首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Since first introduced to North America in 1999, West Nile virus (WNV) has spread rapidly across the continent, threatening wildlife populations and posing serious health risks to humans. While WNV incidence has been linked to environmental factors, particularly temperature and rainfall, little is known about how future climate change may affect the spread of the disease. Using available data on WNV infections in vectors and hosts collected from 2003–2011 and using a suite of 10 species distribution models, weighted according to their predictive performance, we modeled the incidence of WNV under current climate conditions at a continental scale. Models were found to accurately predict spatial patterns of WNV that were then used to examine how future climate may affect the spread of the disease. Predictions were accurate for cases of human WNV infection in the following year (2012), with areas reporting infections having significantly higher probability of presence as predicted by our models. Projected geographic distributions of WNV in North America under future climate for 2050 and 2080 show an expansion of suitable climate for the disease, driven by warmer temperatures and lower annual precipitation that will result in the exposure of new and naïve host populations to the virus with potentially serious consequences. Our risk assessment identifies current and future hotspots of West Nile virus where mitigation efforts should be focused and presents an important new approach for monitoring vector‐borne disease under climate change.  相似文献   

2.
Increasing community dissimilarity across geographic distance has been described for a wide variety of organisms and understanding its underlying causes is key to understanding mechanisms driving patterns of biodiversity. Both niche‐based and neutral processes may produce a distance decay relationship; however, disentangling their relative influence requires simultaneous examination of multiple potential drivers. Parasites represent a unique opportunity in which to study distance decay because community dissimilarity may depend on environmental requirements and dispersal capability of parasites as well also those of their hosts. We used big brown bats Eptesicus fuscus and their intestinal helminths to investigate: 1) independent contributions of geographic and environmental distances on dissimilarity of intestinal helminth component communities between populations of big brown bats; 2) which environmental variables best explained variation in community dissimilarity; and 3) whether similar patterns of decay with geographic or environmental distance were observed for within‐host population and within‐individual host parasite communities. We used compositional measures of community dissimilarity to examine how parasite communities may change with geographic distance and varying environmental conditions. Non‐spatial variables strongly influenced compositional parasite community dissimilarity over multiple community scales, and we observed little evidence for spatial processes such as distance decay. Environment surrounding roost sites better predicted helminth community dissimilarity than any other class of variables and landcover classes representing anthropogenic modification consistently explained variation in community structure. Our results indicate that human disturbance drives significant patterns of parasite community dissimilarity, most likely by changing the presence or abundance of intermediate hosts in an area.  相似文献   

3.
West Nile disease, caused by the West Nile virus (WNV), is a mosquito-borne zoonotic disease affecting humans and horses that involves wild birds as amplifying hosts. The mechanisms of WNV transmission remain unclear in Europe where the occurrence of outbreaks has dramatically increased in recent years. We used a dataset on the competence, distribution, abundance, diversity and dispersal of wild bird hosts and mosquito vectors to test alternative hypotheses concerning the transmission of WNV in Southern France. We modelled the successive processes of introduction, amplification, dispersal and spillover of WNV to incidental hosts based on host–vector contact rates on various land cover types and over four seasons. We evaluated the relative importance of the mechanisms tested using two independent serological datasets of WNV antibodies collected in wild birds and horses. We found that the same transmission processes (seasonal virus introduction by migratory birds, Culex modestus mosquitoes as amplifying vectors, heterogeneity in avian host competence, absence of ‘dilution effect’) best explain the spatial variations in WNV seroprevalence in the two serological datasets. Our results provide new insights on the pathways of WNV introduction, amplification and spillover and the contribution of bird and mosquito species to WNV transmission in Southern France.  相似文献   

