首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
2.
Inhibitory receptors mediate CD8 T-cell hyporesponsiveness against cancer and infectious diseases. PD-1 and CTLA-4 have been extensively studied, and blocking antibodies have already shown clinical benefit for cancer patients. Only little is known on extended co-expression of inhibitory receptors and their ligands. Here we analyzed the expression of eight inhibitory receptors by tumor-antigen specific CD8 T-cells. We found that the majority of effector T-cells simultaneously expressed four or more of the inhibitory receptors BTLA, TIM-3, LAG-3, KRLG-1, 2B4, CD160, PD-1 and CTLA-4. There were major differences depending on antigen-specificity, differentiation and anatomical localization of T-cells. On the other hand, naive T-cells were only single or double positive for BTLA and TIM-3. Extended co-expression is likely relevant for effector T-cells, as we found expression of multiple ligands in metastatic lesions of melanoma patients. Together, our data suggest that naive T-cells are primarily regulated by BTLA and TIM-3, whereas effector cells interact via larger numbers of inhibitory receptors. Blocking multiple inhibitory receptors simultaneously or sequentially may improve T-cell based therapies, but further studies are necessary to clarify the role of each receptor-ligand pair.  相似文献   

3.
4.
Journal of Molecular Histology - PD-1, PD-L1, CTLA-4, TIM-3, and LAG-3, crucial immune checkpoint molecules in the tumor microenvironment, identify as key targets for cancer immunotherapy. There is...  相似文献   

5.
B cells have been shown in various animal models to induce immunological tolerance leading to reduced immune responses and protection from autoimmunity. We show that interaction of B cells with naive T cells results in T cell triggering accompanied by the expression of negative costimulatory molecules such as PD-1, CTLA-4, B and T lymphocyte attenuator, and CD5. Following interaction with B cells, T cells were not induced to proliferate, in a process that was dependent on their expression of PD-1 and CTLA-4, but not CD5. In contrast, the T cells became sensitive to Ag-induced cell death. Our results demonstrate that B cells participate in the homeostasis of the immune system by ablation of conventional self-reactive T cells.  相似文献   

6.
T cell activation and function are critically regulated by positive and negative costimulatory molecules. Aberrant expression and function of costimulatory molecules have been associated with persistent activation of self-reactive T cells in autoimmune diseases such as rheumatoid arthritis (RA). In this study, initial analysis of costimulatory molecules led to the unexpected observation that, in addition to CD80, several negative regulators (e.g., CTLA-4, programmed death-1 (PD-1), and PD ligand-1) were overexpressed in synovial T cells and macrophages derived from RA patients as opposed to controls. The expression of CD80 and PD ligand-1 on monocytes could be induced in vitro by IFN-gamma and TNF-alpha that were produced abundantly in RA-derived synovial fluid (SF). Furthermore, the soluble form of negative costimulatory molecules occurred at high concentrations in sera and SF of RA patients and correlated with titers of rheumatoid factor in RA patients. In particular, the levels of soluble PD-1 were found to correlate significantly with those of TNF-alpha in SF derived from RA patients. Detailed characterization of soluble PD-1 revealed that it corresponded to an alternative splice variant (PD-1Deltaex3) and could functionally block the regulatory effect of membrane-bound PD-1 on T cell activation. Our data indicate a novel pathogenic pathway in which overexpression of negative costimulatory molecules to restrict synovial inflammation in RA is overruled by the excessive production of soluble costimulatory molecules.  相似文献   

7.

Background

T-cell exhaustion seems to play a critical role in CD8+ T-cell dysfunction during chronic viral infections. However, up to now little is known about the mechanisms underlying CD4+ T-cell dysfunction during chronic hepatitis B virus (CHB) infection and the role of inhibitory molecules such as programmed death 1 (PD-1) for CD4+ T-cell failure.

Methods

The expression of multiple inhibitory molecules such as PD-1, CTLA-4, TIM-3, CD244, KLRG1 and markers defining the grade of T-cell differentiation as CCR7, CD45RA, CD57 and CD127 were analyzed on virus-specific CD4+ T-cells from peripheral blood using a newly established DRB1*01-restricted MHC class II Tetramer. Effects of in vitro PD-L1/2 blockade were defined by investigating changes in CD4+ T-cell proliferation and cytokine production.

Results

CD4+ T-cell responses during chronic HBV infection was characterized by reduced Tetramer+CD4+ T-cell frequencies, effector memory phenotype, sustained PD-1 but low levels of CTLA-4, TIM-3, KLRG1 and CD244 expression. PD-1 blockade revealed individualized patterns of in vitro responsiveness with partly increased IFN-γ, IL-2 and TNF-α secretion as well as enhanced CD4+ T-cell expansion almost in treated patients with viral control.

