首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Generation and cryopreservation of transgenic mice depend on reliable and continuous production of pre-implantation embryos. To suppress circannual and circadian rhythms driving the physiological and sexual behaviour of free living animals, laboratory animals are housed under standardized conditions. It remains to be elucidated if the artificial climate can cover all environmental effects. Here, we report that the humidity in an animal facility affects the embryo yield. The weather at the location of the facility, especially the temperature, influences the climate within an animal facility; weather peaks are obviously covered in part only, even if the facility is equipped with a powerful air-conditioning supply. Subsequently, external weather changes interact with the environment within the facility, influencing the production of embryos. Furthermore, noise and/or vibrations as generated by construction works, negatively affect the embryo yield.  相似文献   

2.
Modern genetic engineering technologies enable us to manipulate the mouse genome in increasingly complex ways to model human biology and disease. As a result, the number of mouse strains carrying transgenes or induced mutations has increased markedly. Thorough understanding of strain and gene nomenclature is essential to ensure that investigators know what kind of mouse they have, and what to expect in terms of phenotype. Genetically engineered mice alter gene function by over-expressing, eliminating, or modifying a gene product. The resulting phenotype is often unexpected and not completely understood, necessitating special care and potentially complex breeding and husbandry strategies. Animal care technicians responsible for routine maintenance of the colony, facility managers, veterinarians, and research personnel working with mice should be well informed about the nature of the mutation, distinguishing characteristics, and necessary precautions in handling the mice. Personnel working with mice also must be aware of the multitude of factors intrinsic to the mouse and present in the environment that can influence reproductive performance. Finally, diligent adherence to the maintenance of genetic quality in conjunction with cryopreservation of germplasm is the best insurance against loss of a colony.  相似文献   

3.
High-tech biomedical advances have led to increases both in the number of mice used for research and in exchanges of mice and/or their tissues between institutions. The latter are associated with the risk of dissemination of infectious agents. Because of the lack of international standardization of health surveillance programs, health certificates for imported rodents may be informative but may not address the needs of the importing facility. Preservation of mouse germplasm is achieved by cryopreservation of spermatozoa, embryos, or ovaries, and embryonic stem cells are used for the production of genetically engineered mice. After embryo transfer, recipients and rederived pups that test negative in microbiological screening for relevant microorganisms are released into full barrier holding areas. However, current research shows that embryos may also transmit microorganisms, especially viruses, to the recipient mice. In this article, we discuss regulations and practical issues in the shipping of live mice and mouse tissues, including spermatozoa, embryos, ovaries, and embryonic stem cells, and review work on microbial contamination of these biological materials. In addition, we present ways to reduce the risk of transmission of pathogens to mice under routine conditions.  相似文献   

4.
5.
Gene banking is arguably the best method available to prevent the loss of genetic diversity caused by declines in wild populations, when the causes of decline cannot be halted or reversed. For one of the most impacted vertebrate groups, the amphibians, gene banking technologies have advanced considerably, and gametes from the male line can be banked successfully for many species. However, cryopreserving the female germ line remains challenging, with attempts at cryopreserving oocytes unsuccessful due to their large size and yolk content. One possible solution is to target cryopreservation of early embryos that contain the maternal germ line, but consist of smaller cells. Here, we investigate the short term incubation, cryoprotectant tolerance, and cryopreservation of dissociated early embryonic cells from gastrulae and neurulae of the Striped Marsh Frog, Limnodynastes peronii. Embryos were dissociated and cells were incubated for up to 24 hours in various media. Viability of both gastrula and neurula cells remained high (means up to 40–60%) over 24 hours of incubation in all media, although viability was maintained at a higher level in Ca2+-free Simplified Amphibian Ringer; low speed centrifugation did not reduce cell viability. Tolerance of dissociated embryonic cells was tested for two cryoprotectants, glycerol and dimethyl sulphoxide; dissociated cells of both gastrulae and neurulae were highly tolerant to both—indeed, cell viability over 24 hours was higher in media containing low-to-medium concentrations than in equivalent cryoprotectant-free media. Viability over 24 hours was lower in concentrations of cryoprotectant higher than 10%. Live cells were recovered following cryopreservation of both gastrula and neurula cells, but only at low rates. Optimal cryodiluents were identified for gastrula and neurula cells. This is the first report of a slow cooling protocol for cryopreservation of amphibian embryonic cells, and sets future research directions for cryopreserving amphibian maternal germ lines.  相似文献   

