechanism, there exists a set of possible values of corresponding sample-mean estimates of these probabilities that are consistent with the observed data. Over this subset of the unit square, the proposed test can be calculated and a rejection region identified. A decision on the null that considers uncertainty because of censoring that may depend on treatment group and survival time can then be directly made. We also present a generalized log-rank test that enables us to provide conditions under which the ordinary log-rank test is asymptotically valid. This generalized test can also be used for testing the null hypothesis when the distribution of censoring depends on treatment group and survival time. However, use of this test requires semiparametric modeling assumptions. A simulation study and an example using a recent AIDS clinical trial are provided.  相似文献   

19.
Exact inference for growth curves with intraclass correlation structure   总被引:2,自引:0,他引:2  
Weerahandi S  Berger VW 《Biometrics》1999,55(3):921-924
We consider repeated observations taken over time for each of several subjects. For example, one might consider the growth curve of a cohort of babies over time. We assume a simple linear growth curve model. Exact results based on sufficient statistics (exact tests of the null hypothesis that a coefficient is zero, or exact confidence intervals for coefficients) are not available to make inference on regression coefficients when an intraclass correlation structure is assumed. This paper will demonstrate that such exact inference is possible using generalized inference.  相似文献   

20.
Multipoint (MP) linkage analysis represents a valuable tool for whole-genome studies but suffers from the disadvantage that its probability distribution is unknown and varies as a function of marker information and density, genetic model, number and structure of pedigrees, and the affection status distribution [Xing and Elston: Genet Epidemiol 2006;30:447-458; Hodge et al.: Genet Epidemiol 2008;32:800-815]. This implies that the MP significance criterion can differ for each marker and each dataset, and this fact makes planning and evaluation of MP linkage studies difficult. One way to circumvent this difficulty is to use simulations or permutation testing. Another approach is to use an alternative statistical paradigm to assess the statistical evidence for linkage, one that does not require computation of a p value. Here we show how to use the evidential statistical paradigm for planning, conducting, and interpreting MP linkage studies when the disease model is known (lod analysis) or unknown (mod analysis). As a key feature, the evidential paradigm decouples uncertainty (i.e. error probabilities) from statistical evidence. In the planning stage, the user calculates error probabilities, as functions of one's design choices (sample size, choice of alternative hypothesis, choice of likelihood ratio (LR) criterion k) in order to ensure a reliable study design. In the data analysis stage one no longer pays attention to those error probabilities. In this stage, one calculates the LR for two simple hypotheses (i.e. trait locus is unlinked vs. trait locus is located at a particular position) as a function of the parameter of interest (position). The LR directly measures the strength of evidence for linkage in a given data set and remains completely divorced from the error probabilities calculated in the planning stage. An important consequence of this procedure is that one can use the same criterion k for all analyses. This contrasts with the situation described above, in which the value one uses to conclude significance may differ for each marker and each dataset in order to accommodate a fixed test size, α. In this study we accomplish two goals that lead to a general algorithm for conducting evidential MP linkage studies. (1) We provide two theoretical results that translate into guidelines for investigators conducting evidential MP linkage: (a) Comparing mods to lods, error rates (including probabilities of weak evidence) are generally higher for mods when the null hypothesis is true, but lower for mods in the presence of true linkage. Royall [J Am Stat Assoc 2000;95:760-780] has shown that errors based on lods are bounded and generally small. Therefore when the true disease model is unknown and one chooses to use mods, one needs to control misleading evidence rates only under the null hypothesis; (b) for any given pair of contiguous marker loci, error rates under the null are greatest at the midpoint between the markers spaced furthest apart, which provides an obvious simple alternative hypothesis to specify for planning MP linkage studies. (2) We demonstrate through extensive simulation that this evidential approach can yield low error rates under the null and alternative hypotheses for both lods and mods, despite the fact that mod scores are not true LRs. Using these results we provide a coherent approach to implement a MP linkage study using the evidential paradigm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号