首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fat-specific protein (FSP)27/Cidec is most highly expressed in white and brown adipose tissues and increases in abundance by over 50-fold during adipogenesis. However, its function in adipocytes has remained elusive since its discovery over 15 years ago. Here we demonstrate that FSP27/Cidec localizes to lipid droplets in cultured adipocytes and functions to promote lipid accumulation. Ectopically expressed FSP27-GFP surrounds lipid droplets in 3T3-L1 adipocytes and colocalizes with the known lipid droplet protein perilipin. Immunostaining of endogenous FSP27 in 3T3-L1 adipocytes also confirmed its presence on lipid droplets. FSP27-GFP expression also markedly increases lipid droplet size and enhances accumulation of total neutral lipids in 3T3-L1 preadipocytes as well as other cell types such as COS cells. Conversely, RNA interference-based FSP27/Cidec depletion in mature adipocytes significantly stimulates lipolysis and reduces the size of lipid droplets. These data reveal FSP27/Cidec as a novel adipocyte lipid droplet protein that negatively regulates lipolysis and promotes triglyceride accumulation.  相似文献   

2.
3.

Introduction

Hypoxia regulates adipocyte metabolism. Hexosamine biosynthesis is implicated in murine 3T3L1 adipocyte differentiation and is a possible underlying mechanism for hypoxia’s effects on adipocyte metabolism.

Methods

Lipid metabolism was studied in human visceral and subcutaneous adipocytes in in vitro hypoxic culture with adipophilic staining, glycerol release, and palmitate oxidation assays. Gene expression and hexosamine biosynthesis activation was studied with QRTPCR, immunofluorescence microscopy, and Western blotting.

Results

Hypoxia inhibits lipogenesis and induces basal lipolysis in visceral and subcutaneous human adipocytes. Hypoxia induces fatty acid oxidation in visceral adipocytes but had no effect on fatty acid oxidation in subcutaneous adipocytes. Hypoxia inhibits hexosamine biosynthesis in adipocytes. Inhibition of hexosamine biosynthesis with azaserine attenuates lipogenesis and induces lipolysis in adipocytes in normoxic conditions, while promotion of hexosamine biosynthesis with glucosamine in hypoxic conditions slightly increases lipogenesis.

Conclusions

Hypoxia’s net effect on human adipocyte lipid metabolism would be expected to impair adipocyte buffering capacity and contribute to systemic lipotoxicity. Our data suggest that hypoxia may mediate its effects on lipogenesis and lipolysis through inhibition of hexosamine biosynthesis. Hexosamine biosynthesis represents a target for manipulation of adipocyte metabolism.  相似文献   

4.

Background

Polychlorinated biphenyls (PCBs) are persistent environmental pollutants that preferentially accumulate in lipid-rich tissues of contaminated organisms. Although the adipose tissue constitutes a major intern reservoir of PCBs and recent epidemiological studies associate PCBs to the development of obesity and its related disorders, little is known about the mechanisms involved in their uptake by the adipose tissue and their intracellular localization in fat cells.

Methodology/Principal Findings

We have examined the intracellular distribution of PCBs in mouse cultured adipocytes and tested the potential involvement of caveolin-1, an abundant adipocyte membrane protein, in the uptake of these compounds by fat cells. We show that 2,4,4′-trichlorobiphenyl (PCB-28), 2,3′,4,4′,5-pentachlorobiphenyl (PCB-118) and 2,2′,4,4′,5,5′-hexachlorobiphenyl (PCB-153) congeners rapidly and extensively accumulate in 3T3-L1 or mouse embryonic fibroblast (MEF) derived cultured adipocytes. The dynamics of accumulation differed between the 3 congeners tested. By subcellular fractionation of primary adipocytes, we demonstrate that these pollutants were almost exclusively recovered within the lipid droplet fraction and practically not associated to cell membranes. The absence of caveolin-1 expression in primary adipocytes from cav-1 deficient mice did not modify lipid droplet selective targeting of PCBs. In cav-1 KO MEF differentiated adipocytes, PCB accumulation was decreased, which correlated with reduced cell triglyceride content. Conversely, adenoviral mediated cav-1 overexpressing in 3T3-L1 cells, which had no impact on total cell lipid content, did not change PCB accumulation.

Conclusion/Significance

Our data indicate that caveolin-1 per se is not required for selective PCB accumulation, but rather point out a primary dependence on adipocyte triglyceride content. If the crucial role of lipid droplets in energy homeostasis is considered, the almost exclusive accumulation of PCBs in these organelles warrants future attention as the impairment of their function could be linked to the worldwide obesity epidemic.  相似文献   

5.

