首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Journal of phycology》2001,37(Z3):50-50
Van Alstyne, K. L. Shannon Point Marine Center, Western Washington University, 1900 Shannon Point Road, Anacortes, WA 98221 USA Ulvoid green macroalgae, such as Enteromorpha and Ulva, can form large blooms that have deleterious impacts on the local biota. These algae are often assumed to be very palatable for most invertebrate and vertebrate herbivores because they lack obvious physical defenses, and because there have been few reports of their producing chemical defenses. However, in laboratory feeding preference assays, the ulvoid macroalgae Enteromorpha linza and Ulva fenestrata were low preference foods for green sea urchins, Strongylocentrotus droebachiensis. Both these algae and several other species of green algae produce large quantities of dimethylsulphoniopropionate (DMSP), which is enzymatically converted to dimethyl sulfide (DMS) and acrylic acid when the algae are physically damaged. In laboratory bioassays, both DMS and acrylic acid were potent feeding deterrents towards urchins at concentrations that the urchins would be likely to encounter in the field. The precursor in this system, DMSP, was a feeding attractant. Our data provide evidence that DMSP functions as a precursor in an activated defense system in marine macroalgae and suggests a similar function in phytoplankton. The presence of this activated defense system may contribute to the persistence of macroalgal blooms by making these algae unpalatable to some species of herbivores.  相似文献   

2.
The Great Lakes ecosystem is home to at least 139 non-indigenous species of fauna and flora which have become established following invasions or intentional introductions. About ten percent of the exotic species have caused economic or ecological damage to the system. A sample of this group is reviewed to determine if ecological concepts are useful in helping to predict colonization and impacts to ecosystem health. Successful colonization by most of the species reviewed was predictable from habitat requirements and behaviour. Ecosystem disturbance was a factor in the success of some of the colonists but was not an overriding ecological requirement. Perturbations to ecosystem health are more difficult to predict and in most cases were not readily apparent from knowledge about the ecology of invaders or native communities. The main damage to ecosystem health by the species reviewed resulted from competition, predation and habitat modification. Difficulties in predicting both invasions and damage from successful colonists point to the need to prevent non-indigenous species from reaching the Great Lakes basin.  相似文献   

3.
Exotic macrophytes, invertebrates and fish are found in most coastal habitats in the Mediterranean Sea. The Mediterranean Sea has been subjected to introductions of non-indigenous species by ship traffic since the opening of interoceanic maritime routes five centuries ago. The Sea, a hub of shipping, is exceptionally susceptible to invaders that arrive in fouling communities or ballast. The Suez Canal has been the largest pathway for the entry of these species: more than 300 Erythrean species – principally molluscs, fish, decapod crustaceans, polychaetes and algae – have become established in the eastern Mediterranean, primarily along the Levantine coasts. Mariculture of nonindigenous shellfish predominates in the northern Mediterranean lagoonar environments. Unrestricted transport of commercially important exotic shellfish has resulted in numerous unintentional introductions of pathogens, parasites and pest species. Some invaders have outcompeted or replaced native species locally, severely reducing biodiversity; some other invaders are so abundant they are exploited commercially. The rate of these biotic invasions has increased in recent decades, and they collectively have significant ecological and economic impacts in the Mediterranean Sea. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
Threat of non-native crayfish introductions into Turkey: global lessons   总被引:2,自引:0,他引:2  
Introductions of crayfish species from their home range to new environments have been carried out in many parts of the world. The most important introduced crayfish species are Procambarus clarkii, Pacifastacus leniusculus, Cherax destructor, C. quadricarinatus, Orconectes limosus, O. rusticus and Astacus leptodactylus. The environmental impact of crayfish introductions can be positive, negative or neutral. However, native crayfish populations in Europe have been negatively affected by introductions of non-indigenous crayfish species from America. Negative effects of non-native crayfish introductions included displacement of native crayfish species, transfer of disease (crayfish plague), consumption of fish eggs, reduction of fish stocks, consumption of large amounts of macrophytes, indirect and direct effects on other invertebrates and upsetting production in rice fields. As a result of non-native crayfish introductions, the natural harvest and crayfish industry in Europe have been severely affected. Large quantities of Turkish A. leptodactylus were harvested (approximately 7,000 tonnes annually) and exported to Europe before the crayfish plague was observed in these populations. The total harvest of A. leptodactylus in Turkey reduced dramatically to 320 in 1991 after the plague. Therefore, although Turkey currently has no known non-native crayfish species, there is a threat of non-native crayfish introduction in order to increase crayfish productions and subsequent harvest. The North American spiny-cheek crayfish, O. limosus, has been spreading quickly down the River Danube and could soon reach neighboring countries including Turkey. The North American signal crayfish, P. leniusculus is known from Greece and could be a threat to native stocks if it is introduced into Turkey for aquaculture. Additional threats may come from the release of other North American species, which are widely available through the aquarium trade. We conclude that the spread of non-native crayfish introductions throughout Turkey will increase local problems, because introductions of non-native crayfish in many parts of the world have been known to have caused important reductions in population density and numbers of native crayfish species. Furthermore, freshwater ecosystems may be altered by such introductions and the economic viability of native crayfish species fisheries could be severely reduced in Turkey.  相似文献   