Conclusion

HBV-specific CD4+ T-cells are reliably detectable during different courses of HBV infection by MHC class II Tetramer technology. CD4+ T-cell dysfunction during chronic HBV is basically linked to strong PD-1 upregulation but absent coregulation of multiple inhibitory receptors. PD-L1/2 neutralization partly leads to enhanced CD4+ T-cell functionality with heterogeneous patterns of CD4+ T-cell rejunivation.  相似文献   

8.
Peripheral blood T-cells from untreated HIV-1-infected patients exhibit reduced immune responses, usually associated with a hyperactivated/exhausted phenotype compared to HAART treated patients. However, it is not clear whether HAART ameliorates this altered phenotype of T-cells in the gastrointestinal-associated lymphoid tissue (GALT), the main site for viral replication. Here, we compared T-cells from peripheral blood and GALT of two groups of chronically HIV-1-infected patients: untreated patients with active viral replication, and patients on suppressive HAART. We characterized the T-cell phenotype by measuring PD-1, CTLA-4, HLA-DR, CD25, Foxp3 and granzyme A expression by flow cytometry; mRNA expression of T-bet, GATA-3, ROR-γt and Foxp3, and was also evaluated in peripheral blood mononuclear cells and rectal lymphoid cells. In HIV-1+ patients, the frequency of PD-1(+) and CTLA-4(+) T-cells (both CD4+ and CD8+ T cells) was higher in the GALT than in the blood. The expression of PD-1 by T-cells from GALT was higher in HIV-1-infected subjects with active viral replication compared to controls. Moreover, the expression per cell of PD-1 and CTLA-4 in CD4(+) T-cells from blood and GALT was positively correlated with viral load. HAART treatment decreased the expression of CTLA-4 in CD8(+) T cells from blood and GALT to levels similar as those observed in controls. Frequency of Granzyme A(+) CD8(+) T-cells in both tissues was low in the untreated group, compared to controls and HAART-treated patients. Finally, a switch towards Treg polarization was found in untreated patients, in both tissues. Together, these findings suggest that chronic HIV-1 infection results in an activated/exhausted T-cell phenotype, despite T-cell polarization towards a regulatory profile; these alterations are more pronounced in the GALT compared to peripheral blood, and are only partiality modulated by HAART.  相似文献   

9.
10.
11.
《Translational oncology》2020,13(3):100738
The interaction of the host immune system with tumor cells in the tissue microenvironment is essential in understanding tumor immunity and development of successful cancer immunotherapy. The presence of lymphocytes in tumors is highly correlated with an improved outcome. T cells have a set of cell surface receptors termed immune checkpoints that when activated suppress T cell function. Upregulation of immune checkpoint receptors such as programmed cell death 1 (PD-1) and cytotoxic T lymphocyte associated protein 4 (CTLA-4) occurs during T cell activation in an effort to prevent damage from an excessive immune response. Immune checkpoint inhibitors allow the adaptive immune system to respond to tumors more effectively. There has been clinical success in different types of cancer blocking immune checkpoint receptors such as PD-1 and CTLA. However, relapse has occurred. The innate and acquired/therapy induced resistance to treatment has been encountered. Aberrant cellular signal transduction is a major contributing factor to resistance to immunotherapy. Combination therapies with other co-inhibitory immune checkpoints such as TIM-3, LAG3 and VISTA are currently being tested to overcome resistance to cancer immunotherapy. Expression of TIM-3 has been associated with resistance to PD-1 blockade and combined blockade of TIM-3 and PD-1 has demonstrated improved responses in preclinical models. LAG3 blockade has the potential to increase the responsiveness of cytotoxic T-cells to tumors. Furthermore, tumors that were found to express VISTA had an increased rate of growth due to the T cell suppression. The growing understanding of the inhibitory immune checkpoints’ ligand biology, signaling mechanisms, and T-cell suppression in the tumor microenvironment continues to fuel preclinical and clinical advancements in design, testing, and approval of agents that block checkpoint molecules. Our review seeks to bridge fundamental regulatory mechanisms across inhibitory immune checkpoint receptors that are of great importance in resistance to cancer immunotherapy. We will summarize the biology of different checkpoint molecules, highlight the effect of individual checkpoint inhibition as anti-tumor therapies, and outline the literatures that explore mechanisms of resistance to individual checkpoint inhibition pathways.  相似文献   