4.
Animals select habitats that will ultimately optimize their fitness through access to favorable resources, such as food, mates, and breeding sites. However, access to these resources may be limited by bottom‐up effects, such as availability, and top‐down effects, such as risk avoidance and competition, including that with humans. Competition between wildlife and people over resources, specifically over space, has played a significant role in the worldwide decrease in large carnivores. The goal of this study was to determine the habitat selection of cheetahs (Acinonyx jubatus) in a human‐wildlife landscape at multiple spatial scales. Cheetahs are a wide‐ranging, large carnivore, whose significant decline is largely attributed to habitat loss and fragmentation. It is believed that 77% of the global cheetah population ranges outside protected areas, yet little is known about cheetahs’ resource use in areas where they co‐occur with people. The selection, or avoidance, of three anthropogenic variables (human footprint density, distance to main roads and wildlife areas) and five environmental variables (open habitat, semiclosed habitat, edge density, patch density and slope), at multiple spatial scales, was determined by analyzing collar data from six cheetahs. Cheetahs selected variables at different scales; anthropogenic variables were selected at broader scales (720–1440 m) than environmental variables (90–180 m), suggesting that anthropogenic pressures affect habitat selection at a home‐range level, whilst environmental variables influence site‐level habitat selection. Cheetah presence was best explained by human presence, wildlife areas, semiclosed habitat, edge density and slope. Cheetahs showed avoidance for humans and steep slopes and selected for wildlife areas and areas with high proportions of semiclosed habitat and edge density. Understanding a species’ resource requirements, and how these might be affected by humans, is crucial for conservation. Using a multiscale approach, we provide new insights into the habitat selection of a large carnivore living in a human‐wildlife landscape.  相似文献   

5.
The Dilution Effect Hypothesis (DEH) argues that greater biodiversity lowers the risk of disease and reduces the rates of pathogen transmission since more diverse communities harbour fewer competent hosts for any given pathogen, thereby reducing host exposure to the pathogen. DEH is expected to operate most intensely in vector-borne pathogens and when species-rich communities are not associated with increased host density. Overall, dilution will occur if greater species diversity leads to a lower contact rate between infected vectors and susceptible hosts, and between infected hosts and susceptible vectors. Field-based tests simultaneously analysing the prevalence of several multi-host pathogens in relation to host and vector diversity are required to validate DEH. We tested the relationship between the prevalence in house sparrows (Passer domesticus) of four vector-borne pathogens–three avian haemosporidians (including the avian malaria parasite Plasmodium and the malaria-like parasites Haemoproteus and Leucocytozoon) and West Nile virus (WNV)–and vertebrate diversity. Birds were sampled at 45 localities in SW Spain for which extensive data on vector (mosquitoes) and vertebrate communities exist. Vertebrate censuses were conducted to quantify avian and mammal density, species richness and evenness. Contrary to the predictions of DEH, WNV seroprevalence and haemosporidian prevalence were not negatively associated with either vertebrate species richness or evenness. Indeed, the opposite pattern was found, with positive relationships between avian species richness and WNV seroprevalence, and Leucocytozoon prevalence being detected. When vector (mosquito) richness and evenness were incorporated into the models, all the previous associations between WNV prevalence and the vertebrate community variables remained unchanged. No significant association was found for Plasmodium prevalence and vertebrate community variables in any of the models tested. Despite the studied system having several characteristics that should favour the dilution effect (i.e., vector-borne pathogens, an area where vector and host densities are unrelated, and where host richness is not associated with an increase in host density), none of the relationships between host species diversity and species richness, and pathogen prevalence supported DEH and, in fact, amplification was found for three of the four pathogens tested. Consequently, the range of pathogens and communities studied needs to be broadened if we are to understand the ecological factors that favour dilution and how often these conditions occur in nature.  相似文献   

6.
The distribution of wildlife parasites in a landscape is intimately tied to the spatial distribution of hosts. In parasite species, including many gastrointestinal parasites, with obligate or common environmental life stages, the dynamics of the parasite can also be strongly affected by geophysical components of the environment. This is especially salient in host species, for example humans and macaques, which thrive across a wide variety of habitat types and quality and so are exposed to a wealth of environmentally resilient parasites. Here, we examine the effect of environmental and anthropogenic components of the landscape on the prevalence, intensity, and species diversity of gastrointestinal parasites across a metapopulation of long-tailed macaques on the island of Bali, Indonesia. Using principal-components analysis, we identified significant interaction effects between specific environmental and anthropogenic components of the landscape, parsing the Balinese landscape into anthropogenic (PC1), mixed environment (PC2), and non-anthropogenic (PC3) components. Further, we determined that the anthropogenic environment can mitigate the prevalence and intensity of specific gut parasites and the intensity of the overall community of gut parasites, but that non-anthropogenically driven landscape components have no significant effect in increasing or reducing the intensity or prevalence of the community of gut parasites in Balinese macaques.  相似文献   

