首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Cell migration is one of the fundamental cellular responses governing development, homeostasis and disorders of the body. Therefore, artificial control of cell migration holds great promise for the treatment of many diseases. In this study, we developed an artificial cell migration system based on chimeric receptors that can respond to an artificial ligand that is quite different from natural chemoattractants. Chimeric receptors consisting of an anti-fluorescein single-chain Fv tethered to the extracellular D2 domain of erythropoietin receptor (EpoR) and the transmembrane/cytoplasmic domains of EpoR, gp130, interleukin-2 receptor, c-Kit, c-Fms, epidermal growth factor receptor (EGFR) or insulin receptor were expressed in the murine Ba/F3 pro-B cell line. Migration assays revealed that chimeric receptors containing the cytoplasmic domain of c-Kit, c-Fms or EGFR transduced migration signals in response to fluorescein-conjugated bovine serum albumin (BSA-FL). Furthermore, based on the cell migration in response to BSA-FL, we successfully selected genetically modified cells from mixtures of gene-transduced and untransduced cells. This study represents the first demonstration of cell migration in response to an artificial ligand that is quite different from natural chemoattractants, suggesting its potential application to immunotherapies and tissue engineering.  相似文献   

3.
JAK1 and JAK2 are tyrosine kinases involved in the regulation of cell proliferation, differentiation, and survival. These proteins may play a key role in mediating the effects of the cytokine IL-3 on hematopoietic cells. IL-3 induces tyrosine phosphorylation of both JAK1 and JAK2. However, it is not clear whether the activation of JAK1, JAK2, or both is sufficient to confer factor-independent growth in IL-3 dependent cells. To address this issue, fusion proteins CD16/CD7/JAK (CDJAK), comprised of a CD16 extracellular domain, a CD7 transmembrane domain, and a JAK cytoplasmic region (either a wild-type JAK or a dominant negative mutant of JAK) were constructed. We established several Ba/F3 derivatives that stably overexpress the conditionally active forms of either CDJAK1, CDJAK2, or both these fusion proteins. In this study, the autophosphorylation of CDJAK1 or CDJAK2 was induced by crosslinking with anti-CD16 antibody. We demonstrated that, like their wild-type counterparts, CDJAK1 and CDJAK2 were preassociated with the IL-3 receptor beta and alpha subunits, respectively. Furthermore, the simultaneous activation of both CDJAK1 and CDJAK2 fusion proteins, but not either one alone, led to the tyrosine phosphorylation of the IL-3 receptor beta subunit, the activation of downstream signaling molecules, including STAT5, Akt, and MAPK, and the conferring of factor-independent growth to IL-3-dependent Ba/F3 cells. Coexpression of dominant negative mutants CDJAK1KE or CDJAK2KE with wild type CDJAK2 or CDJAK1, respectively, inhibited these activation activities. These results suggest that JAK1 and JAK2 must work cooperatively and not independently and that their actions are dependent on having normal kinase activity to trigger downstream signals leading to IL-3 independent proliferation and survival of Ba/F3 cells.  相似文献   

4.
5.
6.
7.
8.
Interleukin 3 (IL-3) or granulocyte macrophage colony-stimulating factor (GM-CSF) activates c-fos, c-jun, and c-myc genes and proliferation in both hematopoietic and nonhematopoietic cells. Using a series of deletion mutants of the beta subunit of human GM-CSF receptor (hGMR) and inhibitors of tyrosine kinase, two distinct signaling pathways, one for activation of c-fos and c-jun genes, and the other for cell proliferation and activation of c-myc gene have been elucidated. In contrast to wealth of information on the pathway leading to activation of c-fos/c-jun genes, knowledge of the latter is scanty. To clarify the mechanisms of activation of c-myc gene by cytokines, we established a transient transfection assay in mouse proB cell line BA/F3 cells expressing hGMR. Analyses of hGMR beta subunit mutants revealed two cytoplasmic regions involved in activation of the c-myc promoter, one is essential and the other is dispensable but enhances the activity. These regions are located at the membrane proximal and the distal regions covering amino acid positions 455-544 and 544-589, respectively. Characterization of cis-acting regulatory elements of the c-myc gene showed that the region containing the P2 promoter initiation site is sufficient to mediate the response to mIL-3 or hGM-CSF. Electrophoretic mobility shift assay using an oligonucleotide corresponding to the distal putative E2F binding site revealed that p107/E2F complex, the negative regulator of E2F, decreased, and free E2F increased after mIL-3 stimulation. These results support the thesis that mIL-3 or hGM-CSF regulates the c-myc promoter by altering composition of the E2F complexes at E2F binding site.  相似文献   

