首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plough LV 《Molecular ecology》2012,21(16):3974-3987
The deleterious effects of inbreeding are well documented and of major concern in conservation biology. Stressful environments have generally been shown to increase inbreeding depression; however, little is known about the underlying genetic mechanisms of the inbreeding-by-stress interaction and to what extent the fitness of individual deleterious mutations is altered under stress. Using microsatellite marker segregation data and quantitative trait locus (QTL) mapping methods, I performed a genome scan for deleterious mutations affecting viability (viability or vQTL) in two inbred families of the Pacific oyster Crassostrea gigas, reared in a stressful, nutrient-poor diet and a favourable, nutrient-rich diet, which had significant effects on growth and survival. Twice as many vQTL were detected in the stressful diet compared with the favourable diet, resulting primarily from substantially greater mortality of homozygous genotypes. At vQTL, estimates of selection (s) and dominance (h) were greater in the stressful environment (= 0.86 vs. 0.54 and = 0.35 vs. 0.18, in stressful and nonstressful diets, respectively). There was no evidence of interaction between vQTL. Individual vQTL differed across diets in selection only, or in both selection and dominance, and some vQTL were not affected by diet. These results suggest that stress-associated increases in selection against individual deleterious alleles underlie greater inbreeding depression with stress. Furthermore, the finding that inbreeding-by-environment interaction appears, to some extent, to be locus specific, helps to explain previous observations of lineage-specific expression of inbreeding depression and environment-specific purging, which have important implications for conservation and evolutionary biology.  相似文献   

2.
García-Dorado A 《Genetics》2008,180(3):1559-1566
It has been widely appreciated that natural selection opposes the progress of inbreeding in small populations, thus limiting the actual inbreeding depression for fitness traits. However, no method to account for the consequences of this process has been given so far. I give a simple and intuitive method to predict inbreeding depression, taking into account the increase in selection efficiency against recessive alleles during inbreeding. It is based on the use of a “purged inbreeding coefficient” gt that accounts for the reduction of the probability of the deleterious homozygotes caused by the excess d of detrimental effect for deleterious alleles in the homozygous condition over its additive expectation. It is shown that the effect of purging can be important even for relatively small populations. For between-loci variable deleterious effects, accurate predictions can be obtained using the effective homozygous deleterious excess de, which can be estimated experimentally and is robust against variation of the ancestral effective population size. The method can be extended to any trait and it is used to predict the evolution of the mean viability or fecundity in a conservation program with equal or random family contributions.  相似文献   

3.
Willis JH 《Genetics》1999,153(4):1885-1898
The goal of this study is to provide information on the genetics of inbreeding depression in a primarily outcrossing population of Mimulus guttatus. Previous studies of this population indicate that there is tremendous inbreeding depression for nearly every fitness component and that almost all of this inbreeding depression is due to mildly deleterious alleles rather than recessive lethals or steriles. In this article I assayed the homozygous and heterozygous fitnesses of 184 highly inbred lines extracted from a natural population. Natural selection during the five generations of selfing involved in line formation essentially eliminated major deleterious alleles but was ineffective in purging alleles with minor fitness effects and did not appreciably diminish overall levels of inbreeding depression. Estimates of the average degree of dominance of these mildly deleterious alleles, obtained from the regression of heterozygous fitness on the sum of parental homozygous fitness, indicate that the detrimental alleles are partially recessive for most fitness traits, with h approximately 0.15 for cumulative measures of fitness. The inbreeding load, B, for total fitness is approximately 1.0 in this experiment. These results are consistent with the hypothesis that spontaneous mildly deleterious mutations occur at a rate >0.1 mutation per genome per generation.  相似文献   

