首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fifty-two free-ranging blackbuck antelope (Antilope cervicapra) from Texas were examined for ectoparasites. Two species of sucking lice (Anoplura), one species of chewing louse (Mallophaga), one species of louse fly (Diptera), and three species of ticks (Acari) were found. This is the first report of the anoplurans Linognathus cervicaprae and L. pithodes from the Western Hemisphere. The southern deer ked (Lipoptena mazamae), the winter tick (Dermacentor albipictus), and the rabbit tick (Haemaphysalis leporispalustris) are reported from blackbuck for the first time. The lone star tick (Amblyomma americanum) and the mallophagan (Damalinia cornuta cornuta) were reported previously from blackbuck in Texas, the latter species under the name Tricholipeurus balanicus balanicus.  相似文献   

2.
Herds of blackbuck antelope (Antilopa cervicapra) and barasingha (Cervus duvauceli), axis (Cervus axis), sambar (Cervus unicolor), and Formosan sika (Cervus nippon taiwanaus) deer at the Wildlife Conservation Society/Bronx Zoo (WCS/BZ) were fed melengestrol acetate (MGA) at a concentration of 0.000154% in pelleted feed for various periods of times during 1991–2001. The target dose per animal of MGA was 1–2 mg per day. Contraceptive rates during treatment were 100% for blackbuck antelope and barasingha, sambar, and sika deer, and approximately 93% for axis deer. There were no observed adverse effects from MGA treatment on gestation. Post‐treatment reproductive rates were lower than pretreatment rates. Zoo Biol 22:455–463, 2003. © 2003 Wiley‐Liss, Inc.  相似文献   

3.

The Indian antelope or blackbuck (Antilope cervicapra) is endemic to the Indian subcontinent, inhabiting scrublands and dry grasslands. Most of the blackbuck populations are small, isolated, and threatened by habitat fragmentation and degradation. Management of such disjunct populations requires genetic characterization, which is critical for assessing hazards of stochastic events and inbreeding. Addressing the scarcity of such information on the blackbuck, we describe a novel panel of microsatellite markers that could be used to monitor blackbuck demography and population genetic parameters using non-invasive faecal sampling. We screened microsatellites (n?=?40) that had been reported to amplify in bovid and cervid species using faecal samples of the blackbuck collected from Kaimoor Wildlife Sanctuary, Uttar Pradesh, India and its vicinities. We selected 12 markers for amplification using faecal DNA extracts (n?=?140) in three multiplex reactions. We observed a mean amplification success rate of 72.4% across loci (92.1–25.7%) with high allele diversity (mean number of alleles/locus?=?8.67?±?1.03). Mean genotyping error rates across the markers were low to moderate (allelic drop-out rate?=?0.09; false allele rate?=?0.11). The proportions of first- and second-order relatives in the study population were 0.69% and 6.21%, respectively. Based on amplification success, genotyping error rates and the probability of identity (PID), we suggest (i) a panel of five microsatellite markers (cumulative PID?=?1.24?×?10–5) for individual identification and population monitoring and (ii) seven additional markers for conservation genetics studies. This study provides essential tools capable of augmenting blackbuck conservation strategies at the landscape level, integral to protecting the scrubland-grassland ecosystem.

  相似文献   

4.

Blackbuck (Antilope cervicapra) is a threatened species endemic to the Indian subcontinent. Many populations of blackbuck are found in southern India. Populations of blackbuck are negatively affected in many places for various reasons, such as habitat destruction and poaching. Their range decreased sharply during the 20th century. There is very limited information available on the population dynamics of blackbuck in southern India. For the phylogenetic and genetic diversity analyses of blackbuck populations among different distribution ranges in southern India, we sequenced mt DNA of cytochrome b (Cyt b) for 120, cytochrome c oxidase subunit-1 (COI) for 137 and the control region (CR) for 137 fecal pellets from eleven different locations in southern India. We analyzed the genetic structure of three mitochondrial markers, the CR, Cyt b and the COI region, separately and in a combined dataset. The haplotype diversity and nucleotide diversity of CR were 0.969 and 0.047, respectively, and were higher than those of Cyt b and COI. A Bayesian phylogeny and an MJ network based on the CR and combined dataset (105 sequences) signified several distinct haplotype clusters within blackbuck, whereas no clusters were identified with the Cyt b and COI phylogenetic analyses. The analysis of molecular variance of the combined data set revealed 52.46% genetic variation within the population. Mismatch distribution analysis revealed that blackbuck populations underwent complex changes with analysis of the combined dataset in each population and analysis of each marker separately in the overall population. The results provide evidence that blackbuck in different geographic locations has a distinct population structure due to habitat fragmentation after the formation of the Western and Eastern Ghats.

