首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hepatic expression profiling has revealed miRNA changes in liver diseases, while hepatic miR-155 expression was increased in murine non-alcoholic fatty liver disease, suggesting that miR-155 might regulate the biological process of lipid metabolism. To illustrate the effects of miR-155 gain of function in transgenic mouse liver on lipid metabolism, transgenic mice (i.e., Rm155LG mice) for the conditional overexpression of mouse miR-155 transgene mediated by Cre/lox P system were firstly generated around the world in this study. Rm155LG mice were further crossed to Alb-Cre mice to realize the liver-specific overexpression of miR-155 transgene in Rm155LG/Alb-Cre double transgenic mice which showed the unaltered body weight, liver weight, epididymal fat pad weight and gross morphology and appearance of liver. Furthermore, liver-specific overexpression of miR-155 transgene resulted in significantly reduced levels of serum total cholesterol, triglycerides (TG) and high-density lipoprotein (HDL), as well as remarkably decreased contents of hepatic lipid, TG, HDL and free fatty acid in Rm155LG/Alb-Cre transgenic mice. More importantly, microarray data revealed a general downward trend in the expression profile of hepatic genes with functions typically associated with fatty acid, cholesterol and triglyceride metabolism, which is likely at least partially responsible for serum cholesterol and triglyceride lowering observed in Rm155LG/Alb-Cre mice. In this study, we demonstrated that hepatic overexpression of miR-155 alleviated nonalcoholic fatty liver induced by a high-fat diet. Additionally, carboxylesterase 3/triacylglycerol hydrolase (Ces3/TGH) was identified as a direct miR-155 target gene that is potentially responsible for the partial liver phenotypes observed in Rm155LG/Alb-Cre mice. Taken together, these data from miR-155 gain of function study suggest, for what we believe is the first time, the altered lipid metabolism and provide new insights into the metabolic state of the liver in Rm155LG/Alb-Cre mice.  相似文献   

2.
3.
Nonalcoholic fatty liver disease (NAFLD) is associated with insulin resistance, oxidative stress, and obesity. The db/db mouse model displays increased levels of insulin resistance, obesity, and an over-accumulation of hepatic triglycerides, making it an excellent model for studying NAFLD. In db/db mice, intra-bone marrow-bone marrow transplantation plus thymus transplantation (IBM-BMT+TT) improves type 2 diabetes mellitus (T2 DM) by normalizing the T-cell imbalance. We hypothesized that this approach would improve Sirt1 expression in the liver and benefit liver development.The db/db mice were treated with IBM-BMT+TT, and plasma MCP-1, IL-6, adiponection, LDL, Sirt1, and HO-1 levels were then assessed. Stem cell transplantation decreased the levels of plasma inflammatory cytokines and LDL while it increased the expression of Sirt1 and HO-1, resulting in decreased progression of fatty liver. Moreover, Sirt1 and HO-1 expression were both detected in the thymus and many HO-1-positive cells were observed in the bone marrow.This is the first report of stem cell transplantation improving the antioxidant function in the liver, thymus, and bone marrow of db/db mice by increasing the levels of Sirt1 and HO-1. This approach may prove useful in the treatment of nonalcoholic steatohepatitis and its clinical manifestations.  相似文献   

4.
5.
Sirtuins are a family of protein deacetylases, deacylases, and ADP-ribosyltransferases that regulate life span, control the onset of numerous age-associated diseases, and mediate metabolic homeostasis. We have uncovered a novel role for the mitochondrial sirtuin SIRT4 in the regulation of hepatic lipid metabolism during changes in nutrient availability. We show that SIRT4 levels decrease in the liver during fasting and that SIRT4 null mice display increased expression of hepatic peroxisome proliferator-activated receptor α (PPARα) target genes associated with fatty acid catabolism. Accordingly, primary hepatocytes from SIRT4 knockout (KO) mice exhibit higher rates of fatty acid oxidation than wild-type hepatocytes, and SIRT4 overexpression decreases fatty acid oxidation rates. The enhanced fatty acid oxidation observed in SIRT4 KO hepatocytes requires functional SIRT1, demonstrating a clear cross talk between mitochondrial and nuclear sirtuins. Thus, SIRT4 is a new component of mitochondrial signaling in the liver and functions as an important regulator of lipid metabolism.  相似文献   

6.
Alcoholic fatty liver is associated with inhibition of sirtuin 1 (SIRT1) and AMP-activated kinase (AMPK), two critical signaling molecules regulating the pathways of hepatic lipid metabolism in animals. Resveratrol, a dietary polyphenol, has been identified as a potent activator for both SIRT1 and AMPK. In the present study, we have carried out in vivo animal experiments that test the ability of resveratrol to reverse the inhibitory effects of chronic ethanol feeding on hepatic SIRT1-AMPK signaling system and to prevent the development of alcoholic liver steatosis. Resveratrol treatment increased SIRT1 expression levels and stimulated AMPK activity in livers of ethanol-fed mice. The resveratrol-mediated increase in activities of SIRT1 and AMPK was associated with suppression of sterol regulatory element binding protein 1 (SREBP-1) and activation of peroxisome proliferator-activated receptor gamma coactivator alpha (PGC-1alpha). In parallel, in ethanol-fed mice, resveratrol administration markedly increased circulating adiponectin levels and enhanced mRNA expression of hepatic adiponectin receptors (AdipoR1/R2). In conclusion, resveratrol treatment led to reduced lipid synthesis and increased rates of fatty acid oxidation and prevented alcoholic liver steatosis. The protective action of resveratrol is in whole or in part mediated through the upregulation of a SIRT1-AMPK signaling system in the livers of ethanol-fed mice. Our study suggests that resveratrol may serve as a promising agent for preventing or treating human alcoholic fatty liver disease.  相似文献   

7.
The human body has a remarkable ability to regulate inflammation, a biophysical response triggered by virus infection and tissue damage. Sirt6 is critical for metabolism and lifespan; however, its role in inflammation is unknown. Here we show that Sirt6-null (Sirt6−/−) mice developed chronic liver inflammation starting at ∼2 months of age, and all animals were affected by 7–8 months of age. Deletion of Sirt6 in T cells or myeloid-derived cells was sufficient to induce liver inflammation and fibrosis, albeit to a lesser degree than that in the global Sirt6−/− mice, suggesting that Sirt6 deficiency in the immune cells is the cause. Consistently, macrophages derived from the bone marrow of Sirt6−/− mice showed increased MCP-1, IL-6, and TNFα expression levels and were hypersensitive to LPS stimulation. Mechanistically, SIRT6 interacts with c-JUN and deacetylates histone H3 lysine 9 (H3K9) at the promoter of proinflammatory genes whose expression involves the c-JUN signaling pathway. Sirt6-deficient macrophages displayed hyperacetylation of H3K9 and increased occupancy of c-JUN in the promoter of these genes, leading to their elevated expression. These data suggest that Sirt6 plays an anti-inflammatory role in mice by inhibiting c-JUN-dependent expression of proinflammatory genes.  相似文献   

8.
9.
Fatty acid oxidation (FAO) dysfunction is one of the important mechanisms of renal fibrosis. Sirtuin 3 (Sirt3) has been confirmed to alleviate acute kidney injury (AKI) by improving mitochondrial function and participate in the regulation of FAO in other disease models. However, it is not clear whether Sirt3 is involved in regulating FAO to improve the prognosis of AKI induced by cisplatin. Here, using a murine model of cisplatin‐induced AKI, we revealed that there were significantly FAO dysfunction and extensive lipid deposition in the mice with AKI. Metabolomics analysis suggested reprogrammed energy metabolism and decreased ATP production. In addition, fatty acid deposition can increase reactive oxygen species (ROS) production and induce apoptosis. Our data suggested that Sirt3 deletion aggravated FAO dysfunction, resulting in increased apoptosis of kidney tissues and aggravated renal injury. The activation of Sirt3 by honokiol could improve FAO and renal function and reduced fatty acid deposition in wide‐type mice, but not Sirt3‐defective mice. We concluded that Sirt3 may regulate FAO by deacetylating liver kinase B1 and activating AMP‐activated protein kinase. Also, the activation of Sirt3 by honokiol increased ATP production as well as reduced ROS and lipid peroxidation through improving mitochondrial function. Collectively, these results provide new evidence that Sirt3 is protective against AKI. Enhancing Sirt3 to improve FAO may be a potential strategy to prevent kidney injury in the future.  相似文献   

10.
Acetylation has recently emerged as an important mechanism for controlling a broad array of proteins mediating cellular adaptation to metabolic fuels. Acetylation is governed, in part, by SIRTs (sirtuins), class III NAD(+)-dependent deacetylases that regulate lipid and glucose metabolism in liver during fasting and aging. However, the role of acetylation or SIRTs in pathogenic hepatic fuel metabolism under nutrient excess is unknown. In the present study, we isolated acetylated proteins from total liver proteome and observed 193 preferentially acetylated proteins in mice fed on an HFD (high-fat diet) compared with controls, including 11 proteins not previously identified in acetylation studies. Exposure to the HFD led to hyperacetylation of proteins involved in gluconeogenesis, mitochondrial oxidative metabolism, methionine metabolism, liver injury and the ER (endoplasmic reticulum) stress response. Livers of mice fed on the HFD had reduced SIRT3 activity, a 3-fold decrease in hepatic NAD(+) levels and increased mitochondrial protein oxidation. In contrast, neither SIRT1 nor histone acetyltransferase activities were altered, implicating SIRT3 as a dominant factor contributing to the observed phenotype. In Sirt3?(/)? mice, exposure to the HFD further increased the acetylation status of liver proteins and reduced the activity of respiratory complexes III and IV. This is the first study to identify acetylation patterns in liver proteins of HFD-fed mice. Our results suggest that SIRT3 is an integral regulator of mitochondrial function and its depletion results in hyperacetylation of critical mitochondrial proteins that protect against hepatic lipotoxicity under conditions of nutrient excess.  相似文献   

11.

Background

Hepatospecific deletion of PTEN results in constitutive activation of Akt and increased lipogenesis. In mice, the addition of a high fat diet (HFD) downregulates lipogenesis. The aim of this study was to determine the effects of a HFD on hepatocellular damage induced by deletion of PTEN.

Methods

12 Week old male flox/flox hepatospecific PTEN mice (PTENf/f) or Alb-Cre controls were fed a HFD composed of 45% fat-derived calories (from corn oil) or a normal chow. Animals were then analyzed for hepatocellular damage, oxidative stress and expression of enzymes involved in fatty acid metabolism.

Results

In the Alb-Cre animals, the addition of a HFD resulted in a significant increase in liver triglycerides and altered REDOX capacity as evidenced by increased GPX activity, decreased GST activity and decreased hepatic concentrations of GSSG. In addition, SCD2, ACLY and FASN were all downregulated by the addition of HFD. Furthermore, expression of PPARα and PPARα-dependent proteins Cyp4a and ACSL1 were upregulated. In the PTENf/f mice, HFD resulted in significant increased in ALT, serum triglycerides and decreased REDOX capacity. Although expression of fatty acid synthetic enzymes was elevated in the chow fed PTENf/f group, the addition of HFD resulted in SCD2, ACLY and FASN downregulation. Compared to the Alb-Cre HFD group, expression of PGC1α, PPARα and its downstream targets ACSL and Cyp4a were upregulated in PTENf/f mice.

Conclusions

These data suggest that during conditions of constitutive Akt activation and increased steatosis, the addition of a HFD enhances hepatocellular damage due to increased CD36 expression and altered REDOX status. In addition, this work indicates HFD-induced hepatocellular damage occurs in part, independently of Akt signaling.  相似文献   

12.
The protein deacetylase SIRT1 has been implicated in the regulation of a large number of cellular processes that are thought to be required for cancer initiation and progression. There are conflicting data that make it unclear whether Sirt1 functions as an oncogene or tumor suppressor. To assess the effect of SIRT1 on the emergence and progression of mammary tumors, we crossed mice that harbor a point mutation that abolishes SIRT1 catalytic activity with mice carrying the polyoma middle T transgene driven by the murine mammary tumor virus promoter (MMTV-PyMT). The absence of SIRT1 catalytic activity neither accelerated nor blocked the formation of tumors and metastases in this model. There was a lag in tumor latency that modestly extended survival in Sirt1 mutant mice that we attribute to a delay in mammary gland development and not to a direct effect of SIRT1 on carcinogenesis. These results are consistent with previous evidence suggesting that Sirt1 is not a tumor promoter or a tumor suppressor.  相似文献   

13.
Lee J  Hong SW  Chae SW  Kim DH  Choi JH  Bae JC  Park SE  Rhee EJ  Park CY  Oh KW  Park SW  Kim SW  Lee WY 《PloS one》2012,7(2):e31394
The effects of exendin-4 on Sirt1 expression as a mechanism of reducing fatty liver have not been previously reported. Therefore, we investigated whether the beneficial effects of exendin-4 treatment on fatty liver are mediated via Sirt1 in high-fat (HF) diet-induced obese C57BL/6J mice and related cell culture models. Exendin-4 treatment decreased body weight, serum free fatty acid (FA), and triglyceride levels in HF-induced obese C57BL/6J mice. Histological analysis showed that exendin-4 reversed HF-induced hepatic accumulation of lipids and inflammation. Exendin-4 treatment increased mRNA and protein expression of Sirt1 and its downstream factor, AMPK, in vivo and also induced genes associated with FA oxidation and glucose metabolism. In addition, a significant increase in the hepatic expression of Lkb1 and Nampt mRNA was observed in exendin-4-treated groups. We also observed increased expression of phospho-Foxo1 and GLUT2, which are involved in hepatic glucose metabolism. In HepG2 and Huh7 cells, mRNA and protein expressions of GLP-1R were increased by exendin-4 treatment in a dose-dependent manner. Exendin-4 enhanced protein expression of Sirt1 and phospho-AMPKα in HepG2 cells treated with 0.4 mM palmitic acid. We also found that Sirt1 was an upstream regulator of AMPK in hepatocytes. A novel finding of this study was the observation that expression of GLP-1R is proportional to exendin-4 concentration and exendin-4 could attenuate fatty liver through activation of Sirt1.  相似文献   

14.
Ethanol-mediated inhibition of hepatic sirtuin 1 (SIRT1) plays a crucial role in the pathogenesis of alcoholic fatty liver disease. Here, we investigated the underlying mechanisms of this inhibition by identifying a new hepatic target of ethanol action, microRNA-217 (miR-217). The role of miR-217 in the regulation of the effects of ethanol was investigated in cultured mouse AML-12 hepatocytes and in the livers of chronically ethanol-fed mice. In AML-12 hepatocytes and in mouse livers, chronic ethanol exposure drastically and specifically induced miR-217 levels and caused excess fat accumulation. Further studies revealed that overexpression of miR-217 in AML-12 cells promoted ethanol-mediated impairments of SIRT1 and SIRT1-regulated genes encoding lipogenic or fatty acid oxidation enzymes. More importantly, miR-217 impairs functions of lipin-1, a vital lipid regulator, in hepatocytes. Taken together, our novel findings suggest that miR-217 is a specific target of ethanol action in the liver and may present as a potential therapeutic target for treating human alcoholic fatty liver disease.  相似文献   

15.
The NAD+-dependent deacetylase SIRT1, which is associated with the improvement of metabolic syndromes, such as type 2 diabetes, is a well-known longevity-related gene. Several in vitro and in vivo studies have shown the known protective effects of SIRT1 activators, such as resveratrol and SRT1720, on diabetes- or obesity-induced fatty liver and insulin resistance. Here, we newly synthesized 18 benzoxazole hydrochloride derivatives based on the structure of resveratrol and SRT1720. We performed an in vitro SIRT1 activity assay to identify the strongest SIRT1 activator. The assay confirmed MHY2233 to be the strongest SIRT1 activator (1.5-fold more potent than resveratrol), and docking simulation showed that the binding affinity of MHY2233 was higher than that of resveratrol and SRT1720. To investigate its beneficial effects, db/db mice were orally administered MHY2233 for 1?month, and various metabolic parameters were assessed in the serum and liver tissues. MHY2233 markedly ameliorated insulin signaling without affecting body weight in db/db mice. In particular, the mRNA expression of lipogenic genes, such as acetyl CoA carboxylase, fatty acid synthase, and sterol regulatory element-binding protein, which increased in db/db mice, decreased following oral treatment with MHY2233.In conclusion, the novel SIRT1 activator MHY2233 reduced lipid accumulation and improved insulin resistance. This finding may contribute toward therapeutic approaches for fatty liver disease and glucose tolerance.  相似文献   

16.
Chronic alcohol consumption is associated with fatty liver disease in mammals. The object of this study was to gain an understanding of dysregulated lipid metabolism in alcohol-fed C57BL/6 mice using a targeted lipidomic approach. Liquid chromatography tandem mass spectrometry was used to analyze several lipid classes, including free fatty acids, fatty acyl-CoAs, fatty acid ethyl esters, sphingolipids, ceramides, and endocannabinoids, in plasma and liver samples from control and alcohol-fed mice. The interpretation of lipidomic data was augmented by gene expression analyses for important metabolic enzymes in the lipid pathways studied. Alcohol feeding was associated with i) increased hepatic free fatty acid levels and decreased fatty acyl-CoA levels associated with decreased mitochondrial fatty acid oxidation and decreased fatty acyl-CoA synthesis, respectively; ii) increased hepatic ceramide levels associated with higher levels of the precursor molecules sphingosine and sphinganine; and iii) increased hepatic levels of the endocannabinoid anandamide associated with decreased expression of its catabolic enzyme fatty acid amide hydrolase. The unique combination of lipidomic and gene expression analyses allows for a better mechanistic understanding of dysregulated lipid metabolism in the development of alcoholic fatty liver disease.  相似文献   

17.
Pulmonary fibrosis is a chronic and serious interstitial lung disease with little effective therapies currently. Our incomplete understanding of its pathogenesis remains obstacles in therapeutic developments. Sirtuin 6 (SIRT6) has been shown to mitigate multiple organic fibrosis. However, the involvement of SIRT6-mediated metabolic regulation in pulmonary fibrosis remains unclear. Here, we demonstrated that SIRT6 was predominantly expressed in alveolar epithelial cells in human lung tissues by using a single-cell sequencing database. We showed that SIRT6 protected against bleomycin-induced injury of alveolar epithelial cells in vitro and pulmonary fibrosis of mice in vivo. High-throughput sequencing revealed enriched lipid catabolism in Sirt6 overexpressed lung tissues. Mechanismly, SIRT6 ameliorates bleomycin-induced ectopic lipotoxicity by enhancing lipid degradation, thereby increasing the energy supply and reducing the levels of lipid peroxides. Furthermore, we found that peroxisome proliferator-activated receptor α (PPARα) was essential for SIRT6-mediated lipid catabolism, anti-inflammatory responses, and antifibrotic signaling. Our data suggest that targeting SIRT6-PPARα-mediated lipid catabolism could be a potential therapeutic strategy for diseases complicated with pulmonary fibrosis.  相似文献   

18.
19.
Resveratrol may protect against metabolic disease through activating SIRT1 deacetylase. Because we have recently defined AMPK activation as a key mechanism for the beneficial effects of polyphenols on hepatic lipid accumulation, hyperlipidemia, and atherosclerosis in type 1 diabetic mice, we hypothesize that polyphenol-activated SIRT1 acts upstream of AMPK signaling and hepatocellular lipid metabolism. Here we show that polyphenols, including resveratrol and the synthetic polyphenol S17834, increase SIRT1 deacetylase activity, LKB1 phosphorylation at Ser(428), and AMPK activity. Polyphenols substantially prevent the impairment in phosphorylation of AMPK and its downstream target, ACC (acetyl-CoA carboxylase), elevation in expression of FAS (fatty acid synthase), and lipid accumulation in human HepG2 hepatocytes exposed to high glucose. These effects of polyphenols are largely abolished by pharmacological and genetic inhibition of SIRT1, suggesting that the stimulation of AMPK and lipid-lowering effect of polyphenols depend on SIRT1 activity. Furthermore, adenoviral overexpression of SIRT1 stimulates the basal AMPK signaling in HepG2 cells and in the mouse liver. AMPK activation by SIRT1 also protects against FAS induction and lipid accumulation caused by high glucose. Moreover, LKB1, but not CaMKKbeta, is required for activation of AMPK by polyphenols and SIRT1. These findings suggest that SIRT1 functions as a novel upstream regulator for LKB1/AMPK signaling and plays an essential role in the regulation of hepatocyte lipid metabolism. Targeting SIRT1/LKB1/AMPK signaling by polyphenols may have potential therapeutic implications for dyslipidemia and accelerated atherosclerosis in diabetes and age-related diseases.  相似文献   

20.
Methionine and choline-deficient diet (MCD)-induced fatty liver is one of the best-studied animal models of fatty liver disease. The present study was performed to clarify the relative contributions of individual lipid metabolic pathways to the pathogenesis of MCD-induced fatty liver. Hepatic lipogenesis mediated by the sterol regulatory element-binding protein (SREBP-1c) was increased at 1 week, but not at 6 weeks, of MCD feeding. On the other hand, 14C-palmitate oxidation did not change at 1 week, but significantly decreased at 6 weeks. This decrease was associated with increased expression of fatty acid translocase, a key enzyme involved in fatty acid uptake. Expression of endoplasmic reticulum stress markers was increased in mice given MCD for both 1 and 6 weeks. These findings suggest the presence of time-dependent differences in lipid metabolism in MCD-induced fatty liver disease: SREBP-1c-mediated lipogenesis is important in the early stages of fatty liver disease, whereas increased fatty acid uptake and decreased fatty acid oxidation become more important in the later stages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号