5.
Island plant–pollinator networks are typically simpler than their continental counterparts and this can make them less resilient to disturbance from exotic species. French Polynesia has a very low diversity of bees, but their status as either native or introduced species has been largely speculative. We combine previous studies with new DNA sequence data to show that 11 bee species have now been recorded for French Polynesia. Haplotype variation at the ‘barcode’ region of the mitochondrial gene cytochrome c oxidase subunit I (COI) for four of these species, Ceratina dentipes Freise, Xylocopa sonorina Smith, Braunsapis puangensis (Cockerell) and Amegilla pulchra (Smith), indicates that they all represent very recent introductions. Apis mellifera Linnaeus was a purposefully introduced species, and four megachilid species probably arrived due to human‐aided dispersal through maritime activities in the Pacific. The two remaining bee species, an unidentified partial specimen of a halictid bee and the colletid bee Hylaeus (P.) tuamotuensis Michener, are collectively known from only four specimens collected in the 1930s and their provenance is uncertain. French Polynesia therefore comprises a region where recently introduced bee species greatly overwhelm any possible native bee fauna. These introductions are likely to have major ecosystem impacts, including disruptions of existing plant–pollinator networks and facilitating the spread of weedy plant species, as well as positive impacts for agriculture. Future biosecurity initiatives need to consider these potential impacts and the likely routes of dispersal to effectively control any further unintended introductions.  相似文献   

6.
7.
We quantified broad-scale patterns of species richness and species density (mean # species/km2) for native and non-indigenous plants, birds, and fishes in the continental USA and Hawaii. We hypothesized that the species density of native and non-indigenous taxa would generally decrease in northern latitudes and higher elevations following declines in potential evapotranspiration, mean temperature, and precipitation. County data on plants (n = 3004 counties) and birds (n=3074 counties), and drainage (6 HUC) data on fishes (n = 328 drainages) showed that the densities of native and non-indigenous species were strongly positively correlated for plant species (r = 0.86, P < 0.0001), bird species (r = 0.93, P<0.0001), and fish species (r = 0.41, P<0.0001). Multiple regression models showed that the densities of native plant and bird species could be strongly predicted (adj. R2 = 0.66 in both models) at county levels, but fish species densities were less predictable at drainage levels (adj. R2 = 0.31, P<0.0001). Similarly, non-indigenous plant and bird species densities were strongly predictable (adj. R2 = 0.84 and 0.91 respectively), but non-indigenous fish species density was less predictable (adj. R2 = 0.38). County level hotspots of native and non-indigenous plants, birds, and fishes were located in low elevation areas close to the coast with high precipitation and productivity (vegetation carbon). We show that (1) native species richness can be moderately well predicted with abiotic factors; (2) human populations have tended to settle in areas rich in native species; and (3) the richness and density of non-indigenous plant, bird, and fish species can be accurately predicted from biotic and abiotic factors largely because they are positively correlated to native species densities. We conclude that while humans facilitate the initial establishment, invasions of non-indigenous species, the spread and subsequent distributions of non-indigenous species may be controlled largely by environmental factors. The U.S. Government’s right to retain a non-exclusive, royalty-free licence in and to any copyright is acknowledged.  相似文献   