9.
10.
The role of peroxisome proliferator-activated receptor gamma (PPARgamma) in adipocyte physiology has been exploited for the treatment of diabetes. The expression of PPARgamma in lymphoid organs and its modulation of macrophage inflammatory responses, T cell proliferation and cytokine production, and B cell proliferation also implicate it in immune regulation. Despite significant human exposure to PPARgamma agonists, little is known about the consequences of PPARgamma activation in the developing immune system. Here, well-characterized models of B lymphopoiesis were used to investigate the effects of PPARgamma ligands on nontransformed pro/pre-B (BU-11) and transformed immature B (WEHI-231) cell development. Treatment of BU-11, WEHI-231, or primary bone marrow B cells with PPARgamma agonists (ciglitazone and GW347845X) resulted in rapid apoptosis. A role for PPARgamma and its dimerization partner, retinoid X receptor (RXR)alpha, in death signaling was supported by 1) the expression of RXRalpha mRNA and cytosolic PPARgamma protein, 2) agonist-induced binding of PPARgamma to a PPRE, and 3) synergistic increases in apoptosis following cotreatment with PPARgamma agonists and 9-cis-retinoic acid, an RXRalpha agonist. PPARgamma agonists activated NF-kappaB (p50, Rel A, c-Rel) binding to the upstream kappaB regulatory element site of c-myc. Only doses of agonists that induced apoptosis stimulated NF-kappaB-DNA binding. Cotreatment with 9-cis-retinoic acid and PPARgamma agonists decreased the dose required to activate NF-kappaB. These data suggest that activation of PPARgamma-RXR initiates a potent apoptotic signaling cascade in B cells, potentially through NF-kappaB activation. These results have implications for the nominal role of the PPARgamma in B cell development and for the use of PPARgamma agonists as immunomodulatory therapeutics.  相似文献   

11.
12.
The biological behaviors of thyroid cancer are varied, and the pathological mechanisms remain unclear. Some reports indicated an apparent aggregation of amyloid accompanying medullary thyroid carcinoma (MTC). Amyloid aggregation in neurodegeneration leads to hyperactivation of Cdk5 and subsequent neuronal death. Based on the connection with amyloid, the role of Cdk5 in MTC is worthy of investigation. Initially, the expression of Cdk5 and its activator, p35, in MTC cell lines was identified. Cdk5 inhibition by specific inhibitors or short interfering RNA decreased the proliferation of MTC cell lines, which reveals the importance of Cdk5 in MTC cell growth. Although p35 cleavage has been considered as an important element in neurodegeneration, it seems that p35 cleavage was not a major cause in Cdk5 activity-dependent MTC cell proliferation because neither Cdk5 activity nor cell growth was affected by the inhibition of p35 cleavage. Clearance of amyloid by antibody neutralization indicated that MTC cell proliferation was supported by calcitonin-derived extracellular amyloid and subsequent Her2 and Cdk5 activation. Significantly, the STAT3 pathway was involved in Cdk5-dependent proliferation of MTC cells through Ser-727 phosphorylation. In addition, Cdk5 inhibition reduced nuclear distributions of both the Cdk5-p35 complex and phospho-STAT3 in MTC cells. Finally, Cdk5 inhibition retarded tumor formation in vivo accompanying the reduction of phospho-STAT3. Our findings suggest the first demonstration of a novel and specific role for Cdk5 kinase in supporting the proliferation of the medullary thyroid carcinoma cells and could shed light on a new field for diagnosis and therapy of thyroid cancer.  相似文献   

13.
125I-Galanin was cross-linked to receptor in Rin m 5F cell membranes using the bifunctional reagent disuccinimidyl tartarate. Regardless of the presence of reducing agents, sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of cross-linked galanin-receptor complexes revealed the presence of a radioactive band at Mr 57,000. Excess unlabeled galanin completely inhibited the labeling of the band while other regulatory peptides had no effect. Labeling of the Mr 57,000 complex was abolished by galanin concentration from 10(-9) to 10(-6) M (IC50 = 5 X 10(-9) M). Initial incubation with 125I-galanin in the presence of increasing concentrations of guanyl-5'-yl imidodiphosphate (GMP-P(NH)P) (10(-7) to 10(-4) M) also inhibited the labeling of the Mr 57,000 complex. Moreover, pretreatment of membranes with pertussis toxin before formation of the covalent galanin-receptor complex, dramatically reduced the labeling of the Mr 57,000 species. Covalent Mr 57,000 galanin-receptor complexes solubilized by Triton X-100 bound specifically to wheat germ agglutinin-concanavalin A-, and soybean-coupled Sepharose, supporting the glycoproteic nature of the galanin receptor. Assuming one molecule of 125I-galanin (Mr 3,000) was bound per molecule of protein, these results suggest that the pancreatic galanin receptor is a glycoprotein with a Mr of 54,000 bearing the recognition site for the ligand and which is coupled with a pertussis toxin-sensitive G protein in the plasma membrane.  相似文献   