  相似文献   

5.
Animal infectivity of Encephalitozoon cuniculi.   总被引:1,自引:0,他引:1  
Rabbits, mice, rats and Rhesus monkeys were infected experimentally with a rabbit isolate of the mammalian microsporidan Encephalitozoon cuniculi. The lesions produced were typical of those occurring in spontaneous encephalitozoonosis in rabbits, mice, and rats, respectively. Viable E. cuniculi were recovered from tissues of injected animals with and without lesions. Titration of rabbit, mouse, and hamster isolates of E. cuniculi in mice and in rabbit choroid plexus cell cultures showed that the rabbit isolate was equally infectious for mice and cell cultures. Mouse and hamster isolates were less infectious for cell cultures than for mice. The results provide further evidence that the mouse, hamster, and rabbit isolates of E. cuniculi are identical.  相似文献   

6.
藏羚羊冷季对干物质的消化效率   总被引:2,自引:1,他引:1  
藏羚羊(Pantholops hodgsoni)为青藏高原特有物种,也是世界上最为珍贵和稀有的物种之一。作为青藏高原野生食草动物的典型代表,藏羚羊种群也是构成青藏高原自然生态系统极为重要的组成部分。藏羚羊独特的体态和生理结构,对研究生物适应与进化,尤其是研究高原条件下的生物适应与进化,维护高原地区生态平衡均有极为重要的意义(郑中朝和李宏,2002)。对藏羚羊牧草利用特征的研究对其营养生态学的研究具有重要的科学价值。本文采用藏羚羊饲草中酸不溶灰分作为内源指示剂,对其冷季牧草消化率进行了初步研究,现将结果予以报道。  相似文献   

7.
Intra and interspecific variation in frugivore behaviour can have important consequences for seed dispersal outcomes. However, most information comes from among‐species comparisons, and within‐species variation is relatively poorly understood. We examined how large intraspecific differences in the behaviour of a native disperser, blackbuck antelope Antilope cervicapra, influence dispersal of a woody invasive, Prosopis juliflora, in a grassland ecosystem. Blackbuck disperse P. juliflora seeds through their dung. In lekking blackbuck populations, males defend clustered or dispersed mating territories. Territorial male movement is restricted, and within their territories males defecate on dung‐piles. In contrast, mixed‐sex herds range over large areas and do not create dung‐piles. We expected territorial males to shape seed dispersal patterns, and seed deposition and seedling recruitment to be spatially localized. Territorial males had a disproportionately large influence on seed dispersal. Adult males removed twice as much fruit as females, and seed arrival was disproportionately high on territories. Also, because lek‐territories are clustered, seed arrival was spatially highly concentrated. Seedling recruitment was also substantially higher on territories compared with random sites, indicating that the local concentration of seeds created by territorial males continued into high local recruitment of seedlings. Territorial male behaviour may, thus, result in a distinct spatial pattern of invasion of grasslands by the woody P. juliflora. An ex situ experiment showed no beneficial effect of dung and a negative effect of light on seed germination. We conclude that large intraspecific behavioural differences within frugivore populations can result in significant variation in their effectiveness as seed dispersers. Mating strategies in a disperser could shape seed dispersal, seedling recruitment and potentially plant distribution patterns. These mating strategies may aid in the spread of invasives, such as P. juliflora, which could, in turn, negatively influence the behaviour and ecology of native dispersers.  相似文献   