8.
9.
Schiel  D.R. 《Journal of phycology》2000,36(S3):61-61
Introductions of non-native macroalgae and the subsequent displacement of native species are globally becoming more frequent. The algal genera Undaria, Sargassum , Caulerpa and Codium have been identified as being particularly invasive. An overview on the present knowledge on macroalgal introductions in the Australian region is presented and options for management are discussed, mostly using examples from studies on the introduced Japanese kelp, Undaria pinnatifida. Undaria pinnatifida was first detected in Tasmania, Australia in the early 1980's. Since then, its range has expanded despite eradication efforts. Long distance jumps appear to be the major mode of spread of U. pinnatifida in Tasmania. Studies are underway to distinguish the relative importance of spore dispersal, drift of adult plants and anthropogenic factors in spreading this invasive kelp. Although information on the real impacts of U. pinnatifida and other introduced macroalgae is sparse, the development of management and control strategies is of vital importance to prevent further spread and translocation of these "pest" species.  相似文献   

10.
This review provides a contemporary account of knowledge on aspects of introductions of non‐native fish species and includes issues associated with introduction pathways, ecological and economic impacts, risk assessments, management options and impact of climate change. It offers guidance to reconcile the increasing demands of certain stakeholders to diversify their activities using non‐native fishes with the long‐term sustainability of native aquatic biodiversity. The rate at which non‐native freshwater fishes have been introduced worldwide has doubled in the space of 30 years, with the principal motives being aquaculture (39%) and improvement of wild stocks (17%). Economic activity is the principal driver of human‐mediated non‐native fish introductions, including the globalization of fish culture, whereby the production of the African cichlid tilapia is seven times higher in Asia than in most areas of Africa, and Chile is responsible for c. 30% of the world's farmed salmon, all based on introduced species. Consequently, these economic benefits need balancing against the detrimental environmental, social and economic effects of introduced non‐native fishes. There are several major ecological effects associated with non‐native fish introductions, including predation, habitat degradation, increased competition for resources, hybridization and disease transmission. Consideration of these aspects in isolation, however, is rarely sufficient to adequately characterize the overall ecological effect of an introduced species. Regarding the management of introduced non‐native fish, pre‐introduction screening tools, such as the fish invasiveness scoring kit (FISK), can be used to ensure that species are not introduced, which may develop invasive populations. Following the introduction of non‐native fish that do develop invasive populations, management responses are typified by either a remediation or a mitigation response, although these are often difficult and expensive to implement, and may have limited effectiveness.  相似文献   

11.
Aim The introduction of non‐indigenous species has resulted in wide‐ranging ecological and economic impacts. Predictive modelling of the introduction and establishment of non‐indigenous species is imperative to identify areas at high risk of invasion to effectively manage non‐indigenous species and conserve native populations. Smallmouth bass (Micropterus dolomieu), a warm water fish species native to central North America has negatively impacted native fish communities, including cyprinids and salmonid populations, as a result of intentional introductions. We predicted the introduction risk; species establishment based on habitat suitability; identified lakes at high risk of invasion; and finally assessed the consequential impacts on native salmon, trout and cyprinid populations. Location Ontario and British Columbia, Canada. Methods Classification tree and logistic regression models were developed and validated to predict the introduction and establishment of smallmouth bass for thousands of lakes. Results Densely human populated areas and larger lake surface areas successfully identify lakes associated with the introduction of smallmouth bass (introduction model) in British Columbia. Climate, lake morphology and water chemistry variables were the driving environmental parameters to define suitable smallmouth bass habitat (establishment model). A combination of the introduction and establishment model identified 138 lakes that are currently at risk in British Columbia to the introduction and establishment of smallmouth bass. Of these 138 high‐risk lakes, 95% of them contain at least one species of salmon, trout or cyprinid, thereby increasing the potential impact of an invasion by smallmouth bass. Main conclusions Our framework can be applied to other terrestrial and aquatic species to obtain a better understanding of the potential risk posed by a non‐indigenous species to an ecosystem. Furthermore, our methodology can be used to focus management efforts on areas at higher risk (e.g. number of potential releases, more favourable habitats) to control future introductions of non‐indigenous species, thereby conserving native populations.  相似文献   

