首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Adenovirus (Ad) gene transfer vectors can be used to transfer and express antigens and function as strong adjuvants and thus are useful platforms for the development of genetic vaccines. Based on the hypothesis that Ad vectors with enhanced infectibility of dendritic cells (DC) may be able to evoke enhanced immune responses against antigens encoded by the vector in vivo, the present study analyzes the vaccine potential of an Ad vector expressing beta-galactosidase as a model antigen and genetically modified with RGD on the fiber knob [AdZ.F(RGD)] to more selectively infect DC and consequently enhance immunity against the beta-galactosidase antigen. Infection of murine DC in vitro with AdZ.F(RGD) showed an eightfold-increased transgene expression following infection compared to AdZ (also expressing beta-galactosidase, but with a wild-type capsid). Binding, cellular uptake, and trafficking in DC were also increased with AdZ.F(RGD) compared to AdZ. To determine whether AdZ.F(RGD) could evoke enhanced immune responses to beta-galactosidase in vivo, C57BL/6 mice were immunized with AdZ.F(RGD) or AdZ subcutaneously via the footpad. Humoral responses with both vectors were comparable, with similar anti-beta-galactosidase antibody levels following vector administration. However, cellular responses to beta-galactosidase were significantly enhanced, with the frequency of CD4(+) as well as the CD8(+) beta-galactosidase-specific gamma interferon response in cells isolated from the draining lymph nodes increased following immunization with AdZ.F(RGD) compared to Ad.Z (P < 0.01). Importantly, this enhanced cellular immune response of the AdZ.F(RGD) vector was sufficient to evoke enhanced inhibition of the growth of preexisting tumors expressing beta-galactosidase: BALB/c mice implanted with the CT26 syngeneic beta-galactosidase-expressing colon carcinoma cell line and subsequently immunized with AdZ.F(RGD) showed decreased tumor growth and improved survival compared to mice immunized with AdZ. These data demonstrate that addition of an RGD motif to the Ad fiber knob increases the infectibility of DC and leads to enhanced cellular immune responses to the Ad-transferred transgene, suggesting that the RGD capsid modification may be useful in developing Ad-based vaccines.  相似文献   

2.
A major hurdle to adenovirus (Ad)-mediated gene transfer is that the target issue lacks sufficient levels of receptors to mediate vector attachment via its fiber coat protein. Endothelial and smooth muscle cells are primary targets in gene therapy approaches to prevent restenosis following angioplasty or to promote or inhibit angiogenesis. However, Ad poorly binds and transduces these cells because of their low or undetectable levels of functional Ad fiber receptor. The Ad-binding deficiency of these cells was overcome by targeting Ad binding to alpha v integrin receptors that are sufficiently expressed by these cells. In order to target alpha v integrins, a bispecific antibody (bsAb) that comprised a monoclonal Ab to the FLAG peptide epitope, DYKDDDDK, and a monoclonal Ab to alpha v integrins was constructed. In conjunction with the bsAb, a new vector, AdFLAG, which incorporated the FLAG peptide epitope into its penton base protein was constructed. Complexing AdFLAG with the bsAb increased the beta-glucuronidase transduction of human venule endothelial cells and human intestinal smooth muscle cells by seven- to ninefold compared with transduction by AdFLAG alone. The increased transduction efficiency was shown to occur through the specific interaction of the complex with alpha v integrins. These results demonstrate that bsAbs can be successfully used to target Ad to a specific cellular receptor and thereby increase the efficiency of gene transfer.  相似文献   

3.
To explore gene therapy strategies for amelogenesis imperfecta (AI), a human ameloblast-like cell population was established from third molars of an AI-affected patient. These cells were characterized by expression of cytokeratin 14, major enamel proteins and alkaline phosphatase staining. Suboptimal transduction of the ameloblast-like cells by an adenovirus type 5 (Ad5) vector was consistent with lower levels of the coxsackie-and-adenovirus receptor (CAR) on those cells relative to CAR-positive A549 cells. To overcome CAR -deficiency, we evaluated capsid-modified Ad5 vectors with various genetic capsid modifications including "pK7" and/or "RGD" motif-containing short peptides incorporated in the capsid protein fiber as well as fiber chimera with the Ad serotype 3 (Ad3) fiber "knob" domain. All fiber modifications provided an augmented transduction of AI-ameloblasts, revealed following vector dose normalization in A549 cells with a superior effect (up to 404-fold) of pK7/RGD double modification. This robust infectivity enhancement occurred through vector binding to both α(v)β3/α(v)β5 integrins and heparan sulfate proteoglycans (HSPGs) highly expressed by AI-ameloblasts as revealed by gene transfer blocking experiments. This work thus not only pioneers establishment of human AI ameloblast-like cell population as a model for in vitro studies but also reveals an optimal infectivity-enhancement strategy for a potential Ad5 vector-mediated gene therapy for AI.  相似文献   