Background

Adiponectin-transgenic mice had many small adipocytes in both subcutaneous and visceral adipose tissues, and showed higher sensitivity to insulin, longer life span, and reduced chronic inflammation. We hypothesized that adiponectin regulates Wnt signaling in adipocytes and thereby modulates adipocyte proliferation and chronic inflammation in adipose tissue.

Materials and Methods

We examined the expression of all Wnt ligands and their receptors and the activity of Wnt signaling pathways in visceral adipose tissue from wild-type mice and two lines of adiponectin-transgenic mice. The effects of adiponectin were also investigated in cultured 3T3-L1 cells.

Results

The Wnt5b, Wnt6, Frizzled 6 (Fzd6), and Fzd9 genes were up-regulated in both lines of transgenic mice, whereas Wnt1, Wnt2, Wnt5a, Wnt9b, Wnt10b, Wnt11, Fzd1, Fzd2, Fzd4, Fzd7, and the Fzd coreceptor low-density-lipoprotein receptor-related protein 6 (Lrp6) were reduced. There was no difference in total β-catenin levels in whole-cell extracts, non-phospho-β-catenin levels in nuclear extracts, or mRNA levels of β-catenin target genes, indicating that hyperadiponectinemia did not affect canonical Wnt signaling. In contrast, phosphorylated calcium/calmodulin-dependent kinase II (p-CaMKII) and phosphorylated Jun N-terminal kinase (p-JNK) were markedly reduced in adipose tissue from the transgenic mice. The adipose tissue of the transgenic mice consisted of many small cells and had increased expression of adiponectin, whereas cyclooxygenase-2 expression was reduced. Wnt5b expression was elevated in preadipocytes of the transgenic mice and decreased in diet-induced obese mice, suggesting a role in adipocyte differentiation. Some Wnt genes, Fzd genes, and p-CaMKII protein were down-regulated in 3T3-L1 cells cultured with a high concentration of adiponectin.

Conclusion

Chronic hyperadiponectinemia selectively modulated the expression of Wnt ligands, Fzd receptors and LRP coreceptors accompanied by the inhibition of the Wnt/Ca2+ and JNK signaling pathways, which may be involved in the altered adipocyte cellularity, endogenous adiponectin production, and anti-inflammatory action induced by hyperadiponectinemia.  相似文献   

6.
7.
Obesity and related metabolic disorders constitute one of the most pressing heath concerns worldwide. Increased adiposity is linked to autophagy upregulation in adipose tissues. However, it is unknown how autophagy is upregulated and contributes to aberrant adiposity. Here we show a FoxO1-autophagy-FSP27 axis that regulates adipogenesis and lipid droplet (LD) growth in adipocytes. Adipocyte differentiation was associated with upregulation of autophagy and fat specific protein 27 (FSP27), a key regulator of adipocyte maturation and expansion by promoting LD formation and growth. However, FoxO1 specific inhibitor AS1842856 potently suppressed autophagy, FSP27 expression, and adipocyte differentiation. In terminally differentiated adipocytes, AS1842856 significantly reduced FSP27 level and LD size, which was recapitulated by autophagy inhibitors (bafilomycin-A1 and leupeptin, BL). Similarly, AS1842856 and BL dampened autophagy activity and FSP27 expression in explant cultures of white adipose tissue. To our knowledge, this is the first study addressing FoxO1 in the regulation of adipose autophagy, shedding light on the mechanism of increased autophagy and adiposity in obese individuals. Given that adipogenesis and adipocyte expansion contribute to aberrant adiposity, targeting the FoxO1-autophagy-FSP27 axis may lead to new anti-obesity options.  相似文献   