12.
The introduction of organisms within the native range of wild conspecifics is a widespread phenomenon and locally modifies patterns in intraspecific diversity. However, our knowledge of the resulting ecological effects, as opposed to those caused by invasion‐induced changes in interspecific diversity, is still limited. Here, we investigated the ecological effects of native and non‐native invaders across levels of biological organisations and recipient organisms using the global and long history introductions of salmonids. Our meta‐analysis demonstrated that the global effects of native species introductions exceeded those induced by non‐native invaders. The impacts of native invaders were primarily manifested at the individual level on wild conspecifics, but remained largely unexplored on other native organisms and at the community and ecosystem levels. Overlooked and poorly appreciated, quantifying the impacts of native invaders has important implications because human‐assisted introductions of domesticated organisms are ubiquitous and likely to proliferate in the future.  相似文献   

13.
Introductions of non-indigenous species to new ecosystems are one of the major threats to biodiversity, ecosystem functions and services. Globally, species introductions may lead to biotic homogenisation, in synergy with other anthropogenic disturbances such as climate change and coastal pollution. Successful marine introductions depend on (1) presence of a transport vector, uptake of propagules and journey survival of the species; (2) suitable environmental conditions in the receiving habitat; and (3) biological traits of the invader to facilitate establishment. Knowledge has improved of the distribution, biology and ecology of high profile seaweed invaders, e.g. Caulerpa taxifolia, Codium fragile ssp. tomentosoides, Sargassum muticum, and Undaria pinnatifida. Limited, regional information is available for less conspicuous species. The mechanisms of seaweed introductions are little understood as research on introduced seaweeds has been mostly reactive, following discoveries of introductions. Sources of introductions mostly cannot be determined with certainty apart from those directly associated with aquaculture activities and few studies have addressed the sometimes serious ecological and economic impacts of seaweed introductions. Future research needs to elucidate the invasion process, interactions between invaders, and impacts of introductions to support prevention and management of seaweed introductions.  相似文献   

14.
Non-indigenous species (NIS) are important components of global change, and in order to manage such species it is important to understand which factors affect their success. Interactions with enemies in the new range have been shown to be important for the outcome of introductions, but thus far most studies on NIS–enemy interactions have considered only specialist herbivores in terrestrial systems. Here we present the results from the first biogeographic study that compares herbivore resistance between populations in the native and new region of a non-indigenous seaweed. We show that low consumption of the non-indigenous seaweed by a generalist herbivore is caused by higher chemical defence levels and herbivore resistance in the new range—and not by the failure of the herbivore to recognise the non-indigenous seaweed as a suitable host. Since most seaweed–herbivore interactions are dominated by generalist herbivores, this pattern could be common in marine communities. Our results also reveal that traits used to predict the invasive potential of species, such as their resistance to enemies, can change during the invasion process, but not always in the way predicted by dominant theories.  相似文献   

15.
Fourteen non-indigenous fish species have been successfully introduced to the wild within the territory of Flanders; nine are considered naturalized. Most of the introductions occurred prior to 1950, with six species introduced since then. This paper reviews the available, hitherto scattered, information (including 'grey literature') on these 14 non-indigenous fish species introductions, and evaluates a decade of data from fisheries surveys to assess the recent development of these non-indigenous populations. Gibel carp Carassius gibelio and topmouth gudgeon Pseudorasbora parva are the most widespread of the non-indigenous species in Flemish waters, and both continue to expand their ranges. A reduction in range has been observed in brown bullhead Ameiurus nebulosus only. A case is presented for not including European catfish Silurus glanis , sunbleak Leucaspius delineatus and European bullhead Cottus gobio on the list of non-indigenous freshwater fishes in Flanders. Also discussed are non-indigenous fish species that are likely to colonize Flanders inland waters in the near future.  相似文献   