4.
The primary receptor, the coxsackievirus and adenovirus receptor (CAR), and the secondary receptor, αv integrins, are the tropism determinants of adenovirus (Ad) type 5. Inhibition of the interaction of both the fiber with CAR and the penton base with the αv integrin appears to be crucial to the development of targeted Ad vectors, which specifically transduce a given cell population. In this study, we developed Ad vectors with ablation of both CAR and αv integrin binding by mutating the fiber knob and the RGD motif of the penton base. We also replaced the fiber shaft domain with that derived from Ad type 35. High transduction efficiency in the mouse liver was suppressed approximately 130- to 270-fold by intravenous administration of the double-mutant Ad vectors, which mutated two domains each of the fiber knob and shaft and the RGD motif of the penton base compared with those of conventional Ad vectors (type 5). Most significantly, the triple-mutant Ad vector containing the fiber knob with ablation of CAR binding ability, the fiber shaft of Ad type 35, and the penton base with a deletion of the RGD motif mediated a >30,000-fold lower level of mouse liver transduction than the conventional Ad vectors. This triple-mutant Ad vector also mediated reduced transduction in other organs (the spleen, kidney, heart, and lung). Viral DNA analysis showed that systemically delivered triple-mutant Ad vector was primarily taken up by liver nonparenchymal cells and that most viral DNAs were easily degraded, resulting in little gene expression in the liver. These results suggest that the fiber knob, fiber shaft, and RGD motif of the penton base each plays an important role in Ad vector-mediated transduction to the mouse liver and that the triple-mutant Ad vector exhibits little tropism to any organs and appears to be a fundamental vector for targeted Ad vectors.  相似文献   

5.
One of the hurdles to adenovirus (Ad)-mediated gene transfer is that Ad vectors mediate inefficient gene transfer into cells lacking in the primary receptors, Coxsackievirus and adenovirus receptor (CAR). We previously developed a fiber-mutant Ad vector containing the Arg-Gly-Asp (RGD)-containing peptide motif on the HI loop of the fiber knob, and showed that the mutant vector had enhanced gene transfer activity to human glioma cells, which showed little CAR expression, compared to the vector containing wild type fiber. In this study, the feasibility of the Ad vector containing RGD peptide on the fiber knob was examined in a wide variety of cell types: CAR-positive or -negative human tumor cells, mouse cells, and leukemia cells. The mutant vector infected the cells, which lacked CAR expression but showed αv integrin expression, about 10–1000 times more efficiently than the vector containing wild type fiber via an RGD-integrin (αvβ3 and αvβ5)-dependent, CAR-independent cell entry pathway. The results of this study indicate that Ad vector containing RGD peptide on the fiber knob could be of great utility for gene therapy and gene transfer experiments.  相似文献   

6.
Recent studies have demonstrated the usefulness of dendritic cells (DCs) genetically modified by adenovirus vectors (Ad) to immunotherapy, while sufficient gene transduction into DCs is required for high doses of Ad. The RT-PCR analysis revealed that the relative resistance of DCs to Ad-mediated gene transfer is due to the absence of Coxsackie-adenovirus receptor expression, and that DCs expressed adequate alpha(v)-integrins. Therefore, we investigated whether fiber-mutant Ad containing the Arg-Gly-Asp (RGD) sequence in the fiber knob can efficiently transduce and express high levels of the LacZ gene into DCs. The gene delivery by fiber-mutant Ad was more efficient than that by conventional Ad in both murine DC lines and normal human DCs (NHDC). Furthermore, NHDC transduced with fiber-mutant Ad and conventional Ad at 8000-vector particles/cell resulted in a 70-fold difference in beta-galactosidase activity. We propose that alpha(v)-integrin-targeted Ad is a very powerful tool with which to implement DC-based vaccination strategies.  相似文献   