4.
Yoshinari Tanaka 《Genetica》2010,138(7):717-723
Pleiotropic effects of deleterious mutations are considered to be among the factors responsible for genetic constraints on evolution by long-term directional selection acting on a quantitative trait. If pleiotropic phenotypic effects are biased in a particular direction, mutations generate apparent directional selection, which refers to the covariance between fitness and the trait owing to a linear association between the number of mutations possessed by individuals and the genotypic values of the trait. The present analysis has shown how the equilibrium mean value of the trait is determined by a balance between directional selection and biased pleiotropic mutations. Assuming that genes act additively both on the trait and on fitness, the total variance-standardized directional selection gradient was decomposed into apparent and true components. Experimental data on mutation bias from the bristle traits of Drosophila and life history traits of Daphnia suggest that apparent selection explains a small but significant fraction of directional selection pressure that is observed in nature; the data suggest that changes induced in a trait by biased pleiotropic mutation (i.e., by apparent directional selection) are easily compensated for by (true) directional selection.  相似文献   

5.
Here we present results of a Drosophila long term experiment where we study the fitness consequences of equating the number of breeding offspring contributed per family (EC) compared to a random contribution (RC) protocol. The EC strategy slows inbreeding and drift. However, it also prevents natural selection on fecundity and limits selection on viability to that occurring within families, and this includes purge against unconditionally deleterious alleles as well as adaptation to captive conditions. We used populations maintained with 5 or 25 single mated pairs, monitored inbreeding and selection intensity, and assayed competitive and non competitive fitness, as well as fecundity and viability components, in lines maintained with or without EC. In the small lines, EC showed modest advantage for viability during the whole experiment and for fitness up to generation 15 while, in the large lines, fitness increased steadily under both strategies, and EC led in the medium term to a slight fitness disadvantage. On the light of recent theory, these results can be explained as the joint consequence of new and standing deleterious mutations undergoing drift, inbreeding and selection and of adaptation to captive conditions.  相似文献   

6.
Fecundity is usually considered as a trait closely connected to fitness and is expected to exhibit substantial nonadditive genetic variation and inbreeding depression. However, two independent experiments, using populations of different geographical origin, indicate that early fecundity in Drosophila melanogaster behaves as a typical additive trait of low heritability. The first experiment involved artificial selection in inbred and non-inbred lines, all of them started from a common base population previously maintained in the laboratory for about 35 generations. The realized heritability estimate was 0.151 +/- 0.075 and the inbreeding depression was very small and nonsignificant (0.09 +/- 0.09% of the non-inbred mean per 1% increase in inbreeding coefficient). With inbreeding, the observed decrease in the within-line additive genetic variance and the corresponding increase of the between-line variance were very close to their expected values for pure additive gene action. This result is at odds with previous studies showing inbreeding depression and, therefore, directional dominance for the same trait and species. All experiments, however, used laboratory populations, and it is possible that the original genetic architecture of the trait in nature was subsequently altered by the joint action of random drift and adaptation to captivity. Thus, we carried out a second experiment, involving inbreeding without artificial selection in a population recently collected from the wild. In this case we obtained, again, a maximum-likelihood heritability estimate of 0.210 +/- 0.027 and very little nonsignificant inbreeding depression (0.06 +/- 0.12%). The results suggest that, for fitness-component traits, low levels of additive genetic variance are not necessarily associated with large inbreeding depression or high levels of nonadditive genetic variance.  相似文献   

