首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ross PD  Howard FB 《Biopolymers》2003,68(2):210-222
To assess the thermodynamic contribution of the 5-methyl group of thymine, we have studied the two-stranded helical complexes poly(dA).poly(dU) and poly(dA).poly(dT) and the three-stranded complexes--poly(dA).2poly(dU), poly(dA).poly(dT).poly(dU) and poly(dA).2poly(dT)--by differential scanning calorimetry, and uv optical melting experiments. The thermodynamic quantities associated with the 3 --> 2, 2 --> 1, and 3 --> 1 melting transitions are found to vary with salt concentration and temperature in a more complex manner than commonly believed. The transition temperatures, T(m), are generally not linear in the logarithm of concentration or activity of NaCl. The change in enthalpy and in entropy upon melting varies with salt concentration and temperature, and a change in heat capacity accompanies each transition. The poly(dA).2poly(dU) triple helix is markedly different from poly(dA).2poly(dT) in both its CD spectrum and thermodynamic behavior, while the poly(dA).poly(dT).poly(dU) triple helix resembles poly(dA).2poly(dT) in these properties. In comparing poly(dA).2poly(dT) with either the poly(dA).poly(dT).poly(dU) or the poly(dA).2poly(dU) triplexes, the substitution of thymine for uracil in the third strand results in an enhancement of stability against the 3 --> 2 dissociation of deltadeltaG degrees = -135 +/- 85 cal (mol A)(-1) at 37 degrees C. This represents a doubling of the absolute stability toward dissociation compared to the triplexes with poly(dU) as the third strand. The poly (dA).poly (dT) duplex is more stable than poly(dA).poly(dU) by deltadeltaG degrees = -350 +/- 60 cal (mol base pair)(-1) at 37 degrees C. Poly(dA).poly(dT) has 50% greater stability than poly(dA).poly(dU) as a result of the dT for dU substitution in the duplex.  相似文献   

2.
The effects of poly(ADP-Rib) on the differentiation of mouse myeloid leukemia cells were studied. The myeloid leukemia cells differentiated into cells with phagocytic activity, Fc receptors, and lysozyme activity on treatment with poly(ADP-Rib). Cells with morphological characteristics of macrophages and granulocytes also appeared on incubation with poly(ADP-Rib). Dextran sulfate and polyvinylsulfate were also effective for the induction of phagocytic cells, but poly(A), poly(U), poly(C), poly(I), poly(I) · poly(C), and poly(A) · poly(U) were not. The uptake of poly(ADP-Rib) by the myeloid leukemia cells is discussed in relation to their differentiation.  相似文献   

3.
The rabbit antiserum against poly(I).poly(C) purified by hydroxyapatite column chromatography contained three distinct antibodies. They were fractionated into three antibody populations by a series of precipitations (with poly(A).poly(U), poly(I), and poly(I).poly(C)) and their specificities were examined by quantitative complement fixation, double diffusion tests and radioimmunoassay. The first population was common to the double helical structure of double-stranded RNAs. The second was specific for poly(I) and the third was specific for poly(I).poly(C). These studies demonstrated that specific antibodies exclusively reactive with poly(I).poly(C) existed in the rabbit antiserum against poly(I).poly(C).  相似文献   

4.
The interferon-inducing activity of the double-stranded complex poly(A) - poly(U) in primary rabbit kidney cell cultures is reduced when the cells are treated with poly(dUfl) either 1 h before, simultaneously with, or 1 h after the exposure to the double-stranded complex. It has been demonstrated in experiments involving sensitivity to hydrolysis by RNAase, UV absorbance-mixing curves, and UV absorbance-temperature profiles that this phenomenon is due to the formation of the triple-stranded complex poly(A) - poly(U) - poly(dUfl). The latter complex seems to be the principal product of interactions in the following systems: poly(A) - poly(U) + poly(dUfl); poly(A) - poly(dUfl) + poly(U); and poly(A) + poly(U) + poly (dUfl).  相似文献   