7.
Adenovirus type 5 (Ad5)-based vectors have been used in clinical trials for glioblastoma treatment, but the capacity of Ad5 to infect human glioma cells was questioned. Seeking to improve the adenovirus transduction, we tested four Ad5-based vectors differing only in their fiber gene on permanent and short-term cultures of glioblastoma cells. A wild-type fiber Ad5 vector (Ad5.Luc) was compared to an RGD integrin-binding motif-containing fiber adenovirus (AdlucRGD) and the two fiber chimeras Ad5/3 and Ad5/35, with vector binding redirected to the Ad3 or Ad35 receptor, respectively. Compared to Ad5, the transduction of the tested short-term glioblastoma cultures with the vector Ad5/35.Luc, AdlucRGD and Ad5/3.Luc was enhanced by approximately 72%, approximately 13% and approximately 2%, respectively. To limit adenovirus spread, we aimed to develop conditionally replicative Ad5/35 vectors by targeting the expression of the essential E1 and E4 genes; in addition, some vectors had the E1Delta24 deletion. We analyzed eleven promoters for their activity in glioblastoma cells and determined the specificity of eight replicative adenovirus vectors in vitro. We evaluated the most promising vectors with E1/E4 under the control of the GFAP/Ki67 or E2F-1/COX-2 promoters, and the native Ad5 or the chimeric Ad5/35 fiber for their antineoplastic activity in a subcutaneous and intracranial glioblastoma xenograft model. Animals treated with the Ad5/35-based vectors showed significantly smaller tumors and longer survival than those treated with the homologous Ad5 vectors; no significant toxicity was observed in the intracranial model. Our data suggest that Ad5/35-based vectors are promising tools for glioblastoma treatment.  相似文献   

8.
Vascular smooth muscle (VSMC) and endothelial cells (EC) are particularly resistant to infection by type 5 adenovirus (Ad) vectors. To overcome this limitation and target Ad vectors to ubiquitously expressed alpha(V)beta(3/5) integrins, we have generated a linker protein consisting of the extracellular domain of the coxsackie adenovirus receptor (CAR) connected via avidin to a biotinylated cyclic (c) RGD peptide. After optimization of CAR to cRGD and to Ad coupling, infection of mouse heart endothelial cells (H5V) could be augmented significantly, as demonstrated by 600-fold increased transgene expression levels. In EOMAs, a hemangioendothelioma-derived cell line, the fraction of infected cells was enhanced 4- to 6-fold. Furthermore, the fraction of infected primary mouse VSMC was increased from virtually 0% to 25%. Finally, in human umbilical vein endothelial cells, the number of GFP positive cells was enhanced from 2% to 75%. In conclusion, CAR-cRGD is a versatile and highly efficient construct to target Ad vectors to both transformed and primary VSMC and EC.  相似文献   

9.
Rheumatoid arthritis (RA) fibroblast-like synoviocytes (FLS) do not express the coxsackie-adenovirus (Ad) receptor and are poorly permissive to Ad serotype 5 (Ad5). Genetically modified, coxsackie-Ad receptor-independent Ad5 vectors were studied for gene delivery in human RA FLS and synovium explants and murine collagen-induced arthritis. Short-fiber Ad5 vectors with seven fiber shaft repeats Ad5GFP-R7-knob, Ad5GFP-R7-arginine-glycine-aspartic acid (RGD) (RGD-liganded), and Ad5GFPDeltaknob (knob-deleted) were compared with Ad5GFP-FiWT, a conventional wild-type (WT) Ad5 vector. Gene transfer by Ad5GFP-R7-knob and Ad5GFP-R7-RGD was 40- to 50-fold and 25-fold higher, respectively, than Ad5GFP-FiWT in FLS. Ad5GFPDeltaknob was more efficacious than its knob-bearing version Ad5GFP-R7-knob in FLS transduction. Virus attachment and entry required RGD- and LDV-binding integrins including alpha(v), alpha(v)beta3, a(v)beta5, and beta1. Ad5GFP-R7-knob infection of FLS was partially neutralized by synovial fluid (SF), but remained 30- to 40-fold higher than Ad5GFP-FiWT in the presence of SF. Ad5GFPDeltaknob was partially neutralized by SF at low virus input, but escaped viral neutralization by SF at higher virus input. Gene transfer to human synovium ex vivo explants and murine collagen-induced arthritis in vivo was also more efficient with short fiber-modified vectors (with and without the knob domain) than Ad5GFPFiWT. Gene transfer by short fiber-modified vectors was enhanced by inflammatory cytokines in vitro and in the presence of inflammation in murine synovium in vivo. Our data indicated that the highly efficient gene delivery RA was mediated by RGD- and non-RGD-binding integrins and enhanced by inflammation. Short fiber modifications with knob ablation may be a strategy to enhance gene delivery, reducing vector dose and vector-induced inflammation and toxicity.  相似文献   