8.
Encephalitozoon cuniculi is a parasite that has been identified as a cause of opportunistic infections in immunocompromised individuals. This study was performed to evaluate E. cuniculi infection in pharmacologically immunosuppressed mice. Mice were immunosuppressed with cyclophosphamide (100mg/kg twice a week, IP) or cyclosporin (10mg/kg daily, IP) and inoculated with 10(7)E. cuniculi spores IP. The E. cuniculi spores were cultivated in MDCK cells. E. cuniculi identification was performed by light microscopy studies using Gram-Chromotrope, Hematoxylin-Eosin and Toluidine blue-fuchsin staining techniques, as well as by PCR at 15, 30 and 45 days post-inoculation (DPI). Cyclophosphamide-immunosuppressed mice have greatly reduced amounts of CD8(+), CD4(+) and CD3(+) T cells and CD19(+) B cells. The cells from these mice were analyzed by FACS and showed acute disseminated and fatal encephalitozoonosis. Mice treated with ciclosporin, which is both antiparasitic and immunosuppressive, have a milder, chronic, non-lethal infection and showed a significant reduction only in CD3(+) and CD4(+) T cell numbers. Our results support the role of CD8(+) T cells in controlling infection by E. cuniculi and show that preventive measures are essential for preventing this zoonosis in individuals undergoing chemotherapy for cancer or other immunosuppressive therapies.  相似文献   

9.
Isvaran K 《Oecologia》2007,154(2):435-444
The main ecological factors that are hypothesized to explain the striking variation in the size of social groups among large herbivores are habitat structure, predation, and forage abundance and distribution; however, their relative roles in wild populations are not well understood. I combined analyses of ecological correlates of spatial variation in group size with analyses of individual behaviour in groups of different sizes to investigate factors maintaining variation in group size in an Indian antelope, the blackbuck Antilope cervicapra. I measured group size, habitat structure, forage, and the occurrence of predators in ten blackbuck populations, and, at a smaller spatial scale, within an intensively studied population. To examine the processes by which these ecological factors influence group size, I used behavioural observations and an experiment to estimate the shape of the relationship between group size and potential costs and benefits to individuals. Group size varied extensively both among and within populations. Analyses of spatial variation in group size suggested that both forage and habitat structure influence group size: large-scale, among-population variation in group size was primarily related to habitat structure, while small-scale, within-population variation was most closely related to forage abundance. Analyses of individual behaviour suggested that larger groups incur greater travel costs while foraging. However, individuals in larger groups appeared to experience greater benefits, namely the earlier detection of a “predator”, a reduction in vigilance, and an increase in the time spent feeding. Overall, these findings suggest that individuals in groups experience a trade-off between predation-related benefits and costs arising from feeding competition. Habitat structure and forage likely influence the nature of this trade-off; thus, variation in these ecological factors may maintain variation in group size. The role of predation pressure and other factors in explaining the remaining variation needs further exploration. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

10.
There are 3 strains of Encephalitozoon cuniculi that occur in mammals. Strain III is associated with clinical disease in dogs, although some can be asymptomatic carriers and excrete spores in their urine. Several cases of human E. cuniculi infection caused by strain III have been observed in immunocompromised patients, indicating that E. cuniculi should be considered a zoonotic agent. Encephalitozoon cuniculi can cause fatal disease in maternally-infected or young dogs. Clinical signs in these animals included blindness, encephalitis, retarded growth rate, and nephritis. Encephalitozoon cuniculi has also been associated with primary renal failure in adult dogs. The present study used the direct agglutination test (DAT, cut-off 1:50) and the indirect fluorescent antibody test (IFAT, cut-off 1:10) to examine the prevalence of antibodies to E. cuniculi in dogs from Brazil and Colombia. Using the DAG, 31 (27.4%) of 113 dogs from Brazil and 47 (18.5%) of 254 dogs from Colombia were seropositive. Nine (14.3%) of 63 dogs from Brazil and 18 (35.3%) of the 51 dogs from Colombia were seropositive by indirect immunofluorescent antibody test. These results indicate that dogs from Brazil and Colombia are exposed to E. cuniculi.  相似文献   