8.
White adipose tissue (WAT) functions as an energy reservoir where excess circulating fatty acids are transported to WAT, converted to triglycerides, and stored as unilocular lipid droplets. Fat-specific protein 27 (FSP27, CIDEC in humans) is a lipid-coating protein highly expressed in mature white adipocytes that contributes to unilocular lipid droplet formation. However, the influence of FSP27 in adipose tissue on whole-body energy homeostasis remains unclear. Mice with adipocyte-specific disruption of the Fsp27 gene (Fsp27ΔAd) were generated using an aP2-Cre transgene with the Cre/LoxP system. Upon high-fat diet feeding, Fsp27ΔAd mice were resistant to weight gain. In the small WAT of these mice, small adipocytes containing multilocular lipid droplets were dispersed. The expression levels of the genes associated with mitochondrial abundance and brown adipocyte identity were increased, and basal lipolytic activities were significantly augmented in adipocytes isolated from Fsp27ΔAd mice compared with the Fsp27F/F counterparts. The impaired fat-storing function in Fsp27ΔAd adipocytes and the resultant lipid overflow from WAT led to marked hepatosteatosis, dyslipidemia, and systemic insulin resistance in high-fat diet-treated Fsp27ΔAd mice. These results demonstrate a critical role for FSP27 in the storage of excess fat in WAT with minimizing ectopic fat accumulation that causes insulin-resistant diabetes and non-alcoholic fatty liver disease. This mouse model may be useful for understanding the significance of fat-storing properties of white adipocytes and the role of local FSP27 in whole-body metabolism and estimating the pathogenesis of human partial lipodystrophy caused by CIDEC mutations.  相似文献   

9.
10.
Fat-specific protein 27 regulates storage of triacylglycerol   总被引:4,自引:0,他引:4  
FSP27 (fat-specific protein 27) is a member of the cell death-inducing DNA fragmentation factor-alpha-like effector (CIDE) family. Although Cidea and Cideb were initially characterized as activators of apoptosis, recent studies have demonstrated important metabolic roles for these proteins. In this study, we investigated the function of another member of this family, FSP27 (Cidec), in apoptosis and adipocyte metabolism. Although overexpression of FSP27 is sufficient to increase apoptosis of 293T and 3T3-L1 cells, more physiological levels of expression stimulate spontaneous lipid accumulation in several cell types without induction of adipocyte genes. Increased triacylglycerol is likely due to decreased beta-oxidation of nonesterified fatty acids. Altered flux of fatty acids into triacylglycerol may be a direct effect of FSP27 function, which is localized to lipid droplets in 293T cells and 3T3-L1 adipocytes. Stable knockdown of FSP27 during adipogenesis of 3T3-L1 cells substantially decreases lipid droplet size, increases mitochondrial and lipid droplet number, and modestly increases glucose uptake and lipolysis. Expression of FSP27 in subcutaneous adipose tissue of a human diabetes cohort decreases with total fat mass but is not associated with measures of insulin resistance (e.g. homeostasis model assessment). Together, these data indicate that FSP27 binds to lipid droplets and regulates their enlargement.  相似文献   

11.

Background

Increasing energy expenditure at the cellular level offers an attractive option to limit adiposity and improve whole body energy balance. In vivo and in vitro observations have correlated mitochondrial uncoupling protein-1 (UCP1) expression with reduced white adipose tissue triglyceride (TG) content. The metabolic basis for this correlation remains unclear.

Methodology/Principal Findings

This study tested the hypothesis that mitochondrial uncoupling requires the cell to compensate for the decreased oxidation phosphorylation efficiency by up-regulating lactate production, thus redirecting carbon flux away from TG synthesis. Metabolic flux analysis was used to characterize the effects of non-lethal, long-term mitochondrial uncoupling (up to 18 days) on the pathways of intermediary metabolism in differentiating 3T3-L1 adipocytes. Uncoupling was induced by forced expression of UCP1 and chemical (FCCP) treatment. Chemical uncoupling significantly decreased TG content by ca. 35%. A reduction in the ATP level suggested diminished oxidative phosphorylation efficiency in the uncoupled adipocytes. Flux analysis estimated significant up-regulation of glycolysis and down-regulation of fatty acid synthesis, with chemical uncoupling exerting quantitatively larger effects.

Conclusions/Significance

The results of this study support our hypothesis regarding uncoupling-induced redirection of carbon flux into glycolysis and lactate production, and suggest mitochondrial proton translocation as a potential target for controlling adipocyte lipid metabolism.  相似文献   

12.

Background

Brown adipocytes play an important role in regulating the balance of energy, and as such, there is a strong correlation between obesity and the amount of brown adipose tissue. Although the molecular mechanism underlying white adipocyte differentiation has been well characterized, brown adipocyte differentiation has not been studied extensively. Here, we investigate the potential role of dual-specificity phosphatase 10 (DUSP10) in brown adipocyte differentiation using primary brown preadipocytes.