16.
An invasive species is defined as an alien (or introduced or non-native) species whose establishment and spread threaten ecosystems, habitats or species with harm. Such threats to UK lake fish communities have long been appreciated and this review assembles case histories, including new data, from the largest lakes of Scotland, Northern Ireland, Wales and England to examine the hypothesis that at least some of these introductions have become invasive. Loch Lomond in Scotland has experienced six introductions [chub (Leuciscus cephalus), common bream (Abramis brama), crucian carp (Carassius carassius), dace (Leuciscus leuciscus), gudgeon (Gobio gobio) and ruffe (Gymnocephalus cernuus)], of which the most significant has been that of the percid ruffe, which has been implicated in a recent decline of the native coregonid whitefish (Coregonus lavaretus). In Northern Ireland, the introduction of the cyprinid roach (Rutilus rutilus) to Lough Neagh has apparently had a negative impact on some overwintering waterfowl, although the native coregonid pollan (Coregonus autumnalis) remains abundant. Llyn Tegid in Wales has received three introductions [rudd (Scardinius erythrophthalmus), ruffe and silver bream (Blicca bjoerkna)], although no impacts on the native whitefish or other fish populations have been observed. In England, individuals of at least 12 native and non-native fish species have been brought to Windermere for the purpose of live-baiting, although only those of the cyprinids roach and common bream have established abundant populations. At the same time, the native salmonid Arctic charr (Salvelinus alpinus) has declined markedly while the native esocid pike (Esox lucius) has shown changes in abundance, distribution and individual condition, although these developments have not been shown to be causally linked. None of these introductions were sanctioned by appropriate fisheries or other regulatory bodies and almost all of them probably arose from the release or escape of live-bait used by pike anglers. Of the 10 species introductions documented here, four (common bream, gudgeon, roach and ruffe) have established abundant populations and two of these (roach and ruffe) have apparently caused or currently threaten harm, supporting the hypothesis that at least some of these introductions have become invasive.  相似文献   

17.
Eutrophication, coupled with loss of herbivory due to habitat degradation and overharvesting, has increased the frequency and severity of macroalgal blooms worldwide. Macroalgal blooms interfere with human activities in coastal areas, and sometimes necessitate costly algal removal programmes. They also have many detrimental effects on marine and estuarine ecosystems, including induction of hypoxia, release of toxic hydrogen sulphide into the sediments and atmosphere, and the loss of ecologically and economically important species. However, macroalgal blooms can also increase habitat complexity, provide organisms with food and shelter, and reduce other problems associated with eutrophication. These contrasting effects make their overall ecological impacts unclear. We conducted a systematic review and meta‐analysis to estimate the overall effects of macroalgal blooms on several key measures of ecosystem structure and functioning in marine ecosystems. We also evaluated some of the ecological and methodological factors that might explain the highly variable effects observed in different studies. Averaged across all studies, macroalgal blooms had negative effects on the abundance and species richness of marine organisms, but blooms by different algal taxa had different consequences, ranging from strong negative to strong positive effects. Blooms' effects on species richness also depended on the habitat where they occurred, with the strongest negative effects seen in sandy or muddy subtidal habitats and in the rocky intertidal. Invertebrate communities also appeared to be particularly sensitive to blooms, suffering reductions in their abundance, species richness, and diversity. The total net primary productivity, gross primary productivity, and respiration of benthic ecosystems were higher during macroalgal blooms, but blooms had negative effects on the productivity and respiration of other organisms. These results suggest that, in addition to their direct social and economic costs, macroalgal blooms have ecological effects that may alter their capacity to deliver important ecosystem services.  相似文献   