7.
Stochastic simulations were run to compare the effects of nine breeding schemes, using full-sib mating, on the rate of purging of inbreeding depression due to mutations with equal deleterious effect on viability at unlinked loci in an outbred population. A number of full-sib mating lines were initiated from a large outbred population and maintained for 20 generations (if not extinct). Selection against deleterious mutations was allowed to occur within lines only, between lines or equal within and between lines, and surviving lines were either not crossed or crossed following every one or three generations of full-sib mating. The effectiveness of purging was indicated by the decreased number of lethal equivalents and the increased fitness of the purged population formed from crossing surviving lines after 20 generations under a given breeding scheme. The results show that the effectiveness of purging, the survival of the inbred lines and the inbreeding level attained are generally highest with between-line selection and lowest with within-line selection. Compared with no crossing, line crossing could lower the risk of extinction and the inbreeding coefficient of the purged population substantially with little loss of the effectiveness of purging. Compromising between the effectiveness of purging, and the risk of extinction and inbreeding coefficient, the breeding scheme with equal within- and between-line selection and crossing alternatively with full-sib mating is generally the most desirable scheme for purging deleterious mutations. Unless most deleterious mutations have relatively large effects on fitness in species with reproductive ability high enough to cope with the depressed fitness and thus increased risk of extinction with inbreeding, it is not justified to apply a breeding programme aimed at purging inbreeding depression by inbreeding and selection to a population of conservation concern.  相似文献   

8.
Escobar JS  Nicot A  David P 《Genetics》2008,180(3):1593-1608
Understanding how parental distance affects offspring fitness, i.e., the effects of inbreeding and outbreeding in natural populations, is a major goal in evolutionary biology. While inbreeding is often associated with fitness reduction (inbreeding depression), interpopulation outcrossing may have either positive (heterosis) or negative (outbreeding depression) effects. Within a metapopulation, all phenomena may occur with various intensities depending on the focal population (especially its effective size) and the trait studied. However, little is known about interpopulation variation at this scale. We here examine variation in inbreeding depression, heterosis, and outbreeding depression on life-history traits across a full-life cycle, within a metapopulation of the hermaphroditic snail Physa acuta. We show that all three phenomena can co-occur at this scale, although they are not always expressed on the same traits. A large variation in inbreeding depression, heterosis, and outbreeding depression is observed among local populations. We provide evidence that, as expected from theory, small and isolated populations enjoy higher heterosis upon outcrossing than do large, open populations. These results emphasize the need for an integrated theory accounting for the effects of both deleterious mutations and genetic incompatibilities within metapopulations and to take into account the variability of the focal population to understand the genetic consequences of inbreeding and outbreeding at this scale.  相似文献   

9.
The cost of inbreeding (inbreeding depression, ID) is an important variable in the maintenance of reproductive variation. Ecological interactions such as herbivory could modulate this cost, provided that defence traits harbour deleterious mutations and herbivores are responsible for differences in fitness. In the field, we manipulated the presence of herbivores on experimentally inbred and outcrossed plants of Solanum carolinense (horsenettle) for three years. Damage was greater on inbred plants, and ID for growth and fitness was significantly greater under herbivory. Inbreeding reduced phenolic expression both qualitatively (phytochemical diversity) and quantitatively, indicating deleterious load at loci related to the biosynthesis of defence compounds. Our results indicate that inbreeding effects on plant–herbivore interactions are mediated by changes to functional plant metabolites, suggesting that variation in inbreeding could be a predictor of defence trait variation. The magnitude of herbivore‐mediated, ecological ID indicates that herbivores could maintain outcrossing mating systems in nature.  相似文献   

10.
Mutations are the ultimate source of all genetic variations. New mutations are expected to affect quantitative traits differently depending on the extent to which traits contribute to fitness and the environment in which they are tested. The dogma is that the preponderance of mutations affecting fitness will be skewed toward deleterious while their effects on nonfitness traits will be bidirectionally distributed. There are mixed views on the role of stress in modulating these effects. We quantify mutation effects by inducing mutations in Arabidopsis thaliana (Columbia accession) using the chemical ethylmethane sulfonate. We measured the effects of new mutations relative to a premutation founder for fitness components under both natural (field) and artificial (growth room) conditions. Additionally, we measured three other quantitative traits, not expected to contribute directly to fitness, under artificial conditions. We found that induced mutations were equally as likely to increase as decrease a trait when that trait was not closely related to fitness (traits that were neither survivorship nor reproduction). We also found that new mutations were more likely to decrease fitness or fitness‐related traits under more stressful field conditions than under relatively benign artificial conditions. In the benign condition, the effect of new mutations on fitness components was similar to traits not as closely related to fitness. These results highlight the importance of measuring the effects of new mutations on fitness and other traits under a range of conditions.  相似文献   