6.
Mammalian cells form a very important part of the repertoire of production systems available to scientists involved in the production of recombinant proteins. During the production of therapeutic proteins it is vital for regulatory approval of products that no phenotypic or genetic changes are observed in the cell line or product. As part of the generation and development of therapeutic protein production, cell lines have to be frozen at various stages to create cell banks. If cryopreservation and revival of frozen stocks were to give rise to any phenotypic changes in the cells, this would again be detrimental to the further development of that particular cell line. This study uses one of the most industrially important expression systems, the GS-NS0 expression system, to examine the effect of cryopreservation on the growth and productivity profile of cell lines that exhibit differential degrees of stability during prolonged (production) culture periods. Results show that cryopreservation and revival procedures do not alter the stability characteristics of cell lines. This type of information is of great value in definition of protocols for cell line development.  相似文献   

7.
Cryopreservation methods for poultry semen are not reliable for germplasm preservation, especially for turkeys, where fertility rates from frozen/thawed semen are particularly low. The objective was to evaluate cryopreservation methods for effectiveness in promoting cryosurvival and post-thaw function of sperm from five turkey lines: one commercial line and four research (RBC1; E; RBC2; F) lines from Ohio State University (OSU). The model for cryopreservation was set up as a 2 × 2 × 2 × 5 design for cryoprotectant (glycerol or dimethylacetamide (DMA)), cryopreservation medium (Lake or ASG), method of dilution (fixed dilution volume versus fixed sperm concentration) and turkey line, respectively. The final cryoprotectant concentrations were 11% glycerol or 6% DMA. Thawed sperm were evaluated for plasma membrane integrity and quality, motility, acrosome integrity and, after artificial insemination, for egg fertility and hatchability. Commercial turkey hens were used for all fertility trials, regardless of semen source. Turkey sperm frozen with glycerol exhibited higher membrane integrity and membrane quality upon thawing than turkey sperm frozen with DMA although no differences in total motility, and only minimal differences in progressive motility, were detected among the eight cryopreservation treatments. Within line, fertility was affected by cryoprotectant, medium and dilution method, where the overall highest percentages of fertile, viable embryos (Day 7) occurred for the DMA/ASG/fixed sperm concentration method, while high percentages (15.8–31.5%) of fertile, non-viable embryos (Day 1–6) were observed for multiple cryopreservation methods, including two glycerol treatments. From a single insemination, the duration of true and viable fertility in all lines was 10–13 weeks and 9–10 weeks, respectively. The duration of hatchability was 4–6 weeks after insemination for four of the turkey lines. The highest percentage of viable embryos was observed for the commercial line (9.5 ± 2.4%), followed by the E line (5.3 ± 1.3%), F line (3.7 ± 2.0%) and RBC2 line (2.6 ± 0.8%). For the RBC1 line, there was 100% embryonic death by Day 6 of incubation. Overall, better fertility results were obtained with the cryoprotectant DMA, the ASG diluent and fixed sperm concentration. However, the applicability of this method for preserving semen from research populations may be line dependent.  相似文献   

8.
9.
This work reports on the cryopreservation of embryogenic cultures of avocado (Persea americana Mill.). Three cryopreservation protocols, based either on slow cooling or vitrification, were tested using two cell lines representative for the two types of embryogenic cultures that can be obtained in this species. Significant interactions between the embryogenic line and the cryopreservation protocol were observed. The best results were obtained when applying the droplet-vitrification method with recovery rates ranging from 77.78 to 100 %. The slow freezing method gave rise to different results depending on the cell line. While 80 % recovery was recorded in line D1, low recovery levels (33.33 %) were achieved in samples from line D31. The effect of different PVS2 incubation times was also evaluated and 60 min was considered as the optimum period. The developmental stage of starting material proved to be a key factor. Explant consisting of a mixture of embryogenic calli and somatic embryos at early stages resulted in the highest recovery rates after thawing.  相似文献   