11.
Sex chromosomes in mammals are generally of the XY type with the X chromosome constituting 5% by weight of the haploid chromosomal complement. Unusually large sex chromosomes have been described in a few species all of which belong to theRodentia, but two members of theArtiodactyla, the African sitatunga and the Indian blackbuck, have now been found to have this peculiarity. The sitatunga has an X chromosome that represents 13.08% and a Y that represents 7.29% of the haploid complement, and the X of the blackbuck represents 14.96% of its haploid complement. Portions of both extra large sex chromosomes in a pair are late replicating. Theories concerning the formation of these outsized chromosomes are discussed.  相似文献   

12.
For the first time, Encephalitozoon (E.) cuniculi genotype III ('dog strain') was verified in two cotton-top tamarins (Oedipomidas oedipus) by light microscopy, immunohistochemistry, electron microscopy, PCR and sequencing. The animals had a disseminated lethal infection with this protist. In earlier reports, genotype III had been found only in domestic dogs, man, emperor tamarins (Saguinus imperator) and golden lion tamarins (Leontopithecus rosalia). This investigation establishes now that the 'dog strain' can occur in cotton-top tamarins too. This is further evidence for the zoonotic potential of E. cuniculi. Furthermore, free E. cuniculi spores were identified also in blood vessels of several tissues. These findings indicate that during a disseminated infection E. cuniculi spores can occur in peripheral blood, too. We propose that blood should also be included in the investigations for the detection of microsporidia, so that a possible disseminated course of an infection can be detected.  相似文献   

13.
《Small Ruminant Research》2008,76(2-3):236-242
Although Tibetan antelope (Pantholops hodgsonii) is a distinctive wild species inhabiting the Tibet-Qinghai Plateau, its taxonomic classification within the Bovidae is still unclear and little molecular information has been reported to date. In this study of Tibetan antelope, the complete control regions of mtDNA were sequenced and compared to those of Tibetan sheep (Ovis aries) and goat (Capra hircus). The length of the control region in Tibetan antelope, sheep and goat is 1067, 1181/1106 and 1121 bp, respectively. A 75-bp repeat sequence was found near the 5′ end of the control region of Tibetan antelope and sheep, the repeat numbers of which were two in Tibetan antelope and three or four in sheep. Three major domain regions, including HVI, HVII and central domain, in Tibetan antelope, sheep and goat were outlined, as well as other less conserved blocks, such as CSB-1, CSB-2, ETAS-1 and ETAS-2. NJ cluster analysis of the three species revealed that Tibetan antelope was more closely related to Tibetan sheep than Tibetan goat. These results were further confirmed by phylogenetic analysis using the partial control region sequences of these and 13 other antelope species. Tibetan antelope is better assigned to the Caprinae rather than the Antilopinae subfamily of the Bovidae.  相似文献   

14.
Sera collected from both naturally and artificially infected rabbits were found to show excellent correlation when examined for the presence of Encephalitozoon cuniculi antibodies using the immunoperoxidase and immunofluorescence tests. Out of 85 randomly selected rabbits, 21 were found to be serologically positive using both the tests. However, lesions which could be attributed to E. cuniculi infection were only demonstrated in 16.  相似文献   