11.
Inbreeding depression plays a central role within the conservation genetics paradigm. Until now inbreeding depression is incorporated into models of population viability as a mean value (e.g. number of lethal equivalents) for all traits in a population. In this study of the locally threatened perennial plant species Scabiosa columbaria we investigated both the mean and the variance among families of inbreeding depression in eight life history traits for five natural populations varying in size from 300 to more than 120,000 individuals. Significant inbreeding depression was found in all populations and all traits. The mean inbreeding depression value per trait was never correlated to population size. Within each population, highly significant variation in inbreeding depression between families (VIFLID) was found. Per trait, families with inbreeding depression next to families with outbreeding depression were often found within the same population. Inbreeding depression at the family level was in many cases not correlated among traits and independent of correlations between traits themselves. VIFLID was negatively correlated with population size: in two traits these correlations were significant. The results underline that inbreeding depression is a complex, highly dynamic phenomenon. Models of viability should incorporate inbreeding depression distributions, with a trait specific mean and variance. Moreover, models of metapopulation dynamics should incorporate genotype quality as factor in colonization success.  相似文献   

12.
Recent theoretical work has shown that there can be selection favoring the maintenance of sexual reproduction and the evolution of increased recombination when deleterious mutations at different loci interact synergistically, such that the logarithm of fitness declines at a greater than linear rate with the number of harmful mutations per genome. The purpose of this experimental study was to determine whether synergism exists for genes affecting fitness components in two partially selfing populations of the monkey flower Mimulus guttatus. For each wild population, a large randomly mated base population was constructed and many independent lines, inbred to differing degrees, were extracted from this base population. Lines with expected inbreeding coefficients of 0, 0.25, 0.5, and 0.75 were raised simultaneously in the greenhouse and were scored for germination, flowering, flower production, and pollen viability. All fitness traits except germination success declined with increased inbreeding, but in spite of the substantial inbreeding depression found in this study, relatively little evidence of synergistic epistasis was found. The only trait that showed evidence of synergism was pollen viability. These results indicate that synergism is not strong for the fitness components measured in this study. The evidence for synergism from other published studies is also reviewed.  相似文献   

13.
Sexually selected traits are often condition‐dependent and are expected to be affected by genome‐wide distributed deleterious mutations and inbreeding. However, sexual selection is a powerful selective force that can counteract inbreeding through purging of deleterious mutations. Inbreeding and purging of the inbreeding load for sexually selected traits has rarely been studied across natural populations with different degrees of inbreeding. Here we investigate inbreeding effects (measured as marker‐based heterozygosity) on condition‐dependent sexually selected signalling trait and other morphological traits across islet‐ and mainland populations (n = 15) of an endemic lizard species (Podarcis gaigeae). Our data suggest inbreeding depression on a condition‐dependent sexually selected signalling character among mainland subpopulations with low or intermediate levels of inbreeding, but no sign of inbreeding depression among small and isolated islet populations despite their higher overall inbreeding levels. In contrast, there was no such pattern among ten other morphological traits which are primarily naturally selected and presumably not involved in sexual signalling. These results are in line with purging of recessive deleterious alleles, or purging in combination with stochastic fixation of alleles by genetic drift, for a sexual signalling character in the islet environment, which is characterized by low population sizes and strong sexual selection. Higher clutch sizes in islet populations also raise interesting questions regarding the possibility of antagonistic pleiotropy. Purging and other non‐exclusive explanations of our results are discussed.  相似文献   