10.
Cryopreservation of mouse sperm provides an economic option for preserving the large number of mouse strains now being generated by transgenic and targeted mutation methodologies. The ability of a spermatozoan cell to survive cryobiological preservation depends on general biophysical constraints that apply to all cells, such as the avoidance or minimization of the formation of intracellular ice during cooling. This action is typically achieved by use of cryoprotectant substances and by controlled, slow rates of cooling. Superimposed on those general constraints may be special characteristics of mouse spermatozoa, such as more narrow, osmotically driven volume tolerance limits and the fact that relatively successful freezing can be obtained without the use of a permeating cryoprotective agent. The lack of important information regarding sperm cells fundamental cryobiological properties, including their osmotic and membrane permeability characteristics, has hindered progress in developing anything but empirically derived methods. Genetic differences between inbred mouse strains are reflected in motility and fertility characteristics of mouse sperm and contribute to the difficulty of developing successful cryopreservation methods. Recovery of live young from frozen sperm has been much more successful with sperm from hybrid mice than from most inbred strains. There have been no published reports of successful cryopreservation of rat sperm. Nevertheless, in mice, success in deriving live young from intracytoplasmic sperm injection using sperm frozen under suboptimal conditions raises the possibility of using this technique for the ultimate rescue of sperm regardless of the success of cryopreservation. This technique, however, requires additional development and verification of its efficacy before it will be suitable for general laboratory use. Although cryopreservation of mouse sperm is not yet universally successful, it can be used reliably to supplement cryopreservation of embryos and other germline cells or tissues for preserving biomedically important strains of mice for research.  相似文献   

11.
Morris JP  Berghmans S  Zahrieh D  Neuberg DS  Kanki JP  Look AT 《BioTechniques》2003,35(5):956-8, 960, 962 passim
High fecundity, rapid generation time, and external development of optically clear embryos make the zebrafish (Danio rerio) a convenient vertebrate model for genetic, developmental, and disease studies. Efficient sperm cryopreservation enhances the zebrafish model system by optimizing productive use of facility space, extending the reproductive lifetime of males, providing an alternative to live stocks for strain recovery, and ensuring the survival of valuable mutant lines. Here we identify a cryoprotective medium, 10% N,N-dimethylacetamide (DMA) (v/v) diluted in buffered sperm motility-inhibiting solution (BSMIS), as well as parameters for zebrafish sperm cryopreservation that enhance cryopreservation efficiency and significantly increase the yield of live embryos from archived stocks. Our experiments emphasize the effect of the ratio of sperm and medium volume and the use of large egg clutches to maximize the recovery of viable embryos.  相似文献   

12.
The purpose of this study was to develop effective strategies for cooling and cryopreservation of immature porcine testis tissue that maintain its developmental potential. Testes from 1-wk-old piglets (Sus domestica) were subjected to 1 of 12 cooling/cryopreservation protocols: as intact testes, cooling at 4 °C for 24, 48, or 72 h (Experiment 1); as fragments, programmed slow-freezing with dimethyl sulfoxide (DMSO), glycerol, or ethylene glycol (Experiment 2); or solid-surface vitrification using DMSO, glycerol, or ethylene glycol, each using 5-, 15-, or 30-min cryoprotectant exposure times (Experiment 3). For testis tissue xenografting, four immunodeficient recipient mice were assigned to each protocol, and each mouse received eight grafts. Recipient mice were killed 16 wk after grafting to assess the status of graft development. Based on morphology and in vitro assessment of cell viability, cooling of testis tissue for up to 72 h maintained structural integrity, cell viability, in vivo growth, and developmental potential up to complete spermatogenesis comparable with that of fresh tissue (control). In frozen-thawed testis tissues, higher numbers of viable cells were present after programmed slow-freezing using glycerol compared with that after DMSO or ethylene glycol (P < 0.001). Among the vitrified groups, exposure to DMSO for 5 min yielded numerically higher viable cell numbers than that of other groups. Cryopreserved tissue fragments recovered after xenografting had normal spermatogenesis; germ cells advanced to round and elongated spermatids after programmed slow-freezing using glycerol, as well as after vitrification using glycerol with 5- or 15-min exposures, or using DMSO for a 5-min exposure.  相似文献   

13.
Liu LJ  Xie XY  Zhang RZ  Xu P  Bujard H  Jun M 《Lab animal》2008,37(8):353-357
Ovary cryopreservation and subsequent transplantation can enable researchers to preserve valuable transgenic animal strains. Some studies have indicated, however, that this process may impair ovary viability and recipient fertility. The authors investigated the effects of ovary vitrification followed by orthotopic transplantation in five strains of mice. They grafted fresh and frozen ovaries of 10-d-old mice into 4-week-old ovariectomized recipients. In addition to using wild-type strains (BALB/cAn and ICR/JCL), the authors used a transgene system that enabled them to identify whether offspring derived from the ovary of the recipient or that of the donor: they transplanted ovaries from one transgenic strain (LAP/rtTA) into wild-type C57BL/6J mice and into mice from a second transgenic strain (pTet/Cd226). The authors then determined the origin of the offspring born to these recipients using PCR. Ovary cryopreservation seemed to have no effect on the long-term fertility and reproductive characteristics of recipients and their offspring.  相似文献   

