首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In the present paper, a new type of Lewis acid–base complex BX3???Li@Calix[4]pyrrole (X = H and F) was designed and assembled based on electride molecule Li@calix[4]pyrrole (as a Lewis base) and the electron deficient molecule BX3 (as a Lewis acid) by employing quantum mechanical calculation. The new Lewis acid–base complex offers an interesting push-excess electron-pull (P-e-P) framework to enhance the stability and nonlinear optical (NLO) response. To measure the nonlinear optical response, static first hyperpolarizabilities (β 0) are exhibited. Significantly, point-face assembled Lewis acid–base complex BF3???Li@Calix[4]pyrrole (II) has considerable first hyperpolarizabilities (β 0) value (1.4?×?106 a.u.), which is about 117 times larger than reported 11,721 a.u. of electride Li@Calix[4]pyrrole. Further investigations show that, in BX3???Li@Calix[4]pyrrole with P-e-P framework, a strong charge-transfer transition from the ground state to the excited state contributes to the enhancement of first hyperpolarizability. Theory calculation of enthalpies of reaction (ΔrH0) at 298 K demonstrates that it is feasible to synthetize the complexes BX3???Li@Calix[4]pyrrole. In addition, compared with Li@Calix[4]pyrrole, the vertical ionization potential (VIP) and HOMO–LUMO gap of BX3???Li@Calix[4]pyrrole have obviously increased, due to the introduction of the Lewis acid molecule BX3. The novel Lewis acid–base NLO complex possesses not only a large nonlinear optical response but also higher stability.
Figure
A novel Lewis acid–base complex is first proposed by the combination of usual Lewis acid and an electride. It offers an interesting push-excess electron-pull framework to enhance the stability and nonlinear optical response.  相似文献   

2.
3.
The effects of donor groups of dizinc complexes, formed from a 2:1 mixture of Zn(II) and a dinucleating ligand, on adenylyl(3'-5')adenosine (ApA) cleavage have been studied. Two dinucleating ligands were used: one had two 2-pyridylmethyl and two 2-hydroxyethyl moieties on the 1,3-diamino-2-propanol linker moiety (2), and the other had two 2-pyridylmethyl and two carboxymethyl moieties on the 1,3-diamino-2-propanol linker moiety (3(2-)). The dizinc complex with2 [(Zn(2+))(2)-2] showed higher activities toward ApA cleavage than the dizinc complex using an analogous dinucleating ligand having four 2-pyridylmethyl donor moieties [(Zn(2+))(2)-1] at pH 5-8. The former showed a bell-shaped pH-rate constant profile, whereas the latter showed a sigmoidal pattern. The differences in the pH-rate constant profile are attributable to the various distributions of the monohydroxo-dizinc species, i.e. dideprotonated species, which are responsible for ApA cleavage. The monohydroxo species of (Zn(2+))(2)-2 has two acidic protons, which are not present in the corresponding monohydroxo species of (Zn(2+))(2)-1. The existence of both intracomplex acid (ROH or H(2)O) and base catalysts (RO(-) or OH(-)) in (Zn(2+))(2)-2 can explain its higher activity toward ApA cleavage than that of (Zn(2+))(2)-1. In contrast, (Zn(2+))(2)-3(2-) showed lower activity toward ApA cleavage at pH 7.0, which can be ascribed to the absence of the monohydroxo-dizinc species under these conditions.  相似文献   

4.
Recent studies of insulin receptor-related receptor (IRR) revealed its unusual property to activate upon extracellular application of mildly alkaline media, pH > 7.9. The activation of IRR with hydroxyl anion has typical features of ligand–receptor interaction; it is specific, dose-dependent, involves the IRR extracellular domain and is accompanied by a major conformational change. IRR is a member of the insulin receptor minifamily and has been long viewed as an orphan receptor tyrosine kinase since no peptide or protein agonist of IRR was found. In the evolution, IRR is highly conserved since its divergence from the insulin and insulin-like growth factor receptors in amphibia. The latter two cannot be activated by alkali. Another major difference between them is that unlike ubiquitously expressed insulin and insulin-like growth factor receptors, IRR is found in specific sets of cells of only some tissues, most of them being exposed to extracorporeal liquids of extreme pH. In particular, largest concentrations of IRR are in beta-intercalated cells of the kidneys. The primary physiological function of these cells is to excrete excessive alkali as bicarbonate into urine. When IRR is removed genetically, animals loose the property to excrete bicarbonate upon experimentally induced alkalosis. In this review, we will discuss the available in vitro and in vivo data that support the hypothesis of IRR role as a physiological alkali sensor that regulates acid–base balance. This article is part of a Special Issue entitled: Emerging recognition and activation mechanisms of receptor tyrosine kinases.  相似文献   