5.
The interaction of the nuclear estrogen receptor from hen oviduct with nucleic acids were studied by competition assay using DNa-cellulose centrifugation. We demonstrated that the estradiol-receptor complex binds similarly well to poly(A) RNA and denatured DNA. The estrogen receptor was found to interact more strongly with poly(G), poly(U) than with poly(A), poly(C). The receptor complex binds similarly to poly(A) and poly(dA), and to poly(U) and poly(dU). However, the receptor complex shows stronger binding to poly(G) than to poly(dG) and to poly(C) than to poly(dC). Studies with heteropolyribonucleotides indicated that poly(U1G1) is more effective in competing for the estrogen receptor, and poly(AC) and poly(AUG) are moderately effective, whereas poly(ACU) is least effective. GMP and dGMP showed some competition for the nuclear receptor at 300-fold higher nucleotide concentrations than that of the synthetic poly(G). Observations that the nuclear estrogen receptor binds to poly(A) RNA and interacts selectively with polyribonucleotides suggest that the estrogen receptor-RNA interaction may play a role for the function of estrogens in gene regulation.  相似文献   

6.
The formation of the triple helix of poly(A).poly(U).poly(U) was studied by using antibodies specific to poly(A).poly(U).poly(U). the 10-11 base chain length for oligo(A) and the 20-30 base chain length for oligo(U) may be the minimum sizes required to maintain a stable triple helix. Double-stranded poly(A).poly(U) which was the core of triple-stranded poly(A).poly(U).poly(U) could bind poly(U) and produce an analogue of poly(A).poly(U).poly(U) reactive with the antibodies even if the poly(A) or poly(U) was brominated or acetylated to the extent of 35-55%. However, brominated or acetylated poly(U) did not produce a stable triple helix with double-stranded poly(A).poly(U).  相似文献   

7.
L A Marky  R B Macgregor 《Biochemistry》1990,29(20):4805-4811
We report differences in the interaction of two structurally similar phenanthroline intercalators, ethidium and propidium, with poly(dA).poly(dT) and poly[d(A-T)] as a function of ionic strength based on titration microcalorimetry, fluorescence titration, and hydrostatic pressure measurements. Both ethidium and propidium bind more strongly to poly[d(A-T)].poly[d(A-T)] than to poly(dA).poly(dT). Ethidium intercalation into the latter polymer displays titrations with positive cooperativity; this is not found with propidium. The enthalpy of intercalation (delta H degrees) is exothermic for both dyes with poly[d(A-T)].poly[d(A-T)]; however, the value of this parameter is nearly zero in the case of poly(dA).poly(dT). The molar volume change (delta V degrees) accompanying dye intercalation is negative under all conditions for poly[d(A-T)].poly[d(A-T)] whereas it is positive for poly(dA).poly(dT). The changes observed in delta V degrees correlate well with the entropy changes derived from the titration and calorimetric data for this reaction. The results, interpreted in terms of the relative hydration of these two polymers, are consistent with a higher extent of hydration of poly(dA).poly(dT) relative to poly[d(A-T)].poly[d(A-T)].  相似文献   

8.
Antiviral activity of the complexes of synthetic polyribonucleotides, i.e. poly (I).poly (C) and poly (G).poly (C) obtained at non-equimolar ratios of homopolymers was studied. The system of chick embryon fibroblasts and horse Venezuellan eguine encephalitis virus served as the model. It was shown that the active and stable complexes poly (I).poly (C) and poly (G).poly (C) were formed at some excess of poly (C), i.e. at the ratio of poly G) or poly (I) to poly (C) equal to 40/60 to 20/80 molar per cent. The role of the excessive poly (C) in formation of the stable secondary structure of the nucleotide complexes and its significance as one of the means for affecting the fine structure of double-stranded RNA were discussed.  相似文献   

9.
Using affinity columns with immobilized poly(A), poly(G), poly(U), poly(C), and poly(A).poly(U) and poly(G) x poly(C) duplexes several polyribonucleotide-binding blood plasma proteins have been captured. Albumin and keratins K1 and K2e have been detected to bind polypurine tracts. The in vitro glycated albumin binds poly(A) and poly(G) more efficiently than the unmodified protein. The major polypyrimidine-binding blood plasma protein (28 kDa) can catalyze the hydrolysis of poly(U).  相似文献   

10.
The interaction of ethidium with synthetic DNA and RNA double-stranded polymers at 0.01 M ionic strength, pH 7.0, has been studied by fluorimetry at low drug to nucleotide ratios. Binding constants have been calculated assuming an excluded-neighbouring site model for the interaction of ethidium with double-stranded polymers. The values obtained are poly d(AT).poly d(AT), 9.5 X 10(6) M-1; poly dA.poly dT, 6.5 X 10(5) M-1; poly d(GC).poly d(GC), 9.9 X 10(6) M-1; poly dG,poly dC, 4.5 X 1-(6) M-1; poly d(AC); poly d(GT), 9.8 X 10(6) M-1; poly d(AG).poly d(CT), 1.3 X 10(6) M-1; poly rA.poly rU, 4.1 X 10(7) M-1. The displacement of ethidium from poly d(AT).poly d(AT) by 9-aminoacridine and an acridine-containing antitumor agent (NSC 156303; 4'-(9-acridinylamino)methanesulphon-m-anisidide) has also been examined.  相似文献   

