首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
We have performed a detailed biochemical kinetic and spectroscopic study on a recombinant myosin X head construct to establish a quantitative model of the enzymatic mechanism of this membrane-bound myosin. Our model shows that during steady-state ATP hydrolysis, myosin X exhibits a duty ratio (i.e. the fraction of the cycle time spent strongly bound to actin) of around 16%, but most of the remaining myosin heads are also actin-attached even at moderate actin concentrations in the so-called "weak" actin-binding states. Contrary to the high duty ratio motors myosin V and VI, the ADP release rate constant from actomyosin X is around five times greater than the maximal steady-state ATPase activity, and the kinetic partitioning between different weak actin-binding states is a major contributor to the rate limitation of the enzymatic cycle. Two different ADP states of myosin X are populated in the absence of actin, one of which shows very similar kinetic properties to actomyosin.ADP. The nucleotide-free complex of myosin X with actin shows unique spectral and biochemical characteristics, indicating a special mode of actomyosin interaction.  相似文献   

2.
Cytoplasmic transport is mediated by a group of molecular motors that typically work in isolation, under conditions where they must move their cargos long distances without dissociating from their tracks. This processive behavior requires specific adaptations of motor enzymology to meet these unique physiologic demands. One of these involves the ability of the two heads of a processive motor to communicate their structural states to each other. In this study, we examine a processive motor from the myosin superfamily myosin V. We have measured the kinetics of nucleotide release, of phosphate release, and of the weak-to-strong transition, as this motor interacts with actin, and we have used these studies to develop a model of how myosin V functions as a transport motor. Surprisingly, both heads release phosphate rapidly upon the initial encounter with an actin filament, suggesting that there is little or no intramolecular strain associated with this step. However, ADP release can be affected by both forward and rearward strain, and under steady-state conditions it is essentially prevented in the lead head until the rear head detaches. Many of these features are remarkably like those underlying the processive movement of kinesin on microtubules, supporting our hypothesis that different molecular motors satisfy the requirement for processive movement in similar ways, regardless of their particular family of origin.  相似文献   

3.
Wenjun Zheng 《Proteins》2010,78(3):638-660
To decrypt the mechanistic basis of myosin motor function, it is essential to probe the conformational changes in actomyosin with high spatial and temporal resolutions. In a computational effort to meet this challenge, we have performed a multiscale modeling of the allosteric couplings and transition pathway of actomyosin complex by combining coarse‐grained modeling of the entire complex with all‐atom molecular dynamics simulations of the active site. Our modeling of allosteric couplings at the pre‐powerstroke state has pinpointed key actin‐activated couplings to distant myosin parts which are critical to force generation and the sequential release of phosphate and ADP. At the post‐powerstroke state, we have identified isoform‐dependent couplings which underlie the reciprocal coupling between actin binding and nucleotide binding in fast Myosin II, and load‐dependent ADP release in Myosin V. Our modeling of transition pathway during powerstroke has outlined a clear sequence of structural events triggered by actin binding, which lead to subsequent force generation, twisting of central β‐sheet, and the sequential release of phosphate and ADP. Finally we have performed atomistic simulations of active‐site dynamics based on an on‐path “transition‐state” myosin conformation, which has revealed significantly weakened coordination of phosphate by Switch II, and a disrupted key salt bridge between Switch I and II. Meanwhile, the coordination of MgADP by Switch I and P loop is less perturbed. As a result, the phosphate can be released prior to MgADP. This study has shed new lights on the controversy over the structural mechanism of actin‐activated phosphate release and force generation in myosin motor. Proteins 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