5.
An understanding of why adenine (A) pairs with thymine (T) and cytosine (C) with guanine (G) in DNA is very useful in the design of sensors and other related devices. We report the use of dissociation energies, geometries and molecular electrostatic potentials (MEPs) to justify the canonical (AT and CG) Watson-Crick pairs. We also analyze all mismatches in both configurations—cis and trans—with respect to their glycoside bonds. As expected, we found that the most stable pair configuration corresponds to CG, providing an energy criterion for that preferred configuration. The reason why A gets together with T is much more difficult to explain as the energy of this pair is smaller than the energy of some other mismatched pairs. We tested MEPs to see if they could shed light on this problem. Interestingly, MEPs yield a unique pattern (shape) for the two canonical cases but different shapes for the mismatches. A tunnel of positive potential surrounded by a negative one is found interconnecting the three H-bonds of CG and the two of AT. This MEP tunnel, assisted partially by energetics and geometrical criteria, unambiguously determine a distinctive feature of the affinity between A and T as well as that between G and C.  相似文献   

6.
Adipose TG lipase (ATGL) catalyzes the rate-limiting step in TG hydrolysis in most tissues. We have shown that hepatic ATGL preferentially channels hydrolyzed FAs to β-oxidation and induces PPAR-α signaling. Previous studies have suggested that liver FA binding protein (L-FABP) transports FAs from lipid droplets to the nucleus for ligand delivery and to the mitochondria for β-oxidation. To determine if L-FABP is involved in ATGL-mediated FA channeling, we used adenovirus-mediated suppression or overexpression of hepatic ATGL in either WT or L-FABP KO mice. Hepatic ATGL knockdown increased liver weight and TG content of overnight fasted mice regardless of genotype. L-FABP deletion did not impair the effects of ATGL overexpression on the oxidation of hydrolyzed FAs in primary hepatocyte cultures or on serum β-hydroxybutyrate concentrations in vivo. Moreover, L-FABP deletion did not influence the effects of ATGL knockdown or overexpression on PPAR-α target gene expression. Taken together, we conclude that L-FABP is not required to channel ATGL-hydrolyzed FAs to mitochondria for β-oxidation or the nucleus for PPAR-α regulation.  相似文献   

7.
The interaction between one polychlorobiphenyl (3,3′,4,4′,-tetrachlorobiphenyl, coded PCB77) and the four DNA nucleic acid–base is studied by means of quantum mechanics calculations in stacked conformations. It is shown that even if the intermolecular dispersion energy is the largest component of the total interaction energy, some other contributions play a non negligible role. In particular the electrostatic dipole-dipole interaction and the charge transfer from the nucleobase to the PCB are responsible for the relative orientation of the monomers in the complexes. In addition, the charge transfer tends to flatten the PCB, which could therefore intercalate more easily between DNA base pairs. From these seminal results, we predict that PCB could intercalate completely between two base pairs, preferably between Guanine:Cytosine pairs.
Figure
Molecular orbital interaction diagram of stacked PCB77 and Adenine.  相似文献   

8.
Houghton (HG) base pairing plays a central role in the DNA binding of proteins and small ligands. Probing detailed transition mechanism from Watson–Crick (WC) to HG base pair (bp) formation in duplex DNAs is of fundamental importance in terms of revealing intrinsic functions of double helical DNAs beyond their sequence determined functions. We investigated a free energy landscape of a free B-DNA with an adenosine–thymine (A–T) rich sequence to probe its conformational transition pathways from WC to HG base pairing. The free energy landscape was computed with a state-of-art two-dimensional umbrella molecular dynamics simulation at the all-atom level. The present simulation showed that in an isolated duplex DNA, the spontaneous transition from WC to HG bp takes place via multiple pathways. Notably, base flipping into the major and minor grooves was found to play an important role in forming these multiple transition pathways. This finding suggests that naked B-DNA under normal conditions has an inherent ability to form HG bps via spontaneous base opening events.  相似文献   

9.
10.
The simultaneous contributions of proton and electron transfer to the Brønsted-Lowry and Lewis acid–base properties of a set of p-substituted phenols are reported in this work. As a result of the analysis, a novel protophilicity index considered as the second-order energy change of a Brønsted-Lowry base as it is saturated with protons, a combined Brønsted-Lowry-Lewis acidity index (with a corresponding basicity index), and a protofelicity equalization principle (a parallel of the electronegativity equalization principle) are presented.  相似文献   