12.
TGF-beta1 regulation of dendritic cells   总被引:8,自引:0,他引:8  
Dendritic cells (DCs) represent antigen-presenting cell (APC) populations in lymphoid and nonlymphoid organs which are considered to play key roles in the initiation of antigen-specific T-cell proliferation. According to current knowledge, the net outcome of T-cell immune responses seems to be significantly influenced by the activation stage of antigen-presenting DCs. Several studies have shown that transforming growth factor-beta 1 (TGF-beta1) inhibits in vitro activation and maturation of DCs. TGF-beta1 inhibits upregulation of critical T-cell costimulatory molecules on the surface of DCs and reduces the antigen-presenting capacity of DCs. Thus, in addition to direct inhibitory effects of TGF-beta1 on effector T lymphocytes, inhibitory effects of TGF-beta1 at the level of APCs may critically contribute to previously characterized immunosuppressive effects of TGF-beta1. In contrast to these negative regulatory effects of TGF-beta1 on function and maturation of lymphoid tissue type DCs, certain subpopulations of immature DCs in nonlymphoid tissues are positively regulated by TGF-beta1 signaling. In particular, epithelial-associated DC populations seem to critically require TGF-beta1 stimulation for development and function. Recent studies established that TGF-beta1 stimulation is absolutely required for the development of epithelial Langerhans cells (LCs) in vitro and in vivo. Furthermore, TGF-beta1 seems to enhance antigen processing and costimulatory functions of epithelial LCs.  相似文献   

13.
Expression of programmed death 1 ligands by murine T cells and APC   总被引:31,自引:0,他引:31  
Programmed death 1 (PD-1) is a new member of the CD28/CTLA-4 family, which has been implicated in the maintenance of peripheral tolerance. Two ligands for PD-1, namely, B7-H1 (PD-L1) and B7-DC (PD-L2), have recently been identified as new members of the B7 family but their expression at the protein level remains largely unknown. To characterize the expression of B7-H1 and B7-DC, we newly generated an anti-mouse B7-H1 mAb (MIH6) and an anti-mouse B7-DC mAb (TY25). MIH6 and TY25 immunoprecipitated a single molecule of 43 and 42 kDa from the lysate of B7-H1 and B7-DC transfectants, respectively. Flow cytometric analysis revealed that B7-H1 was broadly expressed on the surface of mouse tumor cell lines while the expression of B7-DC was rather restricted. PD-1 was expressed on anti-CD3-stimulated T cells and anti-IgM plus anti-CD40-stimulated B cells at high levels but was undetectable on activated macrophages or DCs. B7-H1 was constitutively expressed on freshly isolated splenic T cells, B cells, macrophages, and dendritic cells (DCs), and up-regulated on T cells by anti-CD3 stimulation on macrophages by LPS, IFN-gamma, GM-CSF, or IL-4, and on DCs by IFN-gamma, GM-CSF, or IL-4. In contrast, B7-DC expression was only inducible on macrophages and DCs upon stimulation with IFN-gamma, GM-CSF, or IL-4. The inducible expression of PD-1 ligands on both T cells and APCs may suggest new paradigms of PD-1-mediated immune regulation.  相似文献   

14.
15.
Dendritic cells (DCs) represent antigen-presenting cell (APC) populations in lymphoid and nonlymphoid organs which are considered to play key roles in the initiation of antigen-specific T-cell proliferation. According to current knowledge, the net outcome of T-cell immune responses seems to be significantly influenced by the activation stage of antigen-presenting DCs. Several studies have shown that transforming growth factor-beta 1 (TGF-β1) inhibits in vitro activation and maturation of DCs. TGF-β1 inhibits upregulation of critical T-cell costimulatory molecules on the surface of DCs and reduces the antigen-presenting capacity of DCs. Thus, in addition to direct inhibitory effects of TGF-β1 on effector T lymphocytes, inhibitory effects of TGF-β1 at the level of APCs may critically contribute to previously characterized immunosuppressive effects of TGF-β1. In contrast to these negative regulatory effects of TGF-β1 on function and maturation of lymphoid tissue type DCs, certain subpopulations of immature DCs in nonlymphoid tissues are positively regulated by TGF-β1 signaling. In particular, epithelial-associated DC populations seem to critically require TGF-β1 stimulation for development and function. Recent studies established that TGF-β1 stimulation is absolutely required for the development of epithelial Langerhans cells (LCs) in vitro and in vivo. Furthermore, TGF-β1 seems to enhance antigen processing and costimulatory functions of epithelial LCs.  相似文献   