14.
Strategies for genetic improvement programs of Pinus pinea L, an important tree species of the Mediterranean ecosystem, are focused on increasing pine nut yield. Somatic embryogenesis and cryopreservation of elite genotypes are emerging as key components of advanced forest breeding programs. This study was carried out with embryogenic lines of different ages obtained from selected half-sib families of the species. The effect of three cryoprotectant procedures on the recovery and maturation ability was tested in embryogenic lines that showed different growth rate, two of them at different ages. In general, cryopreservation drastically reduced growth rates of frozen and rewarmed tissues; however, the use of 5% PEG–sucrose–DMSO dramatically increased growth rates of rewarmed embryogenic cultures. Overall, embryogenic lines of stone pine were suitable for cryopreservation. Seven out of eight lines were recovered, although the initial growth rates were variable. Five of six lines including the three oldest ones were recovered using 5% PEG–sucrose–DMSO. No relation was observed between age and growth rate of embryogenic lines and their response to cryopreservation. The line 2F47 showed the most stable response after long-term subculture and recovery after cryopreservation, at different ages. On the contrary, younger embryogenic lines either recovered after cryopreservation or did not, depending on the applied procedure. Maturation of some of the older lines was restored or enhanced after cryopreservation. Somatic embryos were obtained in three out of five tested embryogenic lines recovered from cryopreservation. However, only a few plantlets from cryopreserved lines were regenerated indicating the process must be optimized further before it is a practical adjunct to breeding.  相似文献   

15.
Despite some 26 published reports addressing oyster sperm cryopreservation, systematic factor optimization is lacking, and sperm cryopreservation has not yet found application in aquaculture on a commercial scale. In this study, the effects of cooling rate, single or combined cryoprotectants at various concentrations, equilibration time (exposure to cryoprotectant), straw size, and cooling method were evaluated for protocol optimization of shipped sperm samples from diploid oysters. Evaluation of cooling rates revealed an optimal rate of 5 degrees C/min to -30 degrees C followed by cooling at 45 degrees C/min to -80 degrees C before plunging into liquid nitrogen. Screening of single or combined cryoprotectants at various concentrations suggested that a low concentration (2%) of polyethylene glycol (FW 200) was effective in retaining post-thaw motility and fertilizing capability when combined with permeating cryoprotetcants such as dimethyl sulfoxide (DMSO), methanol (MeOH), and propylene glycol (P-glycol). However, polyethylene glycol alone was not as effective as MeOH, DMSO, and P-glycol when using the same methods. The highest post-thaw motility (70%) and percent fertilization (98%) were obtained for samples cryopreserved with 6% MeOH. However, this does not exclude other cryoprotectants such as DMSO or P-glycol identified as effective agents in other studies. There was no significant difference in post-thaw motility between straw sizes of 0.25- and 0.5-ml. Equilibration time (exposure to cryoprotectant) of 60 min could be beneficial when the cryoprotectant concentration is low and solution is added in a step-wise fashion at low temperature. Differences in post-thaw sperm quality (e.g., motility or percent fertilization) among individual males were evident in this research. As a consequence, a generalized classification describing males with different tolerances (broad, intermediate, and narrow) to cryopreservation was developed. This classification could be applied to strain or species differences in tolerances to the cryopreservation process. The present study demonstrated that oyster sperm could be collected and shipped chilled to another facility for cryopreservation, and that it could be shipped back to the hatchery for fertilization performed at a production scale yielding live larvae with >90% fertilization. Given the existence of facilities for commercial-scale cryopreservation of dairy bull sperm, the methods developed in the present study for oysters provide a template for the potential commercialization of cryopreserved sperm in aquatic species.  相似文献   

16.
Fundamental cryobiology of mammalian oocytes and ovarian tissue   总被引:21,自引:0,他引:21  
Embryo cryopreservation is a widely used and relatively well-established procedure. By contrast, ovarian tissue and unfertilized oocytes are only rarely cryopreserved, even though for germ line storage these often would be preferable to embryo cryopreservation. There are many reasons for this discrepancy. Unfertilized mature (MII) stage oocytes are more difficult to cryopreserve than cleavage stage embryos of the same species. Many factors contribute to this including the oocyte's surface to volume ratio, single membrane, temperature-sensitive metaphase spindle and zona, and its susceptibility to parthenogenetic activation and chill-injury. A completely different set of problems applies to primordial follicles. Oocytes in primordial follicles are very small and tolerate cryopreservation by slow cooling very well. The problem lies in the difficulty in producing mature oocytes from these primordial follicles. Better and/or more convenient cryopreservation procedures for both oocytes and ovarian tissue are being developed. This paper describes some of the advances in this area and outlines the relative merits and limitations of several currently available egg and ovarian tissue cryopreservation procedures.  相似文献   