7.
The increasing need to manage plant invasions has generated international interest in predicting the dispersal of invasive weeds, including the role of humans due to the influence of anthropogenic factors on invasions. Tradescantia fluminensis, an invasive weed, is spread in New Zealand only by vegetative fragments, with long‐distance dispersal thought to be largely by human dumping of garden waste. Here we test whether the occurrence of T. fluminensis is predictable from physical (slope, altitude, temperature, vegetation type and cover and stream presence) and anthropogenic (road surface type, proximity to settlement and proxies for ease of dumping) variables, to measure the influence humans exert on its dispersal. Sampling of both physical and anthropogenic variables was carried out with presence/absence of T. fluminensis noted at 151 sites throughout the Marlborough Sounds in New Zealand. The best model included four anthropogenic and three physical variables, with the anthropogenic variables accounting for 70% of the deviance explained. K‐fold cross‐validation showed the model had a success rate of 78%, correctly predicting 118 out of 151 observations. This was significantly better than a null model based only on the overall fraction of sites with T. fluminensis. These results indicate that within the Marlborough Sounds region, anthropogenic factors play a strong role in the dispersal of T. fluminensis in ways that are amenable to predictive statistical modelling.  相似文献   

8.
Arthropod-borne viruses are a group of the most important emerging pathogens. They cause a range of diseases in vertebrate hosts and threaten human health (Gan and Leo, 2014). The global distribution of arboviruses is associated with the vector which is strongly affected by changes in environmental conditions. Dengue virus (DENV) and Chikungunya virus (CHIKV), which cause high annual infected cases and have an increasing geographic distribution, are transmitted by Aedes spp. mosquitoes, in particular Ae. albopictus and Ae. Aegypti (Presti et al., 2014; Higuera and Ramírez, 2018). Although, the main vector of dengue virus, Ae. aegypti, was not detected in Iran, other possible important vectors such as Ae. Albopictus and Ae. unilineatus were recorded (Doosti et al., 2016; Yaghoobi-Ershadi et al., 2017). West Nile virus (WNV), a member of the genus Flaviviruses, is one of the most widespread arboviruses (Chancey et al., 2015). The epidemiological evidence of WNV in different hosts in Iran was found (Bagheri et al., 2015), and the circulation of WNV in the main vector, Culex pipiens s.l. and Cx. pipiens, has been proved (Shahhosseini et al., 2017). Due to limited information on the situation of CHIKV, DENV and WNV in Iran, we performed a wide geographical investigation to determine the prevalence of IgG specific antibodies in human samples as well as the genome of WNV, CHIKV and DENV in mosquitoes.  相似文献   

9.
The spatial distribution of alien species richness often correlates positively with native species richness, and reflects the role of human density and activity, and primary productivity and habitat heterogeneity, in facilitating the establishment and spread of alien species. Here, we investigate the relationship between the spatial distribution of alien bird species, human density, and anthropogenic and natural environmental conditions. Next, we examined the relationship between the spatial distribution of alien bird species and native bird species richness. We examined alien species richness as a response variable, using correlative analyses that take spatial autocorrelation into account. Further, each alien bird species was examined as a response variable, using logistic regression procedures based on binary presence–absence data. A combination of human density and natural habitat heterogeneity best explained the spatial distribution of alien species richness. This contrasts with the results for individual alien species and with previous studies on other non-native taxa showing the importance of primary productivity and anthropogenic habitat modification as explanatory variables. In general, native species richness is an important correlate of the spatial distribution of alien species richness and individual alien species, with alien species being more similar to common species than to rare species.  相似文献   

10.
Although coloniality is widespread among mammals, it is still not clear what factors influence composition of social groups. As animals need to adapt to multiple habitat and environmental conditions throughout their range, variation in group composition should be influenced by adaptive adjustment to different ecological factors. Relevant to anthropogenic disturbance, increased habitat modification by humans can alter species’ presence, density, and population structure. Therefore, it is important to understand the consequences of changes to landscape composition, in particular how habitat modification affects social structure of group‐forming organisms. Here, we combine information on roosting associations with genetic structure of Peter's tent‐roosting bats, Uroderma bilobatum to address how different habitat characteristics at different scales affect structure of social groups. By dividing analyses by age and sex, we determined that genetic structure was greater for adult females than adult males or offspring. Habitat variables explained 80% of the variation in group relatedness (mainly influenced by female relatedness) with roost characteristics contributing the most explained variation. This suggests that females using roosts of specific characteristics exhibit higher relatedness and seem to be philopatric. These females mate with more males than do more labile female groups. Results describe ecological and microevolutionary processes, which affect relatedness and social structure; findings are highly relevant to species distributions in both natural and human‐modified environments.  相似文献   

11.
Echinococcosis, resulting from infection with tapeworms Echinococcus granulosus and E. multilocularis, has a global distribution with 2–3 million people affected and 200,000 new cases diagnosed annually. Costs of treatment for humans and economic losses to the livestock industry have been estimated to exceed $2 billion. These figures are likely to be an underestimation given the challenges with its early detection and the lack of mandatory official reporting policies in most countries. Despite this global burden, echinococcosis remains a neglected zoonosis. The importance of environmental factors in influencing the transmission intensity and distribution of Echinococcus spp. is increasingly being recognized. With the advent of climate change and the influence of global population expansion, food insecurity and land‐use changes, questions about the potential impact of changing temperature, rainfall patterns, increasing urbanization, deforestation, grassland degradation and overgrazing on zoonotic disease transmission are being raised. This study is the first to comprehensively review how climate change and anthropogenic environmental factors contribute to the transmission of echinococcosis mediated by changes in animal population dynamics, spatial overlap of competent hosts and the creation of improved conditions for egg survival. We advocate rigorous scientific research to establish the causal link between specific environmental variables and echinococcosis in humans and the incorporation of environmental, animal and human data collection within a sentinel site surveillance network that will complement satellite remote‐sensing information. Identifying the environmental determinants of transmission risk to humans will be vital for the design of more accurate predictive models to guide cost‐effective pre‐emptive public health action against echinococcosis.  相似文献   

12.
West Nile fever (WNF) and Rift Valley fever (RVF) are emerging diseases causing epidemics outside their natural range of distribution. West Nile virus (WNV) circulates widely and harmlessly in the old world among birds as amplifying hosts, and horses and humans as accidental dead-end hosts. Rift Valley fever virus (RVFV) re-emerges periodically in Africa causing massive outbreaks. In the Maghreb, eco-climatic and entomologic conditions are favourable for WNV and RVFV emergence. Both viruses are transmitted by mosquitoes belonging to the Culex pipiens complex. We evaluated the ability of different populations of Cx. pipiens from North Africa to transmit WNV and the avirulent RVFV Clone 13 strain. Mosquitoes collected in Algeria, Morocco, and Tunisia during the summer 2010 were experimentally infected with WNV and RVFV Clone 13 strain at titers of 10(7.8) and 10(8.5) plaque forming units/mL, respectively. Disseminated infection and transmission rates were estimated 14-21 days following the exposure to the infectious blood-meal. We show that 14 days after exposure to WNV, all mosquito st developed a high disseminated infection and were able to excrete infectious saliva. However, only 69.2% of mosquito strains developed a disseminated infection with RVFV Clone 13 strain, and among them, 77.8% were able to deliver virus through saliva. Thus, Cx. pipiens from the Maghreb are efficient experimental vectors to transmit WNV and to a lesser extent, RVFV Clone 13 strain. The epidemiologic importance of our findings should be considered in the light of other parameters related to mosquito ecology and biology.  相似文献   

13.
West Nile virus is a widely spread arthropod-born virus, which has mosquitoes as vectors and birds as reservoirs. Humans, as dead-end hosts of the virus, may suffer West Nile Fever (WNF), which sometimes leads to death. In Europe, the first large-scale epidemic of WNF occurred in 1996 in Romania. Since then, human cases have increased in the continent, where the highest number of cases occurred in 2018. Using the location of WNF cases in 2017 and favorability models, we developed two risk models, one environmental and the other spatio-environmental, and tested their capacity to predict in 2018: 1) the location of WNF; 2) the intensity of the outbreaks (i.e. the number of confirmed human cases); and 3) the imminence of the cases (i.e. the Julian week in which the first case occurred). We found that climatic variables (the maximum temperature of the warmest month and the annual temperature range), human-related variables (rain-fed agriculture, the density of poultry and horses), and topo-hydrographic variables (the presence of rivers and altitude) were the best environmental predictors of WNF outbreaks in Europe. The spatio-environmental model was the most useful in predicting the location of WNF outbreaks, which suggests that a spatial structure, probably related to bird migration routes, has a role in the geographical pattern of WNF in Europe. Both the intensity of cases and their imminence were best predicted using the environmental model, suggesting that these features of the disease are linked to the environmental characteristics of the areas. We highlight the relevance of river basins in the propagation dynamics of the disease, as outbreaks started in the lower parts of the river basins, from where WNF spread towards the upper parts. Therefore, river basins should be considered as operational geographic units for the public health management of the disease.  相似文献   

14.
Aim To assess the relative importance of environmental (climate, habitat heterogeneity and topography), human (population density, economic prosperity and land transformation) and spatial (autocorrelation) influences, and the interactions between these predictor groups, on species richness patterns of various avifaunal orders. Location South Africa. Methods Generalized linear models were used to determine the amount of variation in species richness, for each order, attributable to each of the different predictor groups. To assess the relationships between species richness and the various predictor groups, a deviance statistic (a measure of goodness of fit for each model) and the percentage deviation explained for the best fitting model were calculated. Results Of the 12 avifaunal orders examined, spatially structured environmental deviance accounted for most of the variation in species richness in 11 orders (averaging 28%), and 50% or more in seven orders. However, orders comprising mostly water birds (Charadriiformes, Anseriformes, Ciconiformes) had a relatively large component of purely spatial deviance compared with spatially structured environmental deviance, and much of this spatial deviance was due to higher‐order spatial effects such as patchiness, as opposed to linear gradients in species richness. Although human activity, in general, offered little explanatory power to species richness patterns, it was an important correlate of spatial variation in species of Charadriiformes and Anseriformes. The species richness of these water birds was positively related to the presence of artificial water bodies. Main conclusions Not all bird orders showed similar trends when assessing, simultaneously, the relative importance of environmental, human and spatial influences in affecting bird species richness patterns. Although spatially structured environmental deviance described most of the variation in bird species richness, the explanatory power of purely spatial deviance, mostly due to nonlinear geographical effects such as patchiness, became more apparent in orders representing water birds. This was especially true for Charadriiformes, where the strong anthropogenic relationship has negative implications for the successful conservation of this group.  相似文献   

15.
Projected impacts of climate change on vector-borne disease dynamics must consider many variables relevant to hosts, vectors and pathogens, including how altered environmental characteristics might affect the spatial distributions of vector species. However, many predictive models for vector distributions consider their habitat requirements to be fixed over relevant time-scales, when they may actually be capable of rapid evolutionary change and even adaptation. We examine the genetic signature of a spatial expansion by an invasive vector into locations with novel temperature conditions compared to its native range as a proxy for how existing vector populations may respond to temporally changing habitat. Specifically, we compare invasions into different climate ranges and characterize the importance of selection from the invaded habitat. We demonstrate that vector species can exhibit evolutionary responses (altered allelic frequencies) to a temperature gradient in as little as 7–10 years even in the presence of high gene flow, and further, that this response varies depending on the strength of selection. We interpret these findings in the context of climate change predictions for vector populations and emphasize the importance of incorporating vector evolution into models of future vector-borne disease dynamics.  相似文献   

16.
In a previous survey of otters (Lutra lutra L. 1758) in Spain, different causes were invoked to explain the frequency of the species in each province. To find common causes of the distribution of the otter in Spain, we recorded a number of spatial, environmental and human variables in each Spanish province. We then performed a stepwise linear multiple regression of the proportion of positive sites of otter in the Spanish provinces separately on each of the three groups of variables. Geographic longitude, January air humidity, soil permeability and highway density were the variables selected. A linear regression of the proportion of otter presence on these variables explained 62.4% of the variance. We then used the selected variables in a partial regression analysis to specify which proportions of the variation are explained exclusively by spatial, environmental and human factors, and which proportions are attributable to interactions between these components. Pure environmental effects accounted for only 5.5% of the variation, while pure spatial and pure human effects explained 18% and 9.7%, respectively. Shared variation among the components totalled 29.2%, of which 10.9% was explained by the interaction between environmental and spatial factors. Human factors explained globally less variance than spatial and environmental ones, but the pure human influence was higher than the pure environmental one. We concluded that most of the variation in the proportion of occurrences of otter in Spanish provinces is spatially structured, and that environmental factors have more influence on otter presence than human ones; however, the human influence on otter distribution is less structured in space, and thus can be more disruptive. This effect of large infrastructures on wild populations must be taken into account when planning large‐scale conservation policies.  相似文献   

17.
JANI HEINO 《Freshwater Biology》2005,50(9):1578-1587
1. Biodiversity–environment relationships are increasingly well‐understood in the context of species richness and species composition, whereas other aspects of biodiversity, including variability in functional diversity (FD), have received rather little rigorous attention. For streams, most studies to date have examined either taxonomic assemblage patterns or have experimentally addressed the importance of species richness for ecosystem functioning. 2. I examined the relationships of the functional biodiversity of stream macroinvertebrates to major environmental and spatial gradients across 111 boreal headwater streams in Finland. Functional biodiversity encompassed functional richness (FR – the number of functional groups derived from a combination of functional feeding groups and habit trait groups), FD – the number of functional groups and division of individuals among these groups, and functional evenness (FE – the division of individuals among functional groups). Furthermore, functional structure (FS) comprised the composition and abundance of functional groups at each site. 3. FR increased with increasing pH, with additional variation related to moss cover, total nitrogen, water colour and substratum particle size. FD similarly increased with increasing pH and decreased with increasing canopy cover. FE decreased with increasing canopy cover and water colour. Significant variation in FS was attributable to pH, stream width, moss cover, substratum particle size, nitrogen, water colour with the dominant pattern in FS being related to the increase of shredder‐sprawlers and the decrease of scraper‐swimmers in acidic conditions. 4. In regression analysis and redundancy analysis, variation in functional biodiversity was not only related to local environmental factors, but a considerable proportion of variability was also attributable to spatial patterning of environmental variables and pure spatial gradients. For FR, 23.4% was related to pure environmental effects, 15.0% to shared environmental and spatial effects and 8.0% to spatial trends. For FD, 13.8% was attributable to environmental effects, 15.2% to shared environmental and spatial effects and 5% to spatial trends. For FE, 9.0% was related to environmental variables, 12.7% to shared effects of environmental and spatial variables and 4.5% to spatial variables. For FS, 13.5% was related to environmental effects, 16.9% to shared environmental and spatial effects and 15.4% to spatial trends. 5. Given that functional biodiversity should portray variability in ecosystem functioning, one might expect to find functionally rather differing ecosystems at the opposite ends of major environmental gradients (e.g. acidity, stream size). However, the degree to which variation in the functional biodiversity of stream macroinvertebrates truly portrays variability in ecosystem functioning is difficult to judge because species traits, such as feeding roles and habit traits, are themselves strongly affected by the habitat template. 6. If functional characteristics show strong responses to natural environmental gradients, they also are likely to do so to anthropogenic environmental changes, including changes in habitat structure, organic inputs and acidifying elements. However, given the considerable degree of spatial structure in functional biodiversity, one should not expect that only the local environment and anthropogenic changes therein are responsible for this variability. Rather, the spatial context, as well as natural variability along environmental gradients, should also be explicitly considered in applied research.  相似文献   

18.
1. Native crayfishes are often extirpated from portions of their range because of interactions with invasive species, anthropogenic alterations to environmental conditions or a combination of these factors. Our goal was to identify coarse‐scale natural and anthropogenic factors related to the current distributions of the invasive crayfish, Orconectes hylas, and two endemic crayfishes, Orconectes peruncus and Orconectes quadruncus in the St. Francis River drainage, Missouri, U.S.A. and to provide wider insights into the potential role of anthropogenic factors in facilitating species displacement. 2. We used classification trees to model coarse‐scale natural and anthropogenic environmental factors and their relation to the presence or absence of each species. Model results were then used to predict probability of presence for each species within each stream segment throughout the entire St. Francis River drainage. 3. Factors related to geology and soils were the best predictors of species distributions. A dichotomy of these factors explained much of the discrete distributions of the two native species. Agricultural‐related factors were identified as the most influential anthropogenic activity related to species distributions. All associations between the invasive species and anthropogenic factors were negative which suggested the invader was not likely to establish in heavily impacted areas. Overall, our models had high correct classification rates, and we were able to reliably predict the presence of the invader in the invaded drainage. 4. Given the negative associations of the invader with anthropogenic alterations at a coarse spatial scale, we believe other mechanisms are likely to be responsible for the widespread displacement of the two native species. These findings can be used to assist in conservation activities such as creation of refugia for native species and may direct future research to identify the mechanism(s) of species displacement.  相似文献   

19.
Aquatic ecosystems face a variety of anthropogenic pressures, urging the development of efficient biological indicators. In addition to local environmental conditions, the community structure of indicator organisms is affected by spatial processes, such as high and limited dispersal rates. Understanding the relative roles of environmental factors and spatial processes for ecological communities should thus be associated with bioassessment practices. We examined the main drivers, both environmental and spatial, influencing community structure and several indices derived from diatom communities. We sampled 81 stony littoral sites in a large boreal lake system (305 km2), where relatively large gradients in water chemistry (35 variables measured) exist, but no dispersal limitation can be expected. Instead, high dispersal rates should interfere with species sorting. Our response variables, including commonly-used diatom indices, diversity indices and taxonomic distinctness indices, were better explained by pure effects of spatial variables and shared effects of spatial and environmental variables than by pure effects of environmental variables. Thus, high dispersal rates between sites are likely to interfere with environmental filtering and can result in clear spatial structures in index values used in bioassessment. Bioassessment should thus acknowledge the importance of spatial processes and not take it for granted that only local environmental conditions determine index values. Failure to consider high dispersal rates may lead to biased information about the state of freshwater ecosystems. The same idea should also be considered in systems with similarly highly-connected sets of bioassessment sites, such as marine coastal systems and stream networks.  相似文献   

20.
West Nile virus (WNV) is a vector-borne pathogen that was first detected in the United States in 1999. The natural transmission cycle of WNV involves mosquito vectors and avian hosts, which vary in their competency to transmit the virus. American robins are an abundant backyard species in the United States and appear to have an important role in the amplification and dissemination of WNV. In this study we examine the response of American robins to infection with various WNV doses within the range of those administered by some natural mosquito vectors. Thirty American robins were assigned a WNV dosage treatment and needle inoculated with 100.95 PFU, 101.26 PFU, 102.15 PFU, or 103.15 PFU. Serum samples were tested for the presence of infectious WNV and/or antibodies, while oral swabs were tested for the presence of WNV RNA. Five of the 30 (17%) robins had neutralizing antibodies to WNV prior to the experiment and none developed viremia or shed WNV RNA. The proportion of WNV-seronegative birds that became viremic after WNV inoculation increased in a dose dependent manner. At the lowest dose, only 40% (2/5) of the inoculated birds developed productive infections while at the highest dose, 100% (7/7) of the birds became viremic. Oral shedding of WNV RNA followed a similar trend where robins inoculated with the lower two doses were less likely to shed viral RNA (25%) than robins inoculated with one of the higher doses (92%). Viremia titers and morbidity did not increase in a dose dependent manner; only two birds succumbed to infection and, interestingly, both were inoculated with the lowest dose of WNV. It is clear that the disease ecology of WNV is a complex interplay of hosts, vectors, and viral dose delivered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号