18.
The river Rhine: a global highway for dispersal of aquatic invasive species   总被引:1,自引:0,他引:1  
The river Rhine is heavily influenced by human activities and suffers from a series of environmental constraints which hamper a complete recovery of biodiversity. These constraints comprise intensive navigation and habitat modification by hydraulic engineering. Improving water quality while these constraints remain in place has led to increased colonization by aquatic invasive species. This tendency has been accelerated by the construction of canals connecting river basins. Over the last two centuries, the total surface area of river catchments connected to the river Rhine via inland waterways has been increased by a factor 21.6. Six principal invasion corridors for aquatic species to the river Rhine are discerned. The extensive network of inland waterways has allowed macroinvertebrate species from different bio-geographical regions to mix, changing communities, affecting the food webs and forming new constraints on the recovery of the native biodiversity. From the eighteenth century onward, in the freshwater sections of the river Rhine, a total of 45 non-indigenous macroinvertebrate species have been recorded. The average number of invasions per decade shows a sharp increase from <1 to 13 species. Currently, the contribution of non-indigenous species to the total species richness of macroinvertebrates in the river Rhine is 11.3%. The Delta Rhine and Upper Rhine exhibit higher numbers of non-indigenous species than other river sections, because the sea ports in the Delta Rhine and the Main-Danube canal function as invasion gateways. Important donor areas are the Ponto-Caspian area and North America (44.4 and 26.7% of the non-indigenous macroinvertebrate species, respectively). Transport via shipping and dispersal via man made waterways are the most important dispersal vectors. Intentional and unintentional introductions are highest for the period 1950–1992. The cumulative number of non-indigenous species in time is significantly correlated with the increase in total surface area of other river catchments connected to the river Rhine by means of networks of canals. The species richness of non-indigenous macroinvertebrates is strongly dominated by crustaceans and molluscs. Invasive species often tolerate higher salt content, temperature, organic pollution and current flow than native species. Spatiotemporal analyses of distribution patterns reveal that average and maximum dispersal rates of six invasive species vary between 44–112 and 137–461 km year−1, respectively. Species arriving in upstream sections first show a shorter time lag between colonisation of the Delta and Upper Rhine than species initially arriving in downstream areas. Temporal analyses of macroinvertebrate assemblages in the littoral zones indicate that native species are displaced by non-indigenous species. However, established non-indigenous species are also displaced by more recent mass invaders.  相似文献   

19.
Introductions of non‐native macroalgae and the subsequent displacement of native species are globally becoming more frequent. The algal genera Undaria, Sargassum, Caulerpa and Codium have been identified as being particularly invasive. An overview on the present knowledge on macroalgal introductions in the Australian region is presented and options for management are discussed, mostly using examples from studies on the introduced Japanese kelp, Undaria pinnatifida. Undaria pinnatifida was first detected in Tasmania, Australia in the early 1980's. Since then, its range has expanded despite eradication efforts. Long distance jumps appear to be the major mode of spread of U. pinnatifida in Tasmania. Studies are underway to distinguish the relative importance of spore dispersal, drift of adult plants and anthropogenic factors in spreading this invasive kelp. Although information on the real impacts of U. pinnatifida and other introduced macroalgae is sparse, the development of management and control strategies is of vital importance to prevent further spread and translocation of these “pest” species.  相似文献   

20.
Constructed reefs can contribute to non-indigenous species (NIS) introductions or range expansions in several ways. Reef materials that retain developed fouling communities or ballast, such as decommissioned petroleum platforms, inactive or derelict ships, and bridge rubble are potential NIS vectors. Habitat provided by reefs placed in areas devoid of natural hard bottom or structure may be colonized by NIS propagules dispersed from natural or anthropogenic sources. A network of reef structures may also create NIS corridors for linking previously unconnected areas. Due to its level of offshore habitat alteration, changing environmental conditions, volume of shipping and boating traffic, and subtropical location, the Gulf of Mexico may be particularly vulnerable to NIS introductions and has a number of documented NIS. Non-indigenous or invasive species concerns have delayed and increased costs for some recent reef construction projects. The linkages between NIS and constructed reefs are reviewed, and approaches for anticipating, assessing, and controlling introductions are recommended. Using basic information about NIS risks, reef planners can begin to evaluate unintended consequences and incorporate risk management measures to reduce future introductions. Prevention is the most effective risk reduction approach because controlling marine NIS after introduction is expensive and offers limited probability for success.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号