17.
Inbred ES lines, though useful for generating targeted mutations in mice, are used infrequently. To appreciate the relative efficiency of inbred ES lines, a C57BL/6 ES line was compared with 129 strain ES lines for effectiveness in chimera formation leading to the establishment of targeted mutations in mice. Data from a transgenic facility spanning 7 years were collected. C57BL/6 ES cells injected into Balb/c embryos results in lower coat color chimerism than do 129 ES cells injected into C57BL/6 embryos. Combined data indicate that five independent targeted C57BL/6 clones should be injected as compared to three independent 129 clones to generate enough chimeras to effectively test for germ-line transmission. Thus, although less efficient than 129 ES lines, the C57BL/6 ES line is a relatively competent line and useful for the routine generation of targeted mutations in mice on a defined genetic background.  相似文献   

18.
In vitro cultivation of the IDE8 cell line, derived from embryonic Ixodes scapularis ticks, constitutes an important system for the study of tick-borne pathogens, as these cells support growth of rickettsial species which are not normally transmitted by this tick. However, since cryopreservation of IDE8 cells is not always successful, there is a need to develop alternative ways to preserve these cells. In the present study, a suspension of IDE8 cells in culture medium was kept under refrigeration at 4°C for up to 60 days. Every 15 days, the suspension was mixed and aliquots were re-cultured in 2-ml tubes, under standardized conditions. In addition, three techniques for cryopreservation, using two different cryoprotectants (DMSO and glycerol), were evaluated. Medium changes were carried out every week and subculturing every 2 weeks. The development of cultures and their respective subcultures, after returning to standard culture temperature, was evaluated by percentage viability and by cellular morphology evaluated in Giemsa-stained cytocentrifuge smears. All cultures and subcultures appeared healthy, showing growth rates comparable to cultures that had not been kept under refrigeration. The results demonstrated that storage under refrigeration at 4°C is an efficient method for preservation of IDE8 cells for up to 60 days and that refrigeration may be preferable to cryopreservation for short-term preservation of IDE8 cells.  相似文献   

19.

Here we evaluated and characterized the growth dynamics of A. angustifolia embryogenic cultures (EC) submitted to different cryotreatment incubation times through morphological and time-lapse cell tracking analyzes. The EC submitted to cryopreservation protocol were evaluated by regrowth rates, and ultrastructural characterization by transmission electron microscopy (TEM). The results indicated that A. angustifolia EC support all the cryoprotection times evaluated, without cell proliferation inhibition, but with noticeable genotype-dependent response in all tested cell lines. The use of 1M DMSO showed non-inhibitory effects to EC regrowth independent of cell line or cryotreatment incubation time. However, after cryopreservation, Cr01 cell line regrowth was 100 % for all cryotreatments incubation times evaluated (30, 60, 120, 240 min), while Cr02 cell line only showed 100 % regrowth in 240 min of cryotreatment. The 100 % cell regrowth obtained in both cell lines indicates that the proposed protocol can be successful applied to A. angustifolia EC cryopreservation. Cell tracking analysis showed a survival and initial proliferation of embryogenic cells, with the first cell regrowth signs after 30 days in culture. TEM analysis revealed a conspicuous cell wall thickening in embryogenic cells after cryotreatment and after thawing, which may be related to osmotic stress response caused by the cryopreservation process. An increased heterochromatin presence was also observed in cryotreated or after thawing cells, may possibly be acting as a cell defense mechanism, decreasing the DNA vulnerability to cleavage and preserving the cell integrity.

  相似文献   

20.
藻类种质的超低温保存技术已受到广泛的重视。目前已对数千种、株的淡水和海水藻类进行过超低温保存。其中,绝大多数藻类是采用两步冰冻法保存。影响藻类存活的主要因素是两步法冰冻保存程序和藻类自身的抗冻性。鉴定存活率是超低温保存技术中的重要环节。由于两步法保存技术的局限性,玻璃化和包埋脱水法等新技术在某些藻类的种质保存中可能有较大的应用潜力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号