11.
Pinus ponderosa forests occupy numerous topographic and soil complexes across vast areas of the southwestern United States, yet few data exist on species distributions and vegetation–environment relationships for these environmentally diverse landscapes. We measured topography, soils, and vegetation on 66, 0.05-ha plots within a 110,000-ha P. ponderosa landscape in northern Arizona, USA, to discern vegetation–environment relationships on this landscape. We analyzed associations of environmental variables with plant communities and with single-species distributions, and we classified ecological species groups (co-occurring plant species exhibiting similar environmental affinities). Gradients in community composition paralleled gradients in soil texture, available water, organic C, total N, and geographic precipitation patterns. Soil parent material, affected by the presence or absence of volcanic activity, is a primary factor constraining vegetation patterns on this landscape. Using discriminant analysis, we built a model that correctly classified the most important of four grasses (Bouteloua gracilis, Muhlenbergia montana, Sporobolus interruptus, or Festuca arizonica) on 70–80% of plots based on five environmental variables related to soil moisture and resource levels. We also classified 52 of the 271 detected plant species into 18 ecological species groups. Species groups ranged from Phacelia and Bahia groups occupying xeric, volcanic cinder soils low in organic C and total N, to Festuca and Lathyrus groups characterizing moist, loam and silt loam soils. We applied the species groups by estimating P. ponderosa diameter increment in a regression tree using abundances of species groups. The most rapid P. ponderosa diameter growth of 5 mm/year occurred on plots with high importance of the Festuca and Lathyrus groups. Our results on this semi-arid landscape support several general ecological species group principles chiefly developed in temperate regions, and suggest that vegetation–environment research has great potential for enhancing our understanding of P. ponderosa forests occupying vast areas of the southwestern United States.  相似文献   

12.
Multistimuli-responsive fluorescent materials have garnered great research interest benefited from their practical applications. Two twisted-structure compounds containing tetraphenylethylene (TPE) as the aggregation-induced emission (AIE) group and a pyridine unit as the acid reaction site to obtain new multistimuli-responsive fluorescent compounds (namely, TPECNPy: TPECNPy-2 and TPECNPy-3) were successfully synthesized through a one-step Knoevenagel condensation reaction. The multiple-stimuli response process of TPECNPy was investigated by means of photoluminescence (PL) spectra and emission colour. The results showed that both TPECNPy compounds with excellent AIE abilities displayed reversible emission wavelength and colour changes in response to multiple external stimuli, including grinding–fuming by CH2Cl2 or annealing and HCl-NH3 vapour fuming. More importantly, fluorescent nanofibre films were prepared by electrospinning a solution of TPECNPy mixed with cellulose acetate (CA), and these exhibited reversible acid-induced discolouration, even with only 1 wt% TPECNPy. The results of this study may inspire strategies for designing multistimuli-responsive materials and preparing fluorescent sensing nanofibre films.  相似文献   

13.
14.
A series of novel α-aminophosphonate derivatives containing DHA structure were designed and synthesized as antitumor agents. In vitro antitumor activities of these compounds against the NCI-H460 (human lung cancer cell), A549 (human lung adenocarcinoma cell), HepG2 (human liver cancer cell) and SKOV3 (human ovarian cancer cell) human cancer cell lines were evaluated and compared with commercial anticancer drug 5-fluorouracil (5-FU), employing standard MTT assay. The pharmacological screening results revealed that many compounds exhibited moderate to high levels of antitumor activities against the tested cancer cell lines and that most demonstrated more potent inhibitory activities compared with the commercial anticancer drug 5-FU. The action mechanism of representative compound 7c was preliminarily investigated by acridine orange/ethidium bromide staining, Hoechst 33258 staining, JC-1 mitochondrial membrane potential staining and flow cytometry, which indicated that the compound can induce cell apoptosis in NCI-H460 cells. Cell cycle analysis showed that compound 7c mainly arrested NCI-H460 cells in G1 stage.  相似文献   

15.
To examine base excision repair (BER) capacity in the context of living cells, we developed and applied a plasmid-based reporter assay. Non-replicating plasmids containing unique DNA base lesions were designed to express luciferase only after lesion repair had occurred, and luciferase expression in transfected cells was measured continuously during a repair period of 14 h. Two types of DNA lesions were examined: uracil opposite T reflecting repair primarily by the single-nucleotide BER sub-pathway, and the abasic site analogue tetrahydrofuran (THF) opposite C reflecting repair by long-patch BER. We found that the repair capacity for uracil-DNA in wild type mouse fibroblasts was very strong, whereas the repair capacity for THF-DNA, although strong, was slightly weaker. Repair capacity in DNA polymerase β (Pol β) null cells for uracil-DNA and THF-DNA was reduced by approximately 15% and 20%, respectively, compared to that in wild type cells. In both cases, the repair deficiency was fully complemented in Pol β null cells expressing recombinant Pol β. The effect of inhibition of poly(ADP-ribose) polymerase (PARP) activity on repair capacity was examined by treatment of cells with the inhibitor 4-amino-1,8-naphthalimide (4-AN). PARP inhibition decreased the repair capacity for both lesions in wild type cells, and this reduction was to the same level as that seen in Pol β null cells. In contrast, 4-AN had no effect on repair in Pol β null cells. The results highlight that Pol β and PARP function in the same repair pathway, but also suggest that there is repair independent of both Pol β and PARP activities. Thus, before the BER capacity of a cell can be predicted or modulated, a better understanding of Pol β and PARP activity-independent BER pathways is required.  相似文献   

16.
1. When a constant amount of denatured DNA is annealed for a constant time with a series of different RNA concentrations, it is often observed that the reciprocal of the amount of RNA hybridized is linearly proportional to the reciprocal of the RNA concentration. This may be explained by assuming that an equilibrium is set up between free RNA and DNA on the one hand and DNA-RNA hybrid on the other. The hybridization of Escherichia coli DNA and ribosomal RNA was used to test this proposition. Rate constants were estimated from the initial rates of the forward and back reactions and compared with direct estimates of the dissociation constant. 2. The rate constants of the forward and back reactions were estimated to be 1.82mlmug(-1)h(-1) (160lmol(-1)s(-1)) and 0.023h(-1) (6.4x10(-6)s(-1)) respectively, giving a ratio k(2)/k(1)=0.013mugml(-1). After 24h annealing the dissociation constant was estimated to be 0.114mugml(-1), and by extrapolation to infinite time, 0.047mugml(-1). 3. It is concluded that (a) equilibrium greatly favours the hybrid complex, (b) equilibrium is not established in 24h, (c) the equilibria that were directly estimated are incompatible either with the measured rates of the forward and back reactions or with the simple formulation of the reaction that was adopted, and finally (d) for these reasons the equilibrium interpretation of the linear reciprocal relationship is unsatisfactory.  相似文献   

17.
Cell and Tissue Banking - Research in neuroscience relies heavily upon postmortem human brain tissue. Cerebellar granular layer autolysis (GLA) is a surrogate marker for the quality of such tissue...  相似文献   

18.
In this study, an integrated citric acid-methane fermentation process was established to solve the problem of wastewater treatment in citric acid production. Citric acid wastewater was treated through anaerobic digestion and then the anaerobic digestion effluent (ADE) was further treated and recycled for the next batch citric acid fermentation. This process could eliminate wastewater discharge and reduce water resource consumption. Propionic acid was found in the ADE and its concentration continually increased in recycling. Effect of propionic acid on citric acid fermentation was investigated, and results indicated that influence of propionic acid on citric acid fermentation was contributed to the undissociated form. Citric acid fermentation was inhibited when the concentration of propionic acid was above 2, 4, and 6 mM in initial pH 4.0, 4.5 and, 5.0, respectively. However, low concentration of propionic acid could promote isomaltase activity which converted more isomaltose to available sugar, thereby increasing citric acid production. High concentration of propionic acid could influence the vitality of cell and prolong the lag phase, causing large amount of glucose still remaining in medium at the end of fermentation and decreasing citric acid production.  相似文献   

19.
20.
Cadmium (Cd) is widely distributed in the environment and easy adsorbed by living organisms with adverse effects. Exposure to Cd-contaminated food may disrupt lipid metabolism and increase human health risk. To study the perturbation effect of Cd on lipid metabolism in vivo, 24 male Sprague–Dawley (SD) rats were randomly assigned four groups and treated by Cd chloride solution (0, 1.375 mg/kg, 5.5 mg/kg, 22 mg/kg) for 14 days. The characteristic indexes of serum lipid metabolism were analyzed. Afterwards, untargeted metabolomics analysis was applied to explore the adverse effects of Cd on rats by liquid chromatography coupled with mass spectrometry (LC-MS). The results revealed that Cd exposure obviously decreased the average serum of triglycerides (TG) and low-density lipoprotein cholesterol (LDL-C) and caused an imbalance of endogenous compounds in the 22 mg/kg Cd-exposed group. Compared with the control group, 30 metabolites with significant differences were identified in the serum. Our results indicated that Cd caused lipid metabolic disorders in rats by disrupting linoleic acid and glycerophospholipid metabolism pathways. Furthermore, there were three kinds of remarkable differential metabolites—9Z,12Z-octadecadienoic acid, PC(20:4(8Z,11Z,14Z,17Z)/0:0), and PC(15:0/18:2(9Z,12Z)), which enriched the two significant metabolism pathways and could be the potential biomarkers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号