4.
Gly 680 of Dictyostelium myosin II sits at a critical position within the reactive thiol helices. We have previously shown that G680V mutant subfragment 1 largely remains in strongly actin-bound states in the presence of ATP. We speculated that acto-G680V subfragment 1 complexes accumulate in the A.M.ADP.P(i) state on the basis of the biochemical phenotypes conferred by mutations which suppress the G680V mutation in vivo [Wu, Y., et al. (1999) Genetics 153, 107-116]. Here, we report further characterization of the interaction between actin and G680V subfragment 1. Light scattering data demonstrate that the majority of G680V subfragment 1 is bound to actin in the presence of ATP. These acto-G680V subfragment 1 complexes in the presence of ATP do not efficiently quench the fluorescence of pyrene-actin, unlike those in rigor complexes or in the presence of ADP alone. Kinetic analyses demonstrated that phosphate release, but not ATP hydrolysis or ADP release, is very slow and rate limiting in the acto-G680V subfragment 1 ATPase cycle. Single turnover kinetic analysis demonstrates that, during ATP hydrolysis by the acto-G680V subfragment 1 complex, quenching of pyrene fluorescence significantly lags the increase of light scattering. This is unlike the situation with wild-type subfragment 1, where the two signals have similar rate constants. These data support the hypothesis that the main intermediate during ATP hydrolysis by acto-G680V subfragment 1 is an acto-subfragment 1 complex carrying ADP and P(i), which scatters light but does not quench the pyrene fluorescence and so has a different conformation from the rigor complex.  相似文献   

5.
Processivity in myosin V is mediated through the mechanical strain that results when both heads bind strongly to an actin filament, and this strain regulates the timing of ADP release. However, what is not known is which steps that lead to ADP release are affected by this mechanical strain. Answering this question will require determining which of the several potential pathways myosin V takes in the process of ADP release and how actin influences the kinetics of these pathways. We have addressed this issue by examining how magnesium regulates the kinetics of ADP release from myosin V and actomyosin V. Our data support a model in which actin accelerates the release of ADP from myosin V by reducing the magnesium affinity of a myosin V-MgADP intermediate. This is likely a consequence of the structural changes that actin induces in myosin to release phosphate. This effect on magnesium affinity provides a plausible explanation for how mechanical strain can alter this actin-induced acceleration. For actomyosin V, magnesium release follows phosphate release and precedes ADP release. Increasing magnesium concentration to within the physiological range would thus slow both the ATPase activity and the velocity of movement of this motor.  相似文献   

6.
Yengo CM  Sweeney HL 《Biochemistry》2004,43(9):2605-2612
Myosin V is molecular motor that is capable of moving processively along actin filaments. The kinetics of monomeric myosin V containing a single IQ domain (MV 1IQ) differ from nonprocessive myosin II in that actin affinity is higher, phosphate release is extremely rapid, and ADP release is rate-limiting. We generated two mutants of myosin V by altering loop 2, a surface loop in the actin-binding region thought to alter actin affinity and phosphate release in myosin II, to determine the role that this loop plays in the kinetic tuning of myosin V. The loop 2 mutants altered the apparent affinity for actin (K(ATPase)) without altering the maximum ATPase rate (V(MAX)). Transient kinetic analysis determined that the rate of binding to actin, as well as the affinity for actin, was dependent on the net positive charge of loop 2, while other steps in the ATPase cycle were unchanged. The maximum rate of phosphate release was unchanged, but the affinity for actin in the M.ADP.Pi-state was dramatically altered by the mutations in loop 2. Thus, loop 2 is important for allowing myosin V to bind to actin with a relatively high affinity in the weak binding states but does not play a direct role in the product release steps. The ability to maintain a high affinity for actin in the weak binding states may prevent diffusion away from the actin filament and increase the degree of processive motion of myosin V.  相似文献   

7.
How myosin VI coordinates its heads during processive movement   总被引:3,自引:0,他引:3       下载免费PDF全文
A processive molecular motor must coordinate the enzymatic state of its two catalytic domains in order to prevent premature detachment from its track. For myosin V, internal strain produced when both heads of are attached to an actin track prevents completion of the lever arm swing of the lead head and blocks ADP release. However, this mechanism cannot work for myosin VI, since its lever arm positions are reversed. Here, we demonstrate that myosin VI gating is achieved instead by blocking ATP binding to the lead head once it has released its ADP. The structural basis for this unique gating mechanism involves an insert near the nucleotide binding pocket that is found only in class VI myosin. Reverse strain greatly favors binding of ADP to the lead head, which makes it possible for myosin VI to function as a processive transporter as well as an actin-based anchor. While this mechanism is unlike that of any other myosin superfamily member, it bears remarkable similarities to that of another processive motor from a different superfamily--kinesin I.  相似文献   