11.
We report the temperature and salt dependence of the volume change (DeltaVb) associated with the binding of ethidium bromide and netropsin with poly(dA).poly(dT) and poly[d(A-T)].poly[d(A-T)]. The DeltaV(b) of binding of ethidium with poly(dA).poly(dT) was much more negative at temperatures approximately 70 degrees C than at 25 degrees C, whereas the difference is much smaller in the case of binding with poly[d(A-T)].poly[d(A-T)]. We also determined the volume change of DNA-drug interaction by comparing the volume change of melting of DNA duplex and DNA-drug complex. The DNA-drug complexes display helix-coil transition temperatures (Tm several degrees above those of the unbound polymers, e.g., the Tm of the netropsin complex with poly(dA)poly(dT) is 106 degrees C. The results for the binding of ethidium with poly[d(A-T)].poly[d(A-T)] were accurately described by scaled particle theory. However, this analysis did not yield results consistent with our data for ethidium binding with poly(dA).poly(dT). We hypothesize that heat-induced changes in conformation and hydration of this polymer are responsible for this behavior. The volumetric properties of poly(dA).poly(dT) become similar to those of poly[d(A-T)].poly[d(A-T)] at higher temperatures.  相似文献   

12.
We have determined the 1H----3H exchange rate constants between water and C8H groups of purinic residues of alternating polynucleotides poly(dA-dT).poly(dA-dT), poly(dG-dC).poly(dG-dC) and poly(dA-dC).poly(dG-dT) as well as homopolynucleotides poly(dA).poly(dT) and poly(dG).poly(dC) in aqueous solutions with high-salt concentrations (3 M NaCl and 4-6 M CsF), in water-ethanol (60%) solution and in 0.15 M NaCl at 25 degrees C. The rate constants for adenine (kA) and guanine (kG) of polynucleotides were compared with corresponding constants for E. coli DNA. dGMP nd dAMP at the same conditions. The relation between exchange rates and conformations of polynucleotides permits the study of their conformational peculiarities in solution. Of three alternating polynucleotides examined in 0.15 M NaCl the exchange retardation was observed only for poly(dA-dT).poly(dA-dT) as compared with that in B-DNA, which is in good agreement with the B-alternating "wrinkled" DNA model. The conformations of poly(dG-dC).poly(dG-dC) and poly(dA-dC).poly(dG-dT), according to the exchange data obtained are within the B form. For homopolynucleotides in 0.15 M NaCl, the KA value for poly(dA).poly(dT) is nearly the same as kA for B-DNA, which indicates the similarity of their conformations, whereas the kG value for poly(dG).poly(dC) is 1.7-fold lower in comparison with the kG value in B-DNA. This seems to be connected with the existence of B = A conformation equilibrium for poly(dG).poly(dC) in solution. The increase of NaCl concentration to 3 M results in a B----Z transition in the case of poly(dG-dC).poly(dG-dC) and in the shift of B = A equilibrium towards the A-form in the case of poly(dG).poly(dC) as is evidenced by alterations of their KG values. Poly(dA-dT).poly(dA-dT) in 6 M CsF and poly(dA-dC).poly(dG-dT) in 4.3 M CsF maintain their inherent conformations in 0.15 M NaCl in spite of the fact that they are characterised by the "X-type" CD-spectrum at these conditions. According to the exchange data the conformation of poly(dA).poly(dT) in 6 M CsF corresponds to the "heteronomous" DNA model or some other structure with lower accessibility of C8H groups of adenylic residues.  相似文献   

13.
Abstract

The nucleic acid triplexes poly d(T)·poly d(A)·poly d(T), poly (U)·poly (A)·poly (U), and poly (I)·poly (A)·poly (I) display a sort of continuity between each other. However, their morphologies present their own individuality which, considering those of their parent duplexes, are quite unexpected. This comparison helps to understand triplex structure-function relationship. While helical parameters are functions of the sugar pucker, low values of WC and Hoogsteen base-pair propellers is commonplace for triplexes and the Hoogsteen base-pair geometry monitors the effects of the interstrand phosphates charge-charge repulsion.