10.
The major adenovirus (Ad) capsid proteins hexon, penton, and fiber influence the efficiency and tropism of gene transduction by Ad vectors. Fiber is the high-affinity receptor binding protein that serves to mediate cell attachment in vitro when using coxsackie-adenovirus receptor (CAR)-containing cell lines. This contrasts with transduction efficiency in macrophages or dendritic cells that lack high concentrations of CAR. To determine how fiber influences gene transduction and immune activation in a murine model, we have characterized Ad type 5 (Ad5) vectors with two classes of chimeric fiber, CAR binding and non-CAR binding. In a systemic infection, Ad5 fiber contributes to DNA localization and vector transduction in hepatic tissue. However, the majority of vector localization is due to Ad5 fiber-specific functions distinct from CAR binding. CAR-directed transduction occurs but at a modest level. In contrast to CAR binding vectors, the F7 and F7F41S non-CAR-binding vectors demonstrate a 2-log decrease in hepatic transduction, with a 10-fold decrease in the amount of vector DNA localizing to the hepatic tissue. To characterize the innate response to early infection using fiber chimeric vectors, intrahepatic cytokine and chemokine mRNAs were quantified 5 hours postinfection. Tumor necrosis factor alpha mRNA levels resulting from Ad5 fiber infections were elevated compared to viruses expressing serotype 7 or 41 fiber. Levels of chemokine mRNA (gamma interferon-inducible protein 10, T-cell activation gene 3, and macrophage inflammatory protein 1beta) were 10- to 20-fold higher with CAR binding vectors (Ad5 and F41T) than with non-CAR-binding vectors (F7 and F7F41S). In spite of quantitative differences in vector localization and innate activation, fiber pseudotyping did not significantly change the outcome of anti-Ad adaptive immunity. All vectors were cleared with the same kinetics as wild-type Ad5 vectors, and each induced neutralizing antibody. Although non-CAR-binding vectors were impaired in transduction by nearly 2 orders of magnitude, the level of antitransgene immunity was the same for each of the vectors. Using primary bone marrow-derived macrophages and dendritic cells, we demonstrate that transduction, induction of cytokine/chemokine, and phenotypic maturation of these antigen-presenting cells are independent of fiber content. Our data support a model where fiber-mediated hepatic localization enhances innate responses to virus infection but minimally impacts on adaptive immunity.  相似文献   

11.
Improved adenovirus vectors for infection of cardiovascular tissues   总被引:4,自引:0,他引:4  
To identify improved adenovirus vectors for cardiovascular gene therapy, a library of adenovirus vectors based on adenovirus serotype 5 (Ad5) but carrying fiber molecules of other human serotypes, was generated. This library was tested for efficiency of infection of human primary vascular endothelial cells (ECs) and smooth muscle cells (SMCs). Based on luciferase, LacZ, or green fluorescent protein (GFP) marker gene expression, several fiber chimeric vectors were identified that displayed improved infection of these cell types. One of the viruses that performed particularly well is an Ad5 carrying the fiber of Ad16 (Ad5.Fib16), a subgroup B virus. This virus showed, on average, 8- and 64-fold-increased luciferase activities on umbilical vein ECs and SMCs, respectively, compared to the parent vector. GFP and lacZ markers showed that approximately 3-fold (ECs) and 10-fold (SMCs) more cells were transduced. Experiments performed with both cultured SMCs and organ cultures derived from different vascular origins (saphenous vein, iliac artery, left interior mammary artery, and aorta) and from different species demonstrated that Ad5.Fib16 consistently displays improved infection in primates (humans and rhesus monkeys). SMCs of the same vessels of rodents and pigs were less infectable with Ad5.Fib16 than with Ad5. This suggests that either the receptor for human Ad16 is not conserved between different species or that differences in the expression levels of the putative receptor exist. In conclusion, our results show that an Ad5-based virus carrying the fiber of Ad16 is a potent vector for the transduction of primate cardiovascular cells and tissues.  相似文献   