16.
Within the ovarian cancer microenvironment, there are several mechanisms that suppress the actions of antitumor immune effectors. Delineating the complex immune microenvironment is an important goal toward developing effective immune-based therapies. A dominant pathway of immune suppression in ovarian cancer involves tumor-associated and dendritic cell (DC)-associated B7-H1. The interaction of B7-H1 with PD-1 on tumor-infiltrating T cells is a widely cited theory of immune suppression involving B7-H1 in ovarian cancer. Recent studies suggest that the B7-H1 ligand, programmed death receptor-1 (PD-1), is also expressed on myeloid cells, complicating interpretations of how B7-H1 regulates DC function in the tumor. In this study, we found that ovarian cancer-infiltrating DCs progressively expressed increased levels of PD-1 over time in addition to B7-H1. These dual-positive PD-1(+) B7-H1(+) DCs have a classical DC phenotype (i.e., CD11c(+)CD11b(+)CD8(-)), but are immature, suppressive, and respond poorly to danger signals. Accumulation of PD-1(+)B7-H1(+) DCs in the tumor was associated with suppression of T cell activity and decreased infiltrating T cells in advancing tumors. T cell suppressor function of these DCs appeared to be mediated by T cell-associated PD-1. In contrast, ligation of PD-1 expressed on the tumor-associated DCs suppressed NF-κB activation, release of immune regulatory cytokines, and upregulation of costimulatory molecules. PD-1 blockade in mice bearing ovarian cancer substantially reduced tumor burden and increased effector Ag-specific T cell responses. Our results reveal a novel role of tumor infiltrating PD-1(+)B7-H1(+) DCs in mediating immune suppression in ovarian cancer.  相似文献   

17.
Immune responses are initiated in the T-cell areas of secondary lymphoid organs where na?ve T lymphocytes encounter dendritic cells (DCs) that present antigens taken up in peripheral tissues. DCs represent the interface between the universe of foreign and tissue-specific antigens and T lymphocytes, and they are the key players in the regulation of cell-mediated immunity. We discuss how the nature of the DC maturation stimuli and the density and quality of DCs present in the T-cell areas of secondary lymphoid organs determine the magnitude and class of the T-cell response.  相似文献   

18.
Expression of co-inhibitory molecules is generally associated with T-cell dysfunction in chronic viral infections such as HIV or HCV. However, their relative contribution in the T-cell impairment remains unclear. In the present study, we have evaluated the impact of the expression of co-inhibitory molecules such as 2B4, PD-1 and CD160 on the functions of CD8 T-cells specific to influenza, EBV and CMV. We show that CD8 T-cell populations expressing CD160, but not PD-1, had reduced proliferation capacity and perforin expression, thus indicating that the functional impairment in CD160+ CD8 T cells may be independent of PD-1 expression. The blockade of CD160/CD160-ligand interaction restored CD8 T-cell proliferation capacity, and the extent of restoration directly correlated with the ex vivo proportion of CD160+ CD8 T cells suggesting that CD160 negatively regulates TCR-mediated signaling. Furthermore, CD160 expression was not up-regulated upon T-cell activation or proliferation as compared to PD-1. Taken together, these results provide evidence that CD160-associated CD8 T-cell functional impairment is independent of PD-1 expression.  相似文献   

19.
Lymphocyte Activation Gene – 3 (LAG-3) is an immune checkpoint molecule that regulates both T-cell activation and homeostasis. However, the molecular mechanisms underlying LAG-3’s function are generally unknown. Using a model in which LAG-3 blockade or absence reliably augmented homeostatic proliferation in vivo, we found that IL-2 and STAT5 are critical for LAG-3 function. Similarly, LAG-3 blockade was ineffective in the absence of regulatory T-cells (Treg), suggesting an important role for LAG-3 in either the responsiveness of conventional T-cells (Tconv) to regulation, or a relative defect in the ability of LAG-3 KO regulatory T-cells (Treg) to suppress the proliferation of Tconv. In this model, LAG-3 KO Treg suppressed proliferation in a manner fairly similar to wild-type (WT) Treg, but LAG-3 KO Tconv were relatively resistant to suppression. Further studies also identified a role for LAG-3 in the induction/expansion of Treg. Finally, we found that LAG-3 blockade (or knockout) led to a relative skewing of naïve CD4 T-cells toward a TH1 phenotype both in vitro and in in vivo. Together, these data suggest that LAG-3 expression on Tconv cells makes them more susceptible to Treg based suppression, and also regulates the development of a TH1 T-cell response.  相似文献   

20.
Early during infection, CMV targets dendritic cells (DC) and alters their functions. Herein we show that CMV-infected DC maintain the ability to present both virus-derived and exogenous Ags, but that they actively induce tolerance or anergy in Ag-specific T cells. CMV accomplishes this by selectively maintaining high-level expression of the negative costimulatory molecule programmed death ligand-1 (PD-L1), while commensurately down-regulating positive costimulatory molecules and MHC on the DC surface. Consequently, CD4 and CD8 T cells activated by these infected DC have a stunted phenotype, characterized by poor proliferation, effector function. and recall responses. Blocking PD-L1, but not PD-L2, during direct priming of naive T cells by infected DC significantly restores Ag-specific T cell functions. Using systems where direct and cross-priming of T cells can be distinguished revealed that PD-L1/PD-1 signaling contributes only when naive T cells are primed directly by infected DC, and not upon cross-presentation of viral Ags by uninfected DC. These data suggest that murine CMV programs infected DC during acute infection to inhibit early host adaptive antiviral responses by tipping the balance between negative and positive cosignals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号