14.
The effects of recombinant murine interleukin (IL)-1beta on gene expression of murine bradykinin B1 receptor (BDKRB1) in MH-S murine alveolar macrophage cell line were evaluated. BDKRB1 mRNA expression in MH-S cells was increased by IL-1beta (1, 3, and 10 ng/ml) in a time-dependent manner, peaking at 3-4 h by 100-1000 fold. IL-1beta (5 ng/ml, 24h) also induced significant binding to [3H]-des-Arg10-kallidin with a dissociation constant (Kd) of 2.95 nM and a maximal binding density (Bmax) of 670 sites/cell. Des-Arg10-kallidin (10 microM), a BDKRB1 agonist, increased intracellular calcium ion ([Ca2+]i) in IL-1beta (5 ng/ml, 24 h)-exposed cells, an increase not observed in the cells not exposed to IL-1beta. A significant increase of tumor necrosis factor (TNF)-alpha secretion occurred in the IL-1beta (5 ng/ml, 24 h)-exposed cells following addition of des-Arg10-kallidin (the IL-1beta-exposed group: 57. 8 +/- 13.7 vs. the vehicle-exposed group: 16.7 +/- 4.3 pg/ml, p < 0.05 after a 100 nM des-Arg10-kallidin for 8 h), with an optimal effect at 3-100 nM. These data suggest that IL-1beta may up-regulate BDKRB1-mediated functions of alveolar macrophages via an induction of BDKRB1 gene expression.  相似文献   

15.
16.
17.
The B cell Ag receptor (BCR) has two important functions: first, it binds and takes up Ag for presentation to T lymphocytes; and second, it transmits signals that regulate B cell development. Normal expression of the BCR requires the association of the Ag binding subunit, membrane IgM (mIgM), with the signaling component, the Ig-alpha beta heterodimer. After assembly in the endoplasmic reticulum, the intact BCR travels through the secretory pathway to the cell surface. In this paper, we report two variants of the B lymphoma cell lines, WEHI 279 and WEHI 231, that have both lost the ability to express mu heavy chain and consequently do not express mIgM. However, these variants do express the Ig-alpha beta heterodimer. In one variant, WEHI 279*, the Ig-alpha beta remained trapped intracellularly in the absence of mIgM. The other variant, 303.1.5.LM, expressed an aberrantly glycosylated Ig-alpha beta on the cell surface that was capable of signaling after cross-linking with anti-Ig-beta Abs. Further characterization uncovered a point mutation in the 303.1.5.LM mb1 gene that would change a proline for a leucine in the extracellular domain of Ig-alpha. The 303.1.5.LM Ig-alpha beta could not associate with a wild-type mIgM after mu heavy chain was reconstituted by DNA transfection. Thus, this mutation could define a region of the Ig-alpha polypeptide that is important for recognition by the endoplasmic reticulum quality control system, for association with glycosylating enzymes, and for the association of Ig-alpha beta subunits with mIgM subunits to create a complete BCR complex.  相似文献   

18.
Stimulation with inducers that cause persistent activation of NF-kappa B results in the degradation of the NF-kappa B inhibitors, I kappa B alpha and I kappa B beta. Despite the rapid resynthesis and accumulation of I kappa B alpha, NF-kappa B remains induced under these conditions. We now report that I kappa B beta is also resynthesized in stimulated cells and appears as an unphosphorylated protein. The unphosphorylated I kappa B beta forms a stable complex with NF-kappa B in the cytosol; however, this binding fails to mask the nuclear localization signal and DNA binding domain on NF-kappa B, and the I kappa B beta-NF-kappa B complex enters the nucleus. It appears therefore that during prolonged stimulation, I kappa B beta functions as a chaperone for NF-kappa B by protecting it from I kappa B alpha and allowing it to be transported to the nucleus.  相似文献   

19.
20.
The mechanisms by which p210-BCR-ABL determines hematopoietic stem cells fate remain poorly understood. To better understand the behavior of BCR-ABL in pluripotent stem cells, we previously developed a murine embryonic stem (ES) cell model transformed by p210-BCR-ABL and reported that BCR-ABL activates STAT3, a major protein involved in ES cells self-renewal, which leads specifically to inhibition of ES cells differentiation. We show here that BCR-ABL either inhibits differentiation or, unexpectedly, induces a rapid commitment to differentiation of murine ES cells, according to the intracellular levels of activated STAT3. We show that inhibition of endogenous STAT3 activation with an inducible STAT3 protein with dominant-negative activity (STAT3F) results in an early, rapid and complete differentiation of BCR-ABL-expressing ES cells, whereas control ES cells retain a more undifferentiated phenotype. This phenomenon could be totally abrogated by PD98059, a specific MEK1 inhibitor, suggesting the involvement of mitogen-activated protein kinase (MAP-Kinase)/ERK1/2 pathway, which was found constitutively phosphorylated in BCR-ABL-expressing cells. In addition, BCR-ABL-expressing ES cells harboring low levels of activated STAT3 committed more rapidly through hematopoietic differentiation, since embryoid bodies (EBs) derived from these cells were able to generate numerous hematopoietic progenitors 2 days early. Moreover, BCR-ABL-expressing ES cells cultured first with low levels of activated STAT3 before EBs derivation displayed a more rapid loss of pluripotency than controls and failed to generate hematopoietic progenitors. This phenomenon was partially abrogated when ES cells were first exposed to PD98059 or to the tyrosine kinase inhibitor imatinib mesylate. From this predictive model, we suggest that variations of the activation levels in BCR-ABL substrates such as STAT3 may represent "instructive" secondary cooperating events involved in the transformation of the leukemic cell phenotype during the course of CML.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号