8.
It has long been known that binding of actin and binding of nucleotides to myosin are antagonistic, an observation that led to the biochemical basis for the crossbridge cycle of muscle contraction. Thus ATP binding to actomyosin causes actin dissociation, whereas actin binding to the myosin accelerates ADP and phosphate release. Structural studies have indicated that communication between the actin- and nucleotide-binding sites involves the opening and closing of the cleft between the upper and lower 50K domains of the myosin head. Here we test the proposal that the cleft responds to actin and nucleotide binding in a reciprocal manner and show that cleft movement is coupled to actin binding and dissociation. We monitored cleft movement using pyrene excimer fluorescence from probes engineered across the cleft.  相似文献   

9.
Myosin V is a cellular motor protein, which transports cargos along actin filaments. It moves processively by 36-nm steps that require at least one of the two heads to be tightly bound to actin throughout the catalytic cycle. To elucidate the kinetic mechanism of processivity, we measured the rate of product release from the double-headed myosin V-HMM using a new ATP analogue, 3'-(7-diethylaminocoumarin-3-carbonylamino)-3'-deoxy-ATP (deac-aminoATP), which undergoes a 20-fold increase in fluorescence emission intensity when bound to the active site of myosin V (Forgacs, E., Cartwright, S., Kovács, M., Sakamoto, T., Sellers, J. R., Corrie, J. E. T., Webb, M. R., and White, H. D. (2006) Biochemistry 45, 13035-13045). The kinetics of ADP and deac-aminoADP dissociation from actomyosin V-HMM, following the power stroke, were determined using double-mixing stopped-flow fluorescence. These used either deac-aminoATP as the substrate with ADP or ATP chase or alternatively ATP as the substrate with either a deac-aminoADP or deac-aminoATP chase. Both sets of experiments show that the observed rate of ADP or deac-aminoADP dissociation from the trail head of actomyosin V-HMM is the same as from actomyosin V-S1. The dissociation of ADP from the lead head is decreased by up to 250-fold.  相似文献   

10.
We used a novel stopped-flow/rapid-freezing machine to prepare the transient intermediates in the actin-myosin adenosine triphosphatase (ATPase) cycle for direct observation by electron microscopy. We focused on the low affinity complexes of myosin-adenosine triphosphate (ATP) and myosin-adenosine diphosphate (ADP)-Pi with actin filaments since the transition from these states to the high affinity actin-myosin-ADP and actin-myosin states is postulated to generate the molecular motion that drives muscle contraction and other types of cellular movements. After rapid freezing and metal replication of mixtures of myosin subfragment-1, actin filaments, and ATP, the structure of the weakly bound intermediates is indistinguishable from nucleotide-free rigor complexes. In particular, the average angle of attachment of the myosin head to the actin filament is approximately 40 degrees in both cases. At all stages in the ATPase cycle, the configuration of most of the myosin heads bound to actin filaments is similar, and the part of the myosin head preserved in freeze-fracture replicas does not tilt by more than a few degrees during the transition from the low affinity to high affinity states. In contrast, myosin heads chemically cross-linked to actin filaments differ in their attachment angles from ordered at 40 degrees without ATP to nearly random in the presence of ATP when viewed by negative staining (Craig, R., L.E. Greene, and E. Eisenberg. 1985. Proc. Natl. Acad. Sci. USA. 82:3247-3251, and confirmed here), freezing in vitreous ice (Applegate, D., and P. Flicker. 1987. J. Biol. Chem. 262:6856-6863), and in replicas of rapidly frozen samples. This suggests that many of the cross-linked heads in these preparations are dissociated from but tethered to the actin filaments in the presence of ATP. These observations suggest that the molecular motion produced by myosin and actin takes place with the myosin head at a point some distance from the actin binding site or does not involve a large change in the shape of the myosin head.  相似文献   