14.
To date, few studies have investigated the effects of inbreeding on sexually selected traits, although inbreeding depression on such traits can play an important role in the evolution and ecology of wild populations. Sexually selected traits such as ornamentation and courtship behaviour may not be primary fitness characters, but selection and dominance coefficients of their mutations will resemble those of traits under natural selection. Strong directional selection, for instance, through female mate-choice, purges all but the most recessive deleterious mutations, and the remaining dominance variation will result in inbreeding depression once populations undergo bottlenecks. We analysed the effects of inbreeding on sexually selected traits (colour pattern and courtship behaviour) in the male guppy, Poecilia reticulata, from Trinidad, and found a significant decline in the frequency of mating behaviour and colour spots. Such effects occurred although the genetic basis of these traits, many of which are Y-linked and hemizygous, would be expected to leave relatively little scope for inbreeding depression. Findings suggest that these sexually selected traits could reflect the genetic condition or health of males, and thus may be informative mate-cue characters for female choice as suggested by the 'good genes' model.  相似文献   

15.
A multilocus stochastic model is developed to simulate the dynamics of mutational load in small populations of various sizes. Old mutations sampled from a large ancestral population at mutation-selection balance and new mutations arising each generation are considered jointly, using biologically plausible lethal and deleterious mutation parameters. The results show that inbreeding depression and the number of lethal equivalents due to partially recessive mutations can be partly purged from the population by inbreeding, and that this purging mainly involves lethals or detrimentals of large effect. However, fitness decreases continuously with inbreeding, due to increased fixation and homozygosity of mildly deleterious mutants, resulting in extinctions of very small populations with low reproductive rates. No optimum inbreeding rate or population size exists for purging with respect to fitness (viability) changes, but there is an optimum inbreeding rate at a given final level of inbreeding for reducing inbreeding depression or the number of lethal equivalents. The interaction between selection against partially recessive mutations and genetic drift in small populations also influences the rate of decay of neutral variation. Weak selection against mutants relative to genetic drift results in apparent overdominance and thus an increase in effective size (Ne) at neutral loci, and strong selection relative to drift leads to a decrease in Ne due to the increased variance in family size. The simulation results and their implications are discussed in the context of biological conservation and tests for purging.  相似文献   

16.
Adaptive plasticity is expected to be important when the grain of environmental variation is encompassed in offspring dispersal distance. We investigated patterns of local adaptation, selection and plasticity in an association of plant morphology with fine-scale habitat shifts from oak canopy understory to adjacent grassland habitat in Claytonia perfoliata. Populations from beneath the canopy of oak trees were >90 % broad leaved and large seeded, while plants from adjacent grassland habitat were >90 % linear-leaved and small seeded. In a 2-year study, we used reciprocal transplants and phenotypic selection analysis to investigate local adaptation, selection, plasticity and maternal effects in this trait-environment association. Transgenerational effects were studied by planting offspring of inbred maternal families grown in both environments across the same environments in the second year. Reciprocal transplants revealed local adaptation to habitat type: broad-leaved forms had higher fitness in oak understory and linear-leaved plants had higher fitness in open grassland habitat. Phenotypic selection analyses indicated selection for narrower leaves and lower SLA in open habitat, and selection for broad leaves and intermediate values of SLA in understory. Both plant morphs exhibited plastic responses in traits in the same direction as selection on traits (narrower leaves and lower SLA in open habitat) suggesting that plasticity is adaptive. We detected an adaptive transgenerational effect in which maternal environment influenced offspring fitness; offspring of grassland-reared plants had higher fitness than understory-reared plants when grown in grassland. We did not detect costs of plasticity, but did find a positive association between leaf shape plasticity and fitness in linear-leaved plants in grassland habitat. Together, these findings indicate that fixed differences in trait values corresponding to selection across habitat contribute to local adaptation, but that plasticity and maternal environmental effects may be favored through promotion of survival across heterogeneous environments.  相似文献   