12.
Recombinant adenoviruses (Ad) have become the vector system of choice for a variety of gene therapy applications. However, the utility of Ad vectors is limited due to the low efficiency of Ad-mediated gene transfer to cells expressing marginal levels of the coxsackievirus and adenovirus receptor (CAR). In order to achieve CAR-independent gene transfer by Ad vectors in clinically important contexts, we proposed modification of viral tropism via genetic alterations to the viral fiber protein. We have shown that incorporation of an Arg-Gly-Asp (RGD)-containing peptide in the HI loop of the fiber knob domain results in the ability of the virus to utilize an alternative receptor during the cell entry process. We have also demonstrated that due to its expanded tissue tropism, this novel vector is capable of efficient transduction of primary tumor cells. An increase in gene transfer to ovarian cancer cells of 2 to 3 orders of magnitude was demonstrated by the vector, suggesting that recombinant Ad containing fibers with an incorporated RGD peptide may be of great utility for treatment of neoplasms characterized by deficiency of the primary Ad type 5 receptor.  相似文献   

13.
BACKGROUND: Modification of the fiber proteins in replication-deficient adenoviral (Ad) vectors through incorporation of specific receptor-binding motifs may represent a strategy to enhance their tissue targeting capabilities. METHODS: In this study, we compared an unmodified Ad (GV10) with two mutated vectors obtained by insertion of specific target sequences that redirect binding, either toward alpha(V) integrin (RGD) or heparan sulfate (UTV) cellular receptors, for reporter gene expression spatial distribution in the rabbit skeletal muscle. In a first series of experiments, injection volume was kept constant and activity of a lacZ transgene was evaluated 48 h after injection of the Ad vectors at different doses. In separate experiments, the effects of different volumes of injection at a constant dose of Ad vector were monitored. RESULTS: All vectors evaluated showed a significant increase in the number of lacZ-positive muscle segments, with increasing vector dose. However, in muscles treated with the UTV vector, fewer muscle fibers were beta-gal-positive than in GV10 or RGD vector treated animals. In fact, total beta-gal activity increased in a dose-dependent fashion in the GV10- and RGD-treated muscles, but not in the UTV-treated ones. Remarkably, in samples from UTV-treated animals, a volume-dependent enhancement of transgene expression was observed during experiments performed at the same dose and different injection volumes. CONCLUSIONS: The results of the present study demonstrate that altering Ad affinity for cellular receptors modulates the level and distribution of transgene activity, conferring characteristics that may allow for treatment customization.  相似文献   

14.
The human embryonic kidney (HEK293) cell line, commonly used for recombinant adenovirus (Ad) propagation, does not express the Ad coreceptor alpha(v)beta3 or alpha(v)beta5 integrins, yet these cells are efficiently infected by Ad vectors. Here we demonstrate that Ad binds to HEK293 cells via the fiber receptor CAR and is subsequently internalized via interaction with integrin alpha(v)beta1. Function-blocking antibodies directed against alpha(v) or beta1, but not beta3, beta5, or alpha5, integrin subunits block Ad infection and viral endocytosis. Therefore, alpha(v)beta1 serves as a coreceptor for Ad infection, and the lack of beta3 and/or beta5 but the relatively high expression of alpha(v)beta1 integrins on certain tumor cell types may explain why these cells are readily transduced by Ad vectors.  相似文献   

15.
While adenovirus (Ad) gene delivery vectors are useful in many gene therapy applications, their broad tropism means that they cannot be directed to a specific target cell. There are also a number of cell types involved in human disease which are not transducible with standard Ad vectors, such as Epstein-Barr virus (EBV)-transformed B lymphocytes. Adenovirus binds to host cells via the viral fiber protein, and Ad vectors have previously been retargeted by modifying the fiber gene on the viral chromosome. This requires that the modified fiber be able to bind to the cell in which the vector is grown, which prevents truly specific vector targeting. We previously reported a gene delivery system based on a fiber gene-deleted Ad type 5 (Ad5) vector (Ad5.betagal.DeltaF) and packaging cells that express the viral fiber protein. Expression of different fibers in packaging cells will allow Ad retargeting without modifying the viral chromosome. Importantly, fiber proteins which can no longer bind to the producer cells can also be used. Using this approach, we generated for the first time pseudotyped Ad5.betagal.DeltaF particles containing either the wild-type Ad5 fiber protein or a chimeric fiber with the receptor-binding knob domain of the Ad3 fiber. Particles equipped with the chimeric fiber bound to the Ad3 receptor rather than the coxsackievirus-adenovirus receptor protein used by Ad5. EBV-transformed B lymphocytes were infected efficiently by the Ad3-pseudotyped particles but poorly by virus containing the Ad5 fiber protein. The strategy described here represents a broadly applicable method for targeting gene delivery to specific cell types.  相似文献   