11.
We have examined the kinetics of nucleotide binding to actomyosin VI by monitoring the fluorescence of pyrene-labeled actin filaments. ATP binds single-headed myosin VI following a two-step reaction mechanism with formation of a low affinity collision complex (1/K(1)' = 5.6 mm) followed by isomerization (k(+2)' = 176 s-1) to a state with weak actin affinity. The rates and affinity for ADP binding were measured by kinetic competition with ATP. This approach allows a broader range of ADP concentrations to be examined than with fluorescent nucleotide analogs, permitting the identification and characterization of transiently populated intermediates in the pathway. ADP binding to actomyosin VI, as with ATP binding, occurs via a two-step mechanism. The association rate constant for ADP binding is approximately five times greater than for ATP binding because of a higher affinity in the collision complex (1/K(5b)' = 2.2 mm) and faster isomerization rate constant (k(+5a)' = 366 s(-1)). By equilibrium titration, both heads of a myosin VI dimer bind actin strongly in rigor and with bound ADP. In the presence of ATP, conditions that favor processive stepping, myosin VI does not dwell with both heads strongly bound to actin, indicating that the second head inhibits strong binding of the lead head to actin. With both heads bound strongly, ATP binding is accelerated 2.5-fold, and ADP binding is accelerated >10-fold without affecting the rate of ADP release. We conclude that the heads of myosin VI communicate allosterically and accelerate nucleotide binding, but not dissociation, when both are bound strongly to actin.  相似文献   

12.
Muscle fiber contraction involves the cyclical interaction of myosin cross-bridges with actin filaments, linked to hydrolysis of ATP that provides the required energy. We show here the relationship between cross-bridge states, force generation, and Pi release during ramp stretches of active mammalian skeletal muscle fibers at 20°C. The results show that force and Pi release respond quickly to the application of stretch: force rises rapidly, whereas the rate of Pi release decreases abruptly and remains low for the duration of the stretch. These measurements show that biochemical change on the millisecond timescale accompanies the mechanical and structural responses in active muscle fibers. A cross-bridge model is used to simulate the effect of stretch on the distribution of actomyosin cross-bridges, force, and Pi release, with explicit inclusion of ATP, ADP, and Pi in the biochemical states and length-dependence of transitions. In the simulation, stretch causes rapid detachment and reattachment of cross-bridges without release of Pi or ATP hydrolysis.  相似文献   

13.
The myosin cross-bridge exists in two conformations, which differ in the orientation of a long lever arm. Since the lever arm undergoes a 60 degree rotation between the two conformations, which would lead to a displacement of the myosin filament of about 11 nm, the transition between these two states has been associated with the elementary 'power stroke' of muscle. Moreover, this rotation is coupled with changes in the active site (CLOSED to OPEN), which probably enable phosphate release. The transition CLOSED to OPEN appears to be brought about by actin binding. However, kinetics shows that the binding of myosin to actin is a two-step process which affects both ATP and ADP affinity and vice versa. The structural basis of these effects is only partially explained by the presently known conformers of myosin. Therefore, additional states of the myosin cross-bridge should exist. Indeed, cryoelectron microscopy has revealed other angles of the lever arm induced by ADP binding to a smooth muscle actin-myosin complex.  相似文献   

14.
Myosin X is a member of the diverse myosin superfamily that is ubiquitously expressed in various mammalian tissues. Although its association with actin in cells has been shown, little is known about its biochemical and mechanoenzymatic function at the molecular level. We expressed bovine myosin X containing the entire head, neck, and coiled-coil domain and purified bovine myosin X in Sf9 cells. The Mg(2+)-ATPase activity of myosin X was significantly activated by actin with low K(ATP). The actin-activated ATPase activity was reduced at Ca(2+) concentrations above pCa 5 in which 1 mol of calmodulin light chain dissociates from the heavy chain. Myosin X translocates F-actin filaments with the velocity of 0.3 microm/s with the direction toward the barbed end. The actin translocating activity was inhibited at concentrations of Ca(2+) at pCa 6 in which no calmodulin dissociation takes place, suggesting that the calmodulin dissociation is not required for the inhibition of the motility. Unlike class V myosin, which shows a high affinity for F-actin in the presence of ATP, the K(actin) of the myosin X ATPase was much higher than that of myosin V. Consistently nearly all actin dissociated from myosin X in the presence of ATP. ADP did not significantly inhibit the actin-activated ATPase activity of myosin X, suggesting that the ADP release step is not rate-limiting. These results suggest that myosin X is a nonprocessive motor. Consistently myosin X failed to support the actin translocation at low density in an in vitro motility assay where myosin V, a processive motor, supports the actin filament movement.  相似文献   