17.
Inbreeding depression for fitness traits is a key issue in evolutionary biology and conservation genetics. The magnitude of inbreeding depression, though, may critically depend on the efficiency of genetic purging, the elimination or recessive deleterious mutations by natural selection after they are exposed by inbreeding. However, the detection and quantification of genetic purging for nonlethal mutations is a rather difficult task. Here, we present two comprehensive sets of experiments with Drosophila aimed at detecting genetic purging in competitive conditions and quantifying its magnitude. We obtain, for the first time in competitive conditions, an estimate for the predictive parameter, the purging coefficient (d), that quantifies the magnitude of genetic purging, either against overall inbreeding depression (d ≈ 0.3), or against the component ascribed to nonlethal alleles (dNL ≈ 0.2). We find that competitive fitness declines at a high rate when inbreeding increases in the absence of purging. However, in moderate size populations under competitive conditions, inbreeding depression need not be too dramatic in the medium to short term, as the efficiency of purging is also very high. Furthermore, we find that purging occurred under competitive conditions also reduced the inbreeding depression that is expressed in the absence of competition.  相似文献   

18.
Despite the directional selection acting on life‐history traits, substantial amounts of standing variation for these traits have frequently been found. This variation may result from balancing selection (e.g., through genetic trade‐offs) or from mutation‐selection balance. These mechanisms affect allele frequencies in different ways: Under balancing selection alleles are maintained at intermediate frequencies, whereas under mutation‐selection balance variation is generated by deleterious mutations and removed by directional selection, which leads to asymmetry in the distribution of allele frequencies. To investigate the importance of these two mechanisms in maintaining heritable variation in oviposition rate of the two‐spotted spider mite, we analyzed the response to artificial selection. In three replicate experiments, we selected for higher and lower oviposition rate, compared to control lines. A response to selection only occurred in the downward direction. Selection for lower oviposition rate did not lead to an increase in any other component of fitness, but led to a decline in female juvenile survival. The results suggest standing variation for oviposition rate in this population consists largely of deleterious alleles, as in a mutation‐selection balance. Consequently, the standing variation for this trait does not appear to be indicative of its adaptive potential.  相似文献   

19.
We carried out an experiment of inbreeding and upward artificial selection for egg-to-adult viability in a recently captured population of Drosophila melanogaster, as well as computer simulations of the experimental design, in order to obtain information on the nature of genetic variation for this important fitness component. The inbreeding depression was linear with a rate of 0.70 +/- 0.11% of the initial mean per 1% increase in inbreeding coefficient, and the realized heritability was 0.06 +/- 0.07. We compared the empirical observations of inbreeding depression and selection response with computer simulations assuming a balance between the occurrence of partially recessive deleterious mutations and their elimination by selection. Our results suggest that a model assuming mutation-selection balance with realistic mutational parameters can explain the genetic variation for viability in the natural population studied. Several mutational models are incompatible with some observations and can be discarded. Mutational models assuming a low rate of mutations of large average effect and highly recessive gene action, and others assuming a high rate of mutations of small average effect and close to additive gene action, are compatible with all the observations.  相似文献   

20.
Inbreeding is unavoidable in small, isolated populations and can cause substantial fitness reductions compared to outbred populations. This loss of fitness has been predicted to elevate extinction risk giving it substantial conservation significance. Inbreeding may result in reduced fitness for two reasons: an increased expression of deleterious recessive alleles (partial dominance hypothesis) or the loss of favourable heterozygote combinations (overdominance hypothesis). Because both these sources of inbreeding depression are dependent upon dominance variance, inbreeding depression is predicted to be greater in life history traits than in morphological traits. In this study we used replicate inbred and control lines of Drosophila simulans to address three questions:1) is inbreeding depression greater in life history than morphological traits? 2) which of the two hypotheses is the major underlying cause of inbreeding depression? 3) does inbreeding elevate population extinction risk? We found that inbreeding depression was significantly greater in life history traits compared to morphological traits, but were unable to find unequivocal support for either the overdominance or partial dominance hypotheses as the genetic basis of inbreeding depression. As predicted, inbred lines had a significantly greater extinction risk.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号