16.
Efficient infection with adenovirus (Ad) vectors based on serotype 5 (Ad5) requires the presence of coxsackievirus-adenovirus receptors (CAR) and alpha(v) integrins on cells. The paucity of these cellular receptors is thought to be a limiting factor for Ad gene transfer into hematopoietic stem cells. In a systematic approach, we screened different Ad serotypes for interaction with noncycling human CD34(+) cells and K562 cells on the level of virus attachment, internalization, and replication. From these studies, serotype 35 emerged as the variant with the highest tropism for CD34(+) cells. A chimeric vector (Ad5GFP/F35) was generated which contained the short-shafted Ad35 fiber incorporated into an Ad5 capsid. This substitution was sufficient to transplant all infection properties from Ad35 to the chimeric vector. The retargeted, chimeric vector attached to a receptor different from CAR and entered cells by an alpha(v) integrin-independent pathway. In transduction studies, Ad5GFP/F35 expressed green fluorescent protein (GFP) in 54% of CD34(+) cells. In comparison, the standard Ad5GFP vector conferred GFP expression to only 25% of CD34(+) cells. Importantly, Ad5GFP transduction, but not Ad5GFP/F35, was restricted to a specific subset of CD34(+) cells expressing alpha(v) integrins. The actual transduction efficiency was even higher than 50% because Ad5GFP/F35 viral genomes were found in GFP-negative CD34(+) cell fractions, indicating that the cytomegalovirus promoter used for transgene expression was not active in all transduced cells. The chimeric vector allowed for gene transfer into a broader spectrum of CD34(+) cells, including subsets with potential stem cell capacity. Fifty-five percent of CD34(+) c-Kit(+) cells expressed GFP after infection with Ad5GFP/F35, whereas only 13% of CD34(+) c-Kit(+) cells were GFP positive after infection with Ad5GFP. These findings represent the basis for studies aimed toward stable gene transfer into hematopoietic stem cells.  相似文献   

17.
Adenovirus (Ad) vectors are widely used for gene delivery in vitro and in vivo. A solid understanding of the biology of this virus is imperative for the development of novel, effective, and safe vectors. For the group C adenovirus serotypes 2 and 5 that use CAR as a primary attachment receptor, it is known that the penton base RGD motifs interact with cellular integrins and that this interaction promotes virus internalization. However, the RGD motif's impact on the efficiency of postinternalization steps, such as the escape of the virus particle from the endosome, is less defined. Furthermore, the role of penton-integrin interactions remains unknown for new vectors possessing group B Ad fiber knobs that use CD46 as a primary virus attachment receptor. In this study, we used vectors with the RGD motif deleted that contained Ad5 and B-group Ad35 fiber knobs and long fiber shafts and studied the role of RGD-integrin interactions in virus internalization and endosome escape. The deletion of the RGD motif in the penton base did not affect virus attachment, regardless of the type of cellular receptor used for attachment. RGD motif deletion, however, significantly reduced the rate of virus internalization for both the Ad5 and Ad35 fiber knob-containing vectors. This study also demonstrates the role of penton RGD motifs in facilitating the endosome escape step of virus infection and indicates that penton-integrin interactions are involved in internalization of capsid-chimeric CD46-interacting Ads with long fiber shafts.  相似文献   

18.
BACKGROUND: A paucity of coxsackie adenovirus receptor (CAR) hampers the adenovirus serotype 5 (Ad5)-based vector-mediated gene transfer into malignant hematopoietic cells. Fiber-retargeted adenoviral vectors with species B tropism can potentially bypass the CAR requirement and facilitate efficient gene transfer into malignant hematopoietic cells. METHODS: For feasible generation of fiber-retargeted adenoviral vectors, we have modified the versatile AdEasy system with a chimeric fiber gene encoding the Ad5 fiber tail domain and Ad35 fiber shaft and knob domains. An Ad5-based vector encoding the green fluorescent protein (GFP) gene under the control of the PGK promoter with Ad35 fiber receptor specificity was generated (Ad5F35-GFP). The Ad5F35-GFP vector-mediated gene transfer efficiency was compared with a fiber non-modified Ad5-GFP vector, which also encodes the GFP gene under the control of the PGK promoter. RESULTS: We demonstrated that a variety of Ad5-refractory malignant myeloid and B lymphoid cell lines were highly permissive to the Ad5F35-GFP vector infection. Importantly, primary chronic myeloid leukemic (CML) cells and chronic lymphocytic leukemia (CLL) B cells were superiorly transduced by the Ad5F35-GFP vector at a multiplicity of infection (MOI) of 100 compared with the Ad5-GFP vector. CONCLUSIONS: Our study will facilitate the generation of fiber-retargeted adenoviral vectors and enable transient genetic manipulation of primary malignant hematopoietic cells.  相似文献   

19.

Purpose

To evaluate localization and transgene expression from adenoviral vector of serotypes 5, 35, and 28, ± an RGD motif in the fiber following intravitreal or subretinal administration.

Methods

Ocular transduction by adenoviral vector serotypes ± RGD was studied in the eyes of mice receiving an intravitreous or subretinal injection. Each serotype expressed a CMV-GFP expression cassette and histological sections of eyes were examined. Transgene expression levels were examined using luciferase (Luc) regulated by the CMV promoter.

Results

GFP localization studies revealed that serotypes 5 and 28 given intravitreously transduced corneal endothelial, trabecular, and iris cells. Intravitreous delivery of the unmodified Ad35 serotype transduced only trabecular meshwork cells, but, the modification of the RGD motif into the fiber of the Ad35 viral vector base expanded transduction to corneal endothelial and iris cells. Incorporation of the RGD motif into the fiber knob with deletion of RGD from the penton base did not affect the transduction ability of the Ad5 vector base. Subretinal studies showed that RGD in the Ad5 knob shifted transduction from RPE cells to photoreceptor cells. Using a CMV-Luc expression cassette, intravitreous delivery of all the tested vectors, such as Ad5-, Ad35- and Ad28- resulted in an initial rapid induction of luciferase activity that thereafter declined. Subretinal administration of vectors showed a marked difference in transgene activity. Ad35-Luc gene expression peaked at 7 days and remained elevated for 6 months. Ad28-Luc expression was high after 1 day and remained sustained for one month.

Conclusions

Different adenoviral vector serotypes ± modifications transduce different cells within the eye. Transgene expression can be brief or extended and is serotype and delivery route dependent. Thus, adenoviral vectors provide a versatile platform for the delivery of therapeutic agents for ocular diseases.  相似文献   

20.
Altering adenovirus vector (Ad vector) targeting is an important goal for a variety of gene therapy applications and involves eliminating or reducing the normal tropism of a vector and retargeting through a distinct receptor-ligand pathway. The first step of Ad vector infection is high-affinity binding to a target cellular receptor. For the majority of adenoviruses and Ad vectors, the fiber capsid protein serves this purpose, binding to the coxsackievirus and adenovirus receptor (CAR) present on a variety of cell types. In this study we have explored a novel approach to altering Ad type 5 (Ad5) vector targeting based on serotypic differences in fiber function. The subgroup B viruses bind to an unidentified receptor that is distinct from CAR. The subgroup F viruses are the only adenoviruses that express two distinct terminal exons encoding fiber open reading frames. We have constructed chimeric fiber adenoviruses that utilize the tandem fiber arrangement of the subgroup F genome configuration. By taking advantage of serotypic differences in fiber expression, fiber shaft length, and fiber binding efficiency, we have developed a tandem fiber vector that has low binding efficiency for the known fiber binding sites, does not rely on an Ad5-based fiber, and can be grown to high titer using conventional cell lines. Importantly, when characterizing these vectors in vivo, we find the subgroup B system and our optimal tandem fiber system demonstrate reduced liver transduction by over 2 logs compared to an Ad5 fiber vector. These attributes make the tandem fiber vector a useful alternative to conventional strategies for fiber manipulation of adenovirus vectors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号