15.
Wild lagomorphs and woodchucks collected predominantly in southern Ontario, Canada were examined for subspecies of Obeliscoides cuniculi (Graybill). Obeliscoides cuniculi multistriatus was found in snowshoe hares (Lepus americanus). Obeliscoides cuniculi cuniculi was found in cottontail rabbits (Sylvilagus floridanus), European hares (Lepus capensis) and woodchucks (Marmota monax). Prevalence of Obeliscoides cuniculi multistriatus in snowshoe hares was 100% and mean intensity (and range of intensity) was 760 (9-4, 198) in Lindsay, Ontario in 1980. Mean intensity in hares varied trimonthly. The highest mean intensity of worms occurred in spring when most worms were adult. Transmission occurred mainly in spring. Most worms present in fall (70%) and winter (54%) were fourth stage. Immature fifth-stage and gravid females were present in hares during fall and winter. Prevalence and mean intensity of O. c. cuniculi in cottontails was 15% and 29 (1-118). Prevalence and mean intensity of O. c. cuniculi in woodchucks was 6% and 56 (16-118). European hares were infected with O. c. cuniculi, prevalence was 10% and mean intensity was 60 (36-83). In Ontario woodchucks and European hares were common in areas frequented by cottontail rabbits and probably acquired sporadic infections of O. c. cuniculi from infected cottontails.  相似文献   

16.
Newborn and young pups up to the age of 15 days were exposed to E. cuniculi, either by keeping the pups in cages together with orally inoculated foster-mothers and their offspring, or by oral inoculation with E. cuniculi spores. A majority of pups appeared sero-positive to E. cuniculi with the india-ink immuno-reaction from 35 to 87 days post exposure; spores of E. cuniculi were detected in organs of some of the animals. The non-inoculated pups kept together with the orally inoculated pups became seropositive from 49 to 129 days after the oral inoculations. However, the exposure of newborn and young pups failed to induce clinical encephalitozoo-nosis, and when killed at the time of pelting the body weights and fur quality appeared to be within the normal range in all exposed foxes. No macroscopic lesions were detected in the various organs. Histologically focal interstitial nephritis occurred in the great majority of the seropositive animals. Meningoencephalitis was seen in some of the foxes, whereas slightly thickened walls of some arteries, mainly in the myocardium, were found in a few animals. The lesions of the brain and kidneys seem to be very similar to those seen in chronic cases of rabbit encephalitozoonosis. Polyarteritis nodosa and severe encephalitis and interstitial nephritis with extensive proliferations of plasma cells, which are almost constant findings in cases of clinically diseased foxes, were not detected in any of the subclinically infected animals. Various factors that might be of significance in the pathogenesis of the disease are discussed, and it is concluded that intrauterine infection of the pups via the transplacental route appears to be an essential supposition for the establishment of clinical fox encephalitozoonosis.  相似文献   

17.
Wild arctic foxes (Alopex lagopus) from Greenland were tested for antibodies to Encephalitozoon cuniculi with an enzyme-linked immunosorbent assay and a carbon immunoassay. Of 230 tested foxes none was seropositive. This finding contrasts with observations from other arctic areas and absence of rodents in the diet of these arctic foxes is the most likely explanation for absence of E. cuniculi.  相似文献   

18.
Simple focus assay for Encephalitozoon cuniculi   总被引:1,自引:0,他引:1  
D Pye  J C Cox 《Laboratory animals》1979,13(3):193-195
In this is vitro infectivity assay for Encephalitozoon cuniculi, lesions due to the organism appeared as macroscopically distinct foci. The number of such foci was used as a direct measure of the number of infectious units in the original sample. The expected correlation between focus-forming units and 50% infectious doses was observed in limit dilution experiments.  相似文献   

19.
Encephalitozoon cuniculi infection was diagnosed in a laboratory rabbit breeding colony at Muguga, Kenya. This is the first report of the disease in rabbits in Kenya. Post-mortem examination showed gross renal lesions and the presence of the parasite in histological sections of the cerebrum and cerebellum. On Gram stain, spores were observed in the kidney sections.  相似文献   

20.
Reciprocal cross-matings of Psoroptes ovis and P. cuniculi occurred and produced viable offspring through the F2 generation. Hybrids of these crosses were infective to both rabbits and cattle. Mean lengths of the male l4 setae of the parental species differed significantly from each other as well as from those of the hybrid males. These data show that P. ovis and P. cuniculi are not reproductively isolated. Because viable, fertile hybrids are produced, cross-matings of P. ovis and P. cuniculi are not suitable as a suppression method of cattle scabies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号