Synopsis

The nucleic acid triplexes poly d(T)·poly d(A)·poly d(T), poly(U)·poly(A)·poly(U), and poly (I)·poly (A)·poly (I) present distinct morphologies. Considering those of their parent duplexes, they are also quite unexpected.  相似文献   

14.
The study by resonance Raman spectroscopy with a 257 nm excitation wave-length of adenine in two single-stranded polynucleotides, poly rA and poly dA, and in three double-stranded polynucleotides, poly dA.poly dT, poly(dA-dT).poly(dA-dT) and poly rA.poly rU, allows one to characterize the A-genus conformation of polynucleotides containing adenine and thymine bases. The characteristic spectrum of the A-form of the adenine strand is observed, except small differences, for poly rA, poly rA.poly rU and poly dA.poly dT. Our results prove that it is the adenine strand which adopts the A-family conformation in poly dA.poly dT.  相似文献   

15.
The consequences of incorporating non-complementary residues into the poly (I) · poly (C) helix have been investigated. Complexes of poly (I) and copolymers of C with different mole-ratios of I, A and U residues have been prepared and denatured in a variety of solvents. The results of both denaturation and analysis of the stoichiometry of the reactions suggest that in poly (I)· poly (C, Ix) complexes, the I residues are excluded from the helix matrix, whereas in the poly (I) · poly (C, Ux) and poly (I) · poly (C, Ax) systems the minor component bases are retained. Preliminaries to a quantitative analysis of the transition data are presented, permitting rough estimates of the difference in stability between poly (I) · poly (C) and poly (I) · poly (U) or poly (I) · poly (A) pairs in these complexes—the results being 1.7 kcal./mole and 1.3 kcal./mole, respectively. The differences in behavior of poly (I) · poly (C, I) complexes are found to be most evident in the presence of 8 m-urea.  相似文献   

16.
Most duplex DNAs that are in the "B" conformation are not immunogenic. One important exception is poly(dG) X poly(dC), which produces a good immune response even though, by many criteria, it adopts a conventional right-handed helix. In order to investigate what features are being recognized, monoclonal antibodies were prepared against poly(dG) X poly(dC) and the related polymer poly(dG) X poly(dm5C). Jel 72, which is an immunoglobulin G, binds only to poly(dG) X poly(dC), while Jel 68, which is an immunoglobulin M, binds approximately 10-fold more strongly to poly(dG) X poly(dm5C) than to poly(dG) X poly(dC). For both antibodies, no significant interaction could be detected with any other synthetic DNA duplexes including poly[d(Gm5C)] X poly[d(Gm5C)] in both the "B" and "Z" forms, poly[d(Tm5Cm5C)] X poly[d(GGA)], and poly[d(TCC)] X poly[d(GGA)], poly(dI) X poly(dC), or poly(dI) X poly(dm5C). The binding to poly(dG) X poly(dC) was inhibited by ethidium and by disruption of the DNA duplex, confirming that the antibodies were not recognizing single-stranded or multistranded structures. Furthermore, Jel 68 binds significantly to phage XP-12 DNA, which contains only m5C residues and will precipitate this DNA in the absence of a second antibody. The results suggest that (dG)n X (dm5C)n sequences in natural DNA exist in recognizably distinct conformations.  相似文献   

17.
Y Sawai  N Kitahara  K Tsukada 《FEBS letters》1982,150(1):228-232
In vitro poly(dA) synthesis on poly(dT) template can be initiated by poly(A) primer. Poly(A) chains are covalently extended by DNA polymerase. The reaction product consists of poly(dA) chain with poly(A) at their 5'-ends, hydrogen bonded to the template poly(dT). The primer poly(A) is linked to the product poly(dA) via a 3':5'-phosphodiester bond, and can be specifically removed by ribonuclease H from chick embryos, leaving a 5'-phosphate end of poly(dA). Poly- or oligoriboadenylate longer than the (pA)5 could serve as a priming activity to synthesize poly(A) covalently linked to poly(dA).  相似文献   