15.
Human myosin Vc is a low duty ratio, nonprocessive molecular motor   总被引:1,自引:0,他引:1  
Myosin Vc is the product of one of the three genes of the class V myosin found in vertebrates. It is widely found in secretory and glandular tissues, with a possible involvement in transferrin trafficking. Transient and steady-state kinetic studies of human myosin Vc were performed using a truncated, single-headed construct. Steady-state actin-activated ATPase measurements revealed a V(max) of 1.8 +/- 0.3 s(-1) and a K(ATPase) of 43 +/- 11 microm. Unlike previously studied vertebrate myosin Vs, the rate-limiting step in the actomyosin Vc ATPase pathway is the release of inorganic phosphate (~1.5 s(-1)), rather than the ADP release step (~12.0-16.0 s(-1)). Nevertheless, the ADP affinity of actomyosin Vc (K(d) = 0.25 +/- 0.02 microm) reflects a higher ADP affinity than seen in other myosin V isoforms. Using the measured kinetic rates, the calculated duty ratio of myosin Vc was approximately 10%, indicating that myosin Vc spends the majority of the actomyosin ATPase cycle in weak actin-binding states, unlike the other vertebrate myosin V isoforms. Consistent with this, a fluorescently labeled double-headed heavy meromyosin form showed no processive movements along actin filaments in a single molecule assay, but it did move actin filaments at a velocity of approximately 24 nm/s in ensemble assays. Kinetic simulations reveal that the high ADP affinity of actomyosin Vc may lead to elevations of the duty ratio of myosin Vc to as high as 64% under possible physiological ADP concentrations. This, in turn, may possibly imply a regulatory mechanism that may be sensitive to moderate changes in ADP concentration.  相似文献   

16.
Thermal stability and internal dynamics of myosin heads in fiber bundles from rabbit psoas muscle has been studied by electron paramagnetic resonance (EPR) spectroscopy and differential scanning calorimetry (DSC). Using ADP, ATP and orthovanadate (V(i)), three intermediate states of the ATP hydrolysis cycle were simulated in glycerinated muscle fibers. DSC transitions contained three overlapping endotherms in each state. Deconvolution showed that the transition temperature of 58.4 degrees C was almost independent of the intermediate state of myosin, while nucleotide binding shifted the melting temperatures of 54.0 and 62.3 degrees C, and changed the enthalpies. These changes suggest global rearrangements of the internal structure in myosin head. In the presence of ADP and ADP plus V(i), the conventional EPR spectra showed changes in the ordering of the probe molecules, suggesting local conformational and motional changes in the internal structure of myosin heads. Saturation transfer EPR measurements reported increased rotational mobility of spin labels in the presence of ATP plus orthovanadate corresponding to a weakly binding state of myosin to actin.  相似文献   

17.
Myosin V is a processive actin-based motor protein that takes multiple 36-nm steps to deliver intracellular cargo to its destination. In the laser trap, applied load slows myosin V heavy meromyosin stepping and increases the probability of backsteps. In the presence of 40 mm phosphate (P(i)), both forward and backward steps become less load-dependent. From these data, we infer that P(i) release commits myosin V to undergo a highly load-dependent transition from a state in which ADP is bound to both heads and its lead head trapped in a pre-powerstroke conformation. Increasing the residence time in this state by applying load increases the probability of backstepping or detachment. The kinetics of detachment indicate that myosin V can detach from actin at two distinct points in the cycle, one of which is turned off by the presence of P(i). We propose a branched kinetic model to explain these data. Our model includes P(i) release prior to the most load-dependent step in the cycle, implying that P(i) release and load both act as checkpoints that control the flux through two parallel pathways.  相似文献   

18.
Movements in muscles are generated by the myosins which interact with the actin filaments. In this paper we present an electric theory to describe how the chemical energy is first stored in electrostatic form in the myosin system and how it is then released and transformed into work. Due to the longitudinal polarized molecular structure with the negative phosphate group tail, the ATP molecule possesses a large electric dipole moment (p(0)), which makes it an ideal energy source for the electric dipole motor of the actomyosin system. The myosin head contains a large number of strongly restrained water molecules, which makes the ATP-driven electric dipole motor possible. The strongly restrained water molecules can store the chemical energy released by ATP binding and hydrolysis processes in the electric form due to their myosin structure fixed electric dipole moments (p(i)). The decrease in the electric energy is transformed into mechanical work by the rotational movement of the myosin head, which follows from the interaction of the dipoles p(i) with the potential field V(0) of ATP and with the potential field Psi of the actin. The electrical meaning of the hydrolysis reaction is to reduce the dipole moment p(0)-the remaining dipole moment of the adenosine diphosphate (ADP) is appropriately smaller to return the low negative value of the electric energy nearly back to its initial value, enabling the removal of ADP from the myosin head so that the cycling process can be repeated. We derive for the electric energy of the myosin system a general equation, which contains the potential field V(0) with the dipole moment p(0), the dipole moments p(i) and the potential field psi. Using the previously published experimental data for the electric dipole of ATP (p(0) congruent with 230 debye) and for the amount of strongly restrained water molecules (N congruent with 720) in the myosin subfragment (S1), we show that the Gibbs free energy changes of the ATP binding and hydrolysis reaction steps can be converted into the form of electric energy. The mechanical action between myosin and actin is investigated by the principle of virtual work. An electric torque always appears, i.e. a moment of electric forces between dipoles p(0) and p(i)(/M/ > or = 16 pN nm) that causes the myosin head to function like a scissors-shaped electric dipole motor. The theory as a whole is illustrated by several numerical examples and the results are compared with experimental results.  相似文献   

19.
The processive motor myosin V has a relatively high affinity for actin in the presence of ATP and, thus, offers the unique opportunity to visualize some of the weaker, hitherto inaccessible, actin bound states of the ATPase cycle. Here, electron cryomicroscopy together with computer-based docking of crystal structures into three-dimensional (3D) reconstructions provide the atomic models of myosin V in both weak and strong actin bound states. One structure shows that ATP binding opens the long cleft dividing the actin binding region of the motor domain, thus destroying the strong binding actomyosin interface while rearranging loop 2 as a tether. Nucleotide analogs showed a second new state in which the lever arm points upward, in a prepower-stroke configuration (lever arm up) bound to actin before phosphate release. Our findings reveal how the structural elements of myosin V work together to allow myosin V to step along actin for multiple ATPase cycles without dissociating.  相似文献   

20.
《The Journal of cell biology》1996,132(6):1053-1060
Acanthamoeba myosin-IA and myosin-IB are single-headed molecular motors that may play an important role in membrane-based motility. To better define the types of motility that myosin-IA and myosin IB can support, we determined the rate constants for key steps on the myosin-I ATPase pathway using fluorescence stopped-flow, cold-chase, and rapid-quench techniques. We determined the rate constants for ATP binding, ATP hydrolysis, actomyosin-I dissociation, phosphate release, and ADP release. We also determined equilibrium constants for myosin-I binding to actin filaments, ADP binding to actomyosin-I, and ATP hydrolysis. These rate constants define an ATPase mechanism in which (a) ATP rapidly dissociates actomyosin-I, (b) the predominant steady-state intermediates are in a rapid equilibrium between actin-bound and free states, (c) phosphate release is rate limiting and regulated by heavy- chain phosphorylation, and (d) ADP release is fast. Thus, during steady- state ATP hydrolysis, myosin-I is weakly bound to the actin filament like skeletal muscle myosin-II and unlike the microtubule-based motor kinesin. Therefore, for myosin-I to support processive motility or cortical contraction, multiple myosin-I molecules must be specifically localized to a small region on a membrane or in the actin-rich cell cortex. This conclusion has important implications for the regulation of myosin-I via localization through the unique myosin-I tails. This is the first complete transient kinetic characterization of a member of the myosin superfamily, other than myosin-II, providing the opportunity to obtain insights about the evolution of all myosin isoforms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号