Methods and Results

The expression of DUSP10 increased continuously after the brown adipocyte differentiation of mouse primary brown preadipocytes, whereas the phosphorylation of p38 was significantly upregulated at an early stage of differentiation followed by steep downregulation. The overexpression of DUSP10 induced a decrease in the level of p38 phosphorylation, resulting in lower lipid accumulation than that in cells overexpressing the inactive mutant DUSP10. The expression levels of several brown adipocyte markers such as PGC-1α, UCP1, and PRDM16 were also significantly reduced upon the ectopic expression of DUSP10. Furthermore, decreased mitochondrial DNA content was detected in cells expressing DUSP10. The results obtained upon treatment with the p38 inhibitor, SB203580, clearly indicated that the phosphorylation of p38 at an early stage is important in brown adipocyte differentiation. The effect of the p38 inhibitor was partially recovered by DUSP10 knockdown using RNAi.

Conclusions

These results suggest that p38 phosphorylation is controlled by DUSP10 expression. Furthermore, p38 phosphorylation at an early stage is critical in brown adipocyte differentiation. Thus, the regulation of DUSP10 activity affects the efficiency of brown adipogenesis. Consequently, DUSP10 can be used as a novel target protein for the regulation of obesity.  相似文献   

13.
14.
15.

Background

Adipose tissue, mainly composed of adipocytes, plays an important role in metabolism by regulating energy homeostasis. Obesity is primarily caused by an abundance of adipose tissue. Therefore, specific targeting of adipose tissue is critical during the treatment of obesity, and plays a major role in overcoming it. However, the knowledge of cell-surface markers specific to adipocytes is limited.

Methods and Results

We applied the CELL SELEX (Systematic Evolution of Ligands by EXponential enrichment) method using flow cytometry to isolate molecular probes for specific recognition of adipocytes. The aptamer library, a mixture of FITC-tagged single-stranded random DNAs, is used as a source for acquiring molecular probes. With the increasing number of selection cycles, there was a steady increase in the fluorescence intensity toward mature adipocytes. Through 12 rounds of SELEX, enriched aptamers showing specific recognition toward mature 3T3-L1 adipocyte cells were isolated. Among these, two aptamers (MA-33 and 91) were able to selectively bind to mature adipocytes with an equilibrium dissociation constant (Kd) in the nanomolar range. These aptamers did not bind to preadipocytes or other cell lines (such as HeLa, HEK-293, or C2C12 cells). Additionally, it was confirmed that MA-33 and 91 can distinguish between mature primary white and primary brown adipocytes.

Conclusions

These selected aptamers have the potential to be applied as markers for detecting mature white adipocytes and monitoring adipogenesis, and could emerge as an important tool in the treatment of obesity.  相似文献   

16.
17.

Background

The adipose tissue is important for development of insulin resistance and type 2 diabetes and adipose tissue dysfunction has been proposed as an underlying cause. In the present study we investigated presence of adipocyte hypertrophy, and gene expression pattern of adipose tissue dysfunction in the subcutaneous adipose tissue of healthy, non-obese subjects predisposed to type 2 diabetes compared to matched control subjects with no known genetic predisposition for type 2 diabetes.

Method

Seventeen healthy and non-obese subjects with known genetic predisposition for type 2 diabetes (first-degree relatives, FDRs) and 17 control subjects were recruited. The groups were matched for gender and BMI and had similar age. Glucose tolerance was determined by an oral glucose tolerance test and insulin sensitivity was calculated using HOMA-index. Blood samples were collected and subcutaneous abdominal adipose tissue biopsies obtained for gene expression analysis and adipocyte cell size measurement.

Results

Our findings show that, in spite of similar age, BMI and percent body fat, FDRs displayed adipocyte hypertrophy, as well as higher waist/hip ratio, fasting insulin levels, HOMA-IR and serum triglycerides. Adipocyte hypertrophy in the FDR group, but not among controls, was associated with measures of impaired insulin sensitivity. The adipocyte hypertrophy was accompanied by increased inflammation and Wnt-signal activation. In addition, signs of tissue remodeling and fibrosis were observed indicating presence of early alterations associated with adipose tissue dysfunction in the FDRs.

Conclusion

Genetic predisposition for type 2 diabetes is associated with impaired insulin sensitivity, adipocyte hypertrophy and other markers of adipose tissue dysfunction. A dysregulated subcutaneous adipose tissue may be a major susceptibility factor for later development of type 2 diabetes.  相似文献   

18.

Background

Inducing beige fat from white adipose tissue (WAT) is considered to be a shortcut to weight loss and increasingly becoming a key area in research into treatments for obesity and related diseases. However, currently, animal models of beige fat are restricted to rodents, where subcutaneous adipose tissue (sWAT, benign WAT) is more liable to develop into the beige fat under specific activators than the intra-abdominal adipose tissue (aWAT, malignant WAT) that is the major source of obesity related diseases in humans.