18.
More than twenty repeating sequence DNAs containing phosphorothioates were prepared from the appropriate dXTPs with DNA polymerase I. The Tms of the modified DNAs were all lower than the parent polymers. A phosphorothioate group 5' to a pyrimidine gave rise to a large decrease than 5' to a purine, e.g., poly(dA).poly(dT) = 50 degrees; poly(dsA).poly(dT) = 44 degrees; poly(dA).poly(dsT) = 33 degrees; and poly(dsA).poly(dsT) = 26 degrees. The presence of phosphorothioate groups had a dramatic effect on triplex formation; poly[d(TC)].poly[d(sGsA)] spontaneously dismutases to a triplex at pH 8 whereas triplex formation in poly[d(sTsC)].poly[d(GA)] was inhibited. Surprisingly poly(dsG).poly(dC) had a Tm which initially decreased with increasing ionic strength. Resistance to digestion with pancreatic DNAse I did not correlate with phosphorothioate content. Poly[d(AsT)], poly[d(TsC)].poly[d(sGA)] and poly[d(sTG)].poly[d(sCA)] were resistant whereas poly[d(sAT)] and poly[d(sTsTG)].poly[d(CsAsA)] were rapidly degraded. Thus phosphorothioate groups cause small conformational changes and may reveal new families of conformational polymorphisms.  相似文献   

19.
T J Thomas  R P Messner 《Biochimie》1988,70(2):221-226
The effects of Ru(NH3)(3+)6 on the conformation of poly(dG-m5dC).poly(dG-m5dC) and poly(dG-dC).poly(dG-dC) were studied by circular dichroism (CD) spectroscopy. Ru(NH3)(3+)6 at very low concentrations provokes the Z-DNA conformation in both polynucleotides. In the presence of 50 mM NaCl, the concentration of Ru(NH3)(3+)6 at the midpoint of B to Z transition of poly(dG-m5dC).poly(dG-m5dC) is 4 microM compared to 5 microM for Co(NH3)(3+)6. The half-lives of B to Z transition of poly(dG-m5dC).poly(dG-m5dC) in the presence of 10 microM Ru(NH3)(3+)6 and Co(NHG3)(3+)6 are at 23 and 30 min, respectively. The concentration of Ru(NH3)(3+)6 at the midpoint of B to Z transition of poly(dG-dC).poly(dG-dC) is 50 microM. These results demonstrate that Ru(NH3)(3+)6 is a highly efficient trivalent cation for the induction of B to Z transition in poly(dG-m5dC).poly(dG-m5dC) and poly(dG-dC).poly(dG-dC). In contrast, Ru(NH3)(3+)6 has no significant effect on the conformation of calf thymus DNA, poly(dA-dT).poly(dA-dT) and poly(dA-dC).poly(dG-dT).  相似文献   

20.
The technique of photoaffinity labeling has been applied to the double-stranded RNA (dsRNA)-dependent enzyme 2',5'-oligoadenylate (2-5A) synthetase to provide a means for the examination of RNA-protein interaction(s) in the dsRNA allosteric binding domain of this enzyme. The synthesis, characterization, and biological properties of the photoaffinity probe poly[( 32P]I,8-azidoI).poly(C) and its mismatched analog poly[( 32P]I,8-azidoI).poly(C12U), which mimic the parent molecules poly(I).poly(C) and poly(I).poly(C12U), are described. The efficacy of poly[( 32P]I,8-azidoI).poly(C) and poly[( 32P]I,8-azidoI).poly(C12U) as allosteric site-directed activators is demonstrated using highly purified 2-5A synthetase from rabbit reticulocyte lysates and from extracts of interferon-treated HeLa cells. The dsRNA photoprobes activate these two 2-5A synthetases. Saturation of 2-5A synthetase is observed at 6 x 10(-4) g/ml poly[( 32P]I,8-azidoI).poly(C) following photolysis for 20 s at 0 degrees C. The photoincorporation of poly[( 32P]I,8-azidoI).poly(C) is specific, as demonstrated by the prevention of photoincorporation by native poly(I).poly(C). DNA, poly(I), and poly(C) are not competitors of poly[( 32P]I,8-azidoI).poly(C). Following UV irradiation of 2-5A synthetase with poly[( 32P]I,8-azidoI).poly(C), the reaction mixture is treated with micrococcal nuclease to hydrolyze azido dsRNA that is not cross-linked to the enzyme. A radioactive band of 110 kDa (the same as that reported for native rabbit reticulocyte lysate 2-5A synthetase) is observed following sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography. The specific photolabeling of the 2-5A synthetase suggests that the azido dsRNA is intrinsic to the allosteric binding domain. The utility of poly[( 32P]I,8-azidoI).poly(C) for the detection of dsRNA-dependent binding proteins and the isolation of peptides at or near the allosteric binding site is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号