Methods

Here we induced beige fat by cold exposure in two species of bats, the great roundleaf bat (Hipposideros armiger) and the rickett''s big-footed bat (Myotis ricketti), and compared the molecular and morphological changes with those seen in the mouse. Expression of thermogenic genes (Ucp1 and Pgc1a) was measured by RT-qPCR and adipocyte morphology examined by HE staining at three adipose locations, sWAT, aWAT and iBAT (interscapular brown adipose tissue).

Results

Expression of Ucp1 and Pgc1a was significantly upregulated, by 729 and 23 fold, respectively, in aWAT of the great roundleaf bat after exposure to 10°C for 7 days. Adipocyte diameters of WATs became significantly reduced and the white adipocytes became brown-like in morphology. In mice, similar changes were found in the sWAT, but much lower amounts of changes in aWAT were seen. Interestingly, the rickett''s big-footed bat did not show such a tendency in beige fat.

Conclusions

The great roundleaf bat is potentially a good animal model for human aWAT browning research. Combined with rodent models, this model should be helpful for finding therapies for reducing harmful aWAT in humans.  相似文献   

19.

Background

The uncoupling protein 1 (UCP1) is a hallmark of brown adipocytes and pivotal for cold- and diet-induced thermogenesis.

Methodology/Principal Findings

Here we report that cyclooxygenase (COX) activity and prostaglandin E2 (PGE2) are crucially involved in induction of UCP1 expression in inguinal white adipocytes, but not in classic interscapular brown adipocytes. Cold-induced expression of UCP1 in inguinal white adipocytes was repressed in COX2 knockout (KO) mice and by administration of the COX inhibitor indomethacin in wild-type mice. Indomethacin repressed β-adrenergic induction of UCP1 expression in primary inguinal adipocytes. The use of PGE2 receptor antagonists implicated EP4 as a main PGE2 receptor, and injection of the stable PGE2 analog (EP3/4 agonist) 16,16 dm PGE2 induced UCP1 expression in inguinal white adipose tissue. Inhibition of COX activity attenuated diet-induced UCP1 expression and increased energy efficiency and adipose tissue mass in obesity-resistant mice kept at thermoneutrality.

Conclusions/Significance

Our findings provide evidence that induction of UCP1 expression in white adipose tissue, but not in classic interscapular brown adipose tissue is dependent on cyclooxygenase activity. Our results indicate that cyclooxygenase-dependent induction of UCP1 expression in white adipose tissues is important for diet-induced thermogenesis providing support for a surprising role of COX activity in the control of energy balance and obesity development.  相似文献   

20.

Introduction

Obesity is a nutritional disorder associated with many health problems such as dyslipidemia, type 2 diabetes and cardiovascular diseases. In the present study, we investigated the anti-metabolic disorder effects of kumquat (Fortunella margarita Swingle) fruit extract (FME) on high-fat diet-induced C57BL/6 obese mice.

Methods

The kumquat fruit was extracted with ethanol and the main flavonoids of this extract were analyzed by HPLC. For the preventive experiment, female C57BL/6 mice were fed with a normal diet (Chow), high-fat diet (HF), and high-fat diet with 1% (w/w) extract of kumquat (HF+FME) for 8 weeks. For the therapeutic experiment, female C57BL/6 mice were fed with high-fat diet for 3 months to induce obesity. Then the obese mice were divided into two groups randomly, and fed with HF or HF+FME for another 2 weeks. Body weight and daily food intake amounts were recorded. Fasting blood glucose, glucose tolerance test, insulin tolerance test, serum and liver lipid levels were assayed and the white adipose tissues were imaged. The gene expression in mice liver and brown adipose tissues were analyzed with a quantitative PCR assay.

Results

In the preventive treatment, FME controlled the body weight gain and the size of white adipocytes, lowered the fasting blood glucose, serum total cholesterol (TC), serum low density lipoprotein cholesterol (LDL-c) levels as well as liver lipid contents in high-fat diet-fed C57BL/6 mice. In the therapeutic treatment, FME decreased the serum triglyceride (TG), serum TC, serum LDL-c, fasting blood glucose levels and liver lipid contents, improved glucose tolerance and insulin tolerance. Compared with the HF group, FME significantly increased the mRNA expression of PPARα and its target genes.

Conclusion

Our study suggests that FME may be a potential dietary supplement for preventing and ameliorating the obesity and obesity-